
TagPix: Automatic Real-time Landscape Photo
Tagging For Smartphones

Hillol Debnath and Cristian Borcea
Department of Computer Science

New Jersey Institute of Technology
University Heights, Newark, NJ 07102, USA

Email: hd43@njit.edu and borcea@njit.edu

Abstract—This paper presents TagPix, a lightweight smart-
phone photo tagging app that provides good tagging accuracy,
works in real-time, and protects user privacy. The main novelty
of TagPix consists in leveraging the phone sensors and a place-
tag database to tag landscape photos which include landmarks.
GPS location is used to identify landmark tags in a given region.
Then, TagPix computes the angular distance for the object in the
camera focus using the orientation sensors. This allows the app to
select a small subset of landmark tags for the photo. For further
tag accuracy, we devised new usable methods to estimate the
Euclidean distance between the user and the landmark in the
camera focus. These methods employ simple user actions and
lightweight trigonometric calculations. TagPix is implemented
and tested using several Android phones and Google Places
API. The app was tested in 8 cities across USA. Using only
angular distance, TagPix achieves 86% tagging accuracy. Adding
Euclidean distance estimation leads to 93% accuracy.

I. INTRODUCTION

John visited Paris during last Christmas, and he captured
several thousand photos of different places, statues, museums
etc. When he went back home after the tour, he found that
he has lots of good memories to share with his friends on
Facebook. He started to upload the tour photos, but soon
realized that he cannot name many places in these photos.
He has completely forgotten the name of some, and he did not
know the name of others in the first place. Even for the places
that he remembered, he was getting tired to tag the photos
manually. He wished there was an app around that would tag
the photos automatically.

The necessity of an automatic photo tagging tool has long
been felt, but it has become more acute in the last few years
with the widespread availability of smartphones and tablets
equipped with cameras. There are more than one billion smart-
phones and tablets in the world [1] today, and they are used to
generate a huge number of photos. Many of these photos are
tagged and shared with our social networks. For example, 300
million photos are uploaded daily on Facebook [2]. Tagging
all these photos manually is becoming almost impossible.

We have developed TagPix, a smartphone app that can auto-
matically tag a significant number of photos: landscape photos
containing landmarks. This app is very useful especially for
tourists and for people who share their photos using social
networking applications. We had four goals when designing
this app:

High accuracy automatic tagging: We aim to tag each photo
with just one tag: the name of the landmark in the camera
focus. If there are multiple landmarks in a photo, the user
may configure the app to include them. In most situations, the
tagging should require no user actions.

User privacy protection: The app must not upload the
photos to Internet tagging services such as Google Goggles.
Thus, all tagging processing should be done locally on the
phone.

Real-time tagging: To help users who do not know the name
of the landmark they just photographed, the app should display
the tag as soon as a photo is taken. Therefore, the processing
should be fast.

Modest phone resource usage: The app should be
lightweight and consume a modest amount of resources,
with battery power and network bandwidth being the main
concerns.

To the best of our knowledge, currently, there is no smart-
phone app that can satisfy all these goals. Most of the existing
automatic tagging systems are content-based, pattern match-
ing, and classification-based systems [3], [4]. These systems
either work on servers (do not protect user privacy, and may
not be able to provide real-time tags) or they consume a lot of
CPU and energy if ported on the phones. Furthermore, they
demand photos of moderately good quality (i.e., do not work
well for night photos) and taken from specific angles. Finally,
they require extensive training. Unlike these systems, TagPix
satisfies all four goals by relying solely on phone sensors, a
tag-place database, and lightweight processing on the phone.
It also works with photos of any quality and does not require
training.

The main novelties of TagPix are: (1) An algorithm that
leverages the GPS and the orientation sensors on the phone
to compute the angular distance between the object in the
camera focus and the landmarks in the camera’s angle of view,
which then allows TagPix to accurately select the tag(s) for
the object; and (2) Three usable methods, based on simple
user actions and trigonometric calculations, to estimate the
Euclidean distance between the user and the object in the
camera focus, which allow TagPix to improve its tag selection
accuracy.

To summarize, the contributions of this paper are:
• We designed a new real-time, privacy preserving photo

MOBILWARE 2013, November 11-12, Bologna, Italy
Copyright © 2014 EAI
DOI 10.4108/icst.mobilware.2013.254283

tagging application, which works locally on the phones
and consumes little resources (e.g., battery). TagPix pro-
vides high tagging accuracy without requiring any any
previous training or indexing. Since it does not use
computer vision techniques, it works well independent
of the photo quality.

• We devised three new and usable methods for estimat-
ing for estimating the Euclidean distance between the
user and the landmark to improve tagging accuracy and
remove false positive tags. Estimating this distance is
difficult because phone cameras have digital zoom which
cannot be used in classic optical physics formulas. Our
methods require minimal effort from users (e.g., move a
few steps and point the camera to the object again) and
employ lightweight trigonometric calculations.

• We developed a lightweight, low energy consuming pro-
totype for Android. The prototype works on several types
of Android-based phones and uses the Google Places
API [17] to retrieve landmarks in the proximity of the
user. This prototype was successfully tested with 6 users
across 8 cities in the USA. Only using tagging based
on angular distance calculations (i.e., the best method in
terms of usability), TagPix achieves an average accuracy
of 86%. After applying the Euclidean distance estima-
tion in conjunction with angular distance, the accuracy
increased to 93%.

The rest of this paper is organized as follows. Section II
presents an overview of TagPix. Section III discusses the
related work. Section IV describes the design and implementa-
tion of TagPix. Section V presents the evaluation results. The
paper concludes in Section VI.

II. TAGPIX OVERVIEW

To illustrate how TagPix works, let’s consider the scenario
from Figure 1, in which the user zooms in and takes a photo
of Tour Eiffel. TagPix’s goal is to determine one tag that best
represents the photo. We assume a place-tag database stored
on the phone; alternately, this database can be accessed over
the Internet. This database provides landmark tags and their
associated locations.

First, TagPix reads the GPS location of the user and retