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ABSTRACT
The rapid deployment of smartphones as all-purpose mo-
bile computing systems has led to a wide adoption of wire-
less communication systems such as Wi-Fi and Bluetooth
in mobile scenarios. Both communication systems leak in-
formation to the surroundings during operation. This infor-
mation has been used for tracking and crowd density esti-
mations in literature. However, an estimation of pedestrian
flows has not yet been evaluated with respect to a known
ground truth and, thus, a reliable adoption in real world
scenarios is rather difficult. With this paper, we fill in this
gap. Using ground truth provided by the security check
process at a major German airport, we discuss the quality
and feasibility of pedestrian flow estimations for both Wi-
Fi and Bluetooth captures. We present and evaluate three
approaches in order to improve the accuracy in comparison
to a naive count of captured MAC addresses. Such counts
only showed an impractical Pearson correlation of 0.53 for
Bluetooth and 0.61 for Wi-Fi compared to ground truth.
The presented extended approaches yield a superior corre-
lation of 0.75 in best case. This indicates a strong correla-
tion and an improvement of accuracy. Given these results,
the presented approaches allow for a practical estimation of
pedestrian flows.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Signal processing systems

General Terms
Measurement
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1. INTRODUCTION
The organization of pedestrian flows in large public build-
ings like airports, train stations, shopping malls etc. is a
big challenge for people working in these buildings. Systems
with information about current crowd densities are able to
support the control and management process of pedestrian
flows and can reduce travel time and management cost. Such
systems can react on the actual needs of the present people,
e.g. by closing or opening additional doors, ticket shops, or
control gates. Based on automatic flow information, peo-
ple can be informed about the degree of capacity utiliza-
tion in the desired destination and certain pedestrian flows
can be led through less crowded areas for time-saving rea-
sons. Furthermore, such crowd information is also very in-
teresting and useful for commercial purposes. In oder to
obtain this information automatically, optical approaches
have been investigated for many years using cameras and
image processing techniques, such as [14]. However, these
techniques require special additional hardware components
and suffer from high implementation cost in order to track
people in huge areas. Furthermore, taking pictures or video
surveillance of unknown people is always a privacy issue and
has to be discussed carefully in certain scenarios [6].

In the last decade, Wi-Fi infrastructures have been widely
installed in many public buildings offering Internet and lo-
cal services to their visitors. With the immense diffusion of
modern smartphones and tablets, more and more people use
these services with their Wi-Fi enabled mobile device. The
increasing usage of Wi-Fi as an ubiquitous communication
technology also offers new possibilities to estimate current
pedestrian flows without the need for expensive additional
hardware installation. Due to the fact, that Wi-Fi enabled
devices periodically broadcast certain management frames,
an easy and low-cost implementation of monitoring units
suffices to passively collect Wi-Fi data from surrounding
people. Neither an active user’s participation nor any modi-
fication of the involved hardware or software is needed. This
readily available activity information has been exploited in
literature for several purposes, such as locating and tracking
people or for density and trajectory estimations.

However, and to the best of our knowledge, an estimation
of current pedestrian flows based on Bluetooth and Wi-Fi
captures has not been realized in a scenario where a reliable
source of ground truth information is available. Thus, as a
main contribution, we present a low-cost tracking system for
pedestrian flow estimations and investigate its feasibility and



accuracy in detail with a known ground truth in a realistic
scenario. Therefore, during a period of 16 days, management
frames of both, Bluetooth and Wi-Fi have been collected at
two particular monitor nodes inside a major German airport.
One monitor node was placed in the public area and another
one in the security area separated by a security check in-
volving boarding pass scans. Based on the collected data,
we compare the ability of Bluetooth and Wi-Fi for pedes-
trian flow estimations. Furthermore, we present three dif-
ferent approaches to improve the accuracy towards ground
truth in comparison to a naive count of Wi-Fi captures. All
approaches are evaluate with the Pearson’s correlation in-
dicating the degree of the linear dependence between our
estimation and ground truth.

The remainder of this paper is structured as follows: In
Section 2 we give a brief overview of current research in
this topic. Section 3 presents the proposed methodology
and explains the underlying technical properties exploited
for detecting devices. The conducted experiment and its
evaluation are presented in Section 4. Finally, Section 5
concludes the paper and gives hints on future work.

2. RELATED WORK
Tracking people by Bluetooth or Wi-Fi signals has been
discussed previously in literature. Density estimation in
crowded mass events has been studied using Bluetooth scans
or Wi-Fi from collaborating smartphones inside the crowd
[15, 17]. Furthermore, human behavior was extracted from
similar data for a concert situation [4,8]. For the case, that
enough devices from the crowd are cooperating, the density
and motion of surrounding people has been studied using
devices building a Bluetooth ad-hoc network [12].

However, Bluetooth has a short transmission range and most
modern smartphones operate Bluetooth in invisible mode
per default. Therefore, researcher started to investigate in-
formation extracted from Wi-Fi activity and compare it to
Bluetooth [1]. The authors sum up that Wi-Fi shows higher
benefits for monitoring people, due to shorter discovery time
and higher detection rates. According to their results, only
five percent of all discovered unique devices at several lo-
cations are discovered via Bluetooth and over 90% via Wi-
Fi. Several systems concentrating on Wi-Fi have been pro-
posed in literature. Data extracted from Wi-Fi management
frames has been used in order to estimate trajectories [11],
social relationships [3], waiting times in human queues [16],
and in order to calculate density estimations [4].

However, to the best of our knowledge, none of these works
present detailed analysis of Bluetooth and Wi-Fi based den-
sity and flow estimations in real-life scenarios related to a
known ground truth and, hence, an explicit evaluation of
the reliability of such estimations is still missing.

3. METHODOLOGY
This section describes the methodology for crowd density
and pedestrian flow estimations based on signal captures
from unmodified mobile devices. At fist, the following defi-
nitions are presented:

Crowd density is defined by the amount of people per unit
of area within a certain time interval.

Pedestrian flow is defined as the amount of people moving
one way through an area of interest within a certain time
interval.

For the detection of a mobile device, it has proven useful to
look at the traffic generated from local area network tech-
nologies such as Bluetooth and Wi-Fi.

3.1 Bluetooth
Bluetooth is a wireless communication system designed for
short range communication and operates in the license-free
ISM band. It is defined as IEEE 802.15.1 Bluetooth. The
typical range of Bluetooth-enabled smartphones is roughly
ten meters. In order to organize Bluetooth connections, an
inquiry mode has been defined. Basically, a device which
wants to initiate a Bluetooth connection with another de-
vice sends out an inquiry packet and other devices listening
for them can answer. Most devices only react to such in-
quiry packets, when made visible by the user through a user
interface dialog. The inquiry response frame contains the
Bluetooth MAC identifier of the discovered device and can
contain additional information including the local name of
a device. In order to track devices, the target has to an-
swer inquiries, which has long been the default for phones.
Therefore, we expect a specific amount of detectable devices,
mainly from older generation.

3.2 Wi-Fi
The wireless local area network technology, commonly known
as Wi-Fi, is defined in IEEE 802.11. Its communication
range varies from about 35 meters for indoor scenarios to
more than 100 meters for outdoor scenarios, depending on
the environment, the Wi-Fi transmitter power, and the used
802.11 protocol extension [1]. The standard defines three
different classes of frames: Control frames, management
frames, and data frames. We focus on management frames,
as these are involved in the network discovery and associ-
ation process and performed by most smartphones in the
public.

Wi-Fi discovery consists of two mechanisms: Passive scan-
ning in which a mobile device listens for messages from ac-
cess points advertising their presence. In order to become
detectable, access points send out beacon frames roughly
every 100 ms. However, these frames are only sent out on
the channel, where the access point is operating. Therefore,
the client has to listen to different channels in order to find
access points passively. In contrast to that, active scanning
is based on messages sent by the mobile device similar to a
Bluetooth inquiry message. These messages are sent out on
all channels one after another.

This is the preferred method for mobile devices due to lower
energy-consumption and shorter discovery time of access
points [9]. Empirical test with different mobile devices show
that an active scan is performed at least once within two
minutes, despite the case that the test device was associ-
ated to an access point or not [4]. Our own experiments
with an iPhone 5 and a Galaxy S3 Mini confirm these results
on average. Probe request frames contain the MAC address
of the sender and, optionally, the SSID of the network of
interest. If the frame’s SSID field is left blank, all access
points should answer the probe request. In practice, various



mobile devices broadcast directed probe requests for each
SSID, which is saved in the preferred network list (PNL).
In combination with other probe request information, such
as the MAC address, which provides a device specific iden-
tifier, this common procedure of Wi-Fi active scans leads to
serious issues concerning the privacy of mobile users.

In order to address these issues, researchers started to inves-
tigate and develop privacy preserving approaches for Wi-Fi,
either with minimal modifications to standard 802.11 im-
plementations [10], or as a new protocol version [7]. How-
ever, none of these approaches are applied in practice yet.
Recently, Apple has integrated a mechanism to randomize
the device specific MAC address in their new mobile op-
erating system iOS 8. The purpose of this mechanism is,
that it becomes more difficult to clearly recognize a phone
by probe request captures and, thus, the privacy of iPhone
users gets more preserved. However, only the randomiza-
tion of MAC addresses does not preserve the user’s privacy,
due to implicit identifiers, or specific characteristics of Wi-Fi
traffic [13]. Furthermore, the actual implementation of Ap-
ple’s mechanism fails at a rigorous MAC address spoofing in
practice, due to several conditions, which are not common
in real-life, e.g. the device must be asleep for a long time,
which is not given in case of cellular data connectivity [2]. In
summary, a mobile device can still reliably be recognized in
practice based on captured Wi-Fi active scans. This is the
basis for the approaches presented in the subsequent section.

3.3 Approaches
Considering the definitions from above and assuming that
a captured unique MAC address belongs to one person, the
crowd density of one monitor node’s coverage area is es-
timated by the amount of captured unique devices at the
corresponding node during a certain time interval. Further-
more, a pedestrian’s movement through an area of interest is
measured by capturing the device specific MAC address at
different monitor nodes located at the entrances/exits to this
area of interest. According to the definition, the pedestrian
flow in the desired area of interest is the amount of peo-
ple moving from one entrance to one exit within a certain
time interval. Thus, the pedestrian flow can be estimated
by one of the following approaches, which are based on the
captures made at one monitor node ni covering the entrance
and another monitor node nj covering the exit of an area of
interest.

3.3.1 Naive Approach
The naive approach just counts the unique MAC addresses
which have been captured at both nodes ni and nj within
a specific time interval t. This simple approach suffers from
two major problems: First, the direction of a person’s move-
ment cannot be determined, and second, the detection of a
device in an overlapping coverage area of monitor nodes is
automatically seen as a pedestrian’s movement, even if the
person is not moving from one area to another. This in-
creases the false-positive rate of the system. In order to
overcome these problems, three extensions of this naive ap-
proach are presented in the sequel.

3.3.2 Time-based Approach
The time-based approach additionally considers the time
when a MAC address was captured at a monitor node for

the first or the last time, respectively. Thus, the pedes-
trian flow between ni and nj is expressed as the number of
unique MAC addresses in t containing a positive time delay
between the last (or first) capture at node ni and the last
(or first) capture at node nj . Hence, the direction of a per-
son’s movement can be determined. However, the number
of false positives in case of overlapping coverage areas can-
not be completely reduced by this approach. Therefore, an
RSSI-based solution is presented.

3.3.3 RSSI-based Approach
This method is an extension of the naive approach taking
the received signal strength indication (RSSI) value of cap-
tures into account. The pedestrian flow between monitor ni

and monitor nj is then expressed as the number of unique
MAC addresses in t containing at least one capture with an
RSSI value over a certain threshold ε for both nodes. With
a well-chosen threshold, this approach can reduce the false-
positives in case of overlapping coverage areas. However,
an optimal and absolute RSSI based threshold is hard to
find in realistic scenarios, due to the fact, that many factors
have significant influences on the RSSI value, such as device
characteristics, environmental circumstances or phone posi-
tions. Hence, the major issue is to find an adequate value
ε for each scenario. If ε is chosen too small, many captures
will not be considered and the false negative rate increases.
If ε is too large, the problem of overlapping coverage areas
is not solved. Furthermore, the direction of the pedestrian
flow is hard to determine with a pure RSSI-based method.
Therefore, we present a hybrid approach.

3.3.4 Hybrid Approach
The hybrid approach is a combination of the last two meth-
ods and considers both the RSSI value and the time when a
MAC address was captured. Thus, the pedestrian flow from
node ni to node nj is expressed as the number of unique
MAC addresses in t containing a positive time delay between
the nodes and at least one capture with an RSSI value over a
certain threshold ε for both nodes. Besides the fact that an
optimal RSSI based threshold is hard to find, the proposed
method provides both the direction of the pedestrian flow
and the possibility to reduce the false-positive rate in case
of overlapping detection zones.

4. EVALUATION
In this section, a thorough evaluation of the described method-
ology and the proposed approaches is performed. The under-
lying data was collected with the following implementation
and setup.

4.1 Implementation and Experimental Setup
Two identical and time-synchronized laptops were placed at
two different locations at the Munich Airport in order to col-
lect both, Wi-Fi frames and Bluetooth inquiry results. All
Wi-Fi management frames excluding 802.11 Beacons (due to
unnecessary processing overhead) were captured with a Wi-
Fi interface in monitor mode. For Bluetooth measurements,
the BlueZ stack of the Linux kernel was used performing
one inquiry scan per minute in order to avoid negative influ-
ences on Wi-Fi transmissions. The corresponding responses
including RSSI value, the address and a time stamp were
collected.



Figure 1: Map2of the testbed indicating the passen-

ger flow through the security check, and the loca-

tions of monitor nodes, and boarding pass scans

As a reference information, we were given access to the
boarding pass scan numbers reflecting the true flow of peo-
ple through the security check. The experimental setup is
shown in Figure 1 and is designed as follows: The first mon-
itor node is installed at an info desk in the public area,
located approximately 20 meters in front of the entrance to
the mentioned security gate and 10 meters before the board-
ing pass scans. Thus, this node covers the entrance to the
area of interest, which is the area of the security check in
this case. The second monitor node is located at the desk of
an airport takeaway restaurant in the security area, approxi-
mately ten meters behind the exit of the security check. The
distance between both monitor nodes is roughly 40 meters.
The proposed setup provides the following benefits:

• A minimal usage of additional hardware is required

• A deterministic one way pedestrian flow through the
security gate is realized

• Access to ground truth from corresponding boarding
pass scans is given

With the proposed implementation and setup, Bluetooth
and Wi-Fi signals from passing mobile devices are captured
during a 16-day period. Note that these captures include
people who do not pass the security check, such as visitors,
staff and other persons walking through the coverage areas.
Thus, the following subsection firstly presents general crowd
information based on the collected data, and then, an overall
evaluation of the proposed methodology is given.

4.2 General Information from the Crowd
In general, we observed over 11 million probe requests and
6,600 unique SSIDs in the public and about 8.5 million
probes and 4,000 unique SSIDs within the security area. The
ratio of directed probes with transmitted SSID was nearly
37% in the public and about 47% in the security area, respec-
tively. On average, we detected 6,211 unique Wi-Fi MAC

2Source: Google Maps – https://maps.google.de

addresses and 250 unique Bluetooth addresses per day in
the public area which leads to a 4% Bluetooth/Wi-Fi ratio.
Less traffic was captured within the security area, counting
3,784 unique Wi-Fi and 107 Bluetooth addresses, resulting
in a Bluetooth/Wi-Fi detection ratio of 2.8%.

For unique MAC addresses, which were captured during
the complete experiment, we perform an Organizationally
Unique Identifier (OUI) lookup, indicating the manufacturer
of the used Wi-Fi chip. The distributions for the most fre-
quently tracked OUIs in the public area are shown in Figure
2(a) and 2(b) for Bluetooth and Wi-Fi, respectively. The
results for the security area show nearly the same distribu-
tions.

As expected, newer mobile devices such as iPhones or Sam-
sung phones are seldom detected via Bluetooth. Instead,
more models of long established manufactures including Nokia
or RIM’s BlackBerry are detected by Bluetooth inquiry re-
quests. In case of active Wi-Fi probes, we discover a sig-
nificant dominance of Apple devices which has also been re-
ported by other studies [3, 11]. In empirical tests, we found
out that some Apple devices send out probe requests more
often compared to some Android devices. Therefore, this
unexpected high fraction of Apple devices is influenced by
a higher probability of receiving a probe request in a given
period of time. Furthermore, it can also indicate that An-
droid devices have Wi-Fi turned off more often, possibly due
to very easy access to the option in the energy management
widget.

4.3 Density Estimation
We estimate the crowd density in both areas and for both
techniques, separately. In this case, we do not have data rep-
resenting ground truth. However, we assume that if there is
a high frequency of boarding pass readings, we should ob-
serve a higher density in the public and security area before
and after these readings, respectively. Figure 3 shows our
density estimations compared to the frequency of boarding
pass readings for a single day as an example of the exper-
iment. In general, it can be observed, that the density of
captured unique devices in the public area is higher than in
the security area. This is to be expected taking into account
that more people move through the public area including
visitors.

Besides probe requests, we also take additional association
and reassociation requests into account. However, this does
not influence the Wi-Fi density estimation significantly. In
contrast to Wi-Fi, Bluetooth density underestimates the fre-
quency of boarding pass scans. This is because the quantity
of trackable Bluetooth devices is small in comparison to the
amount of people.

We also observe a positive time shift between the peaks of
Wi-Fi density estimations from the public to the security
area during a peak of boarding pass scans. This indicates
an adequate result, due to the fact that the building intro-
duced exactly this ordering: Visibility for the first sensor
node followed by boarding pass scan and entering the range
of the second node, followed by loosing contact to the first
and later to the second sensor node.
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Figure 2: Manufacturer distribution of unique captured devices in the public area
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4.4 Pedestrian Flow Estimation
Based on corresponding boarding pass readings, we analyze
the accuracy of our proposed methodology for pedestrian
flow estimation. Figure 4 shows the obtained results for
Bluetooth and naive Wi-Fi counts in comparison to boarding
pass scans for one day of the study. It can be observed that
Wi-Fi overestimates and Bluetooth underestimates ground
truth. In case of Wi-Fi, this was unexpected, due to the
fact that not every passenger carries a Wi-Fi enabled device.
Beside the fact, that some airport staff members might be

included in the data and some persons may carry more than
one device, we explain this observation by a high number of
false-positives, due to the short distance between the mon-
itor nodes which leads to an overlapping zone of both cov-
erage areas. Hence, some Wi-Fi devices have been tracked
at both areas without passing the security gate. According
to Section 3.3, we evaluate if this effect can be limited by
using one of the extended approaches. Figure 5 shows the
results for the RSSI and the time based approach indicat-
ing an improvement towards ground truth in comparison to
the naive method. Note that in case of Bluetooth, these
extended approaches have no positive influence, due to the
small quantity of captured Bluetooth devices and, hence, we
will evaluate them for Wi-Fi based estimations only. It has
to be mentioned that the presented estimations generally
contain a positive time delay related to ground truth. This
is because people scan their boarding pass and need longer
time to exit the range of the monitor node of the public area
while we consider the last timestamp when a MAC address
was seen in the public area for our estimations.

For a more detailed analysis, we determine the Pearson’s
correlation, which is a widely used measure of the linear
dependency between two observations, in our case between
the estimation and ground truth. As result, the correlation
coefficient r is returned, with −1 ≤ r ≤ 1. Positive values
denote positive linear correlation and negative values denote
negative linear correlation. The absolute value |r| indicates
the strength of the correlation and can be verbally described
according to Dancey and Reidy’s categorization [5]:

|r| = 0.0 zero

0.1 ≤ |r| ≤ 0.3 weak

0.4 ≤ |r| ≤ 0.6 moderate

0.7 ≤ |r| ≤ 0.9 strong

|r| = 1.0 perfect



Bluetooth Wi-Fi naive Wi-Fi RSSI Wi-Fi time Wi-Fi hybrid

max 0.73 0.82 0.93 0.93 0.93
average 0.44 0.41 0.56 0.47 0.57

Table 1: Correlation coefficients for each approach based on an optimal time shift
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Figure 4: Results of naive Wi-Fi and Bluetooth

based pedestrian flow estimations at a single day

compared with boarding pass scans

Due to the positive time delay, we first perform several time-
shifts of our estimations and determine the correlation coeffi-
cient for each shift. The results for the complete experiment
are indicated in Table 1 showing the maximal and average
correlation coefficient for each approach based on an opti-
mal time shift related to the average value. As expected,
Bluetooth and the naive Wi-Fi based estimations show the
lowest correlation, while the extended approaches reach a
correlation coefficient of 0.93 in best case. This indicates a
good result and shows the improvement of the estimation
accuracy in comparison to a naive approach. However, such
an adequate correlation cannot be observed for any approach
on average, where the highest correlation of 0.57 is reached
by the Wi-Fi hybrid method.

In order to improve these results, we investigate our methods
for an abbreviated (focused) capturing time, namely from
6.00 to 22.00, when the security gate is open. This is due to
the fact that during night, no boarding passes are scanned
while some signals from passing mobile devices are captured,
leading to a higher false-positive rate. This external infor-
mation is available in many application scenarios. Again,
Table 2 shows the results for the maximal and average cor-
relation coefficient for each approach based on an optimal
time shift and a focused estimation. The results indicate
that a focused estimation increases the average correlation
coefficient for every approach.
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Figure 5: Results of RSSI and time-based Wi-Fi

pedestrian flow estimations at a single day compared

with boarding pass scans

In case of the naive Wi-Fi method, the most significant im-
provement of about 48% is reached. Due to a higher false-
positive rate in case of overlapping monitor ranges, this was
expected. In contrast, Bluetooth shows the lowest improve-
ment of only 20% indicating a smaller false-positive rate,
due to its short communication range. Furthermore, only a
moderate correlation of 0.53 could have been reached on av-
erage, due to the small quantity of detected devices. In case
of Wi-Fi, the hybrid based method performs best on average
showing a strong correlation of 0.75. Furthermore, it can be
seen that in comparison to a naive count of captured MAC
addresses, the extended methods improve the estimation ac-
curacy of up to 23%. Note that all these results according to
Wi-Fi are based on probe request captures only and could
not have been improved further by considering additional
frames, such as association requests.

5. CONCLUSION AND FUTURE WORK
In this paper, we have investigated the quality and feasibility
of pedestrian flow estimations based on Wi-Fi and Bluetooth
captures from unmodified mobile devices at a major German
airport. Furthermore, we have presented three approaches
to improve the accuracy of our Wi-Fi based estimations in
comparison to a naive count of MAC addresses often pro-
posed in related work. Based on the performed evaluation,
we conclude, that both Bluetooth and Wi-Fi can be used to
get approximations about the crowd without the awareness



Bluetooth Wi-Fi naive Wi-Fi RSSI Wi-Fi time Wi-Fi hybrid

max 0.79 0.86 0.91 0.91 0.91
average 0.53 0.61 0.74 0.63 0.75

Table 2: Correlation coefficients for each approach based on an optimal time shift and a focused estimation

of its members. In summary, only a fraction of surround-
ing devices could have been tracked by periodical Bluetooth
scans and thus, Bluetooth based estimations are less accu-
rate showing a moderate average correlation to ground truth
of only 0.53 in best case. This is not an adequate result for
a reliable pedestrian flow estimation system.

In contrast to Bluetooth, Wi-Fi tracking provides a good
approximation to crowd densities and pedestrian flows. By
using one of the extended approaches, the accuracy of a
naive Wi-Fi based estimation could have been improved.
With additional information from the application scenario
we have reached a strong correlation related to ground truth
on average. These results lead to the general conclusion that
the presented approaches allow for a practical estimation of
pedestrian flows. Furthermore, external sources of infor-
mation are needed in order to provide a reliable tracking
system based on Wi-Fi probes. Even simple information
such as the opening times of the security gate help a lot
in increasing the average prediction quality. This should
be addressed in future work for different external informa-
tion. It has to be mentioned that the presented results are
based on a single realistic scenario. The properties of this
specific scenario with respect to communicational and social
behavior of users could have influenced the experiment and
other environments might have significant differences. Fur-
ther experiments in other scenarios, e.g shopping malls, or
train stations, are required in the future, in order to assess
and compare our results. We plan to do so and want to en-
hance our research efforts in this topic, especially in terms
of positioning, trajectory estimation and privacy aspects.
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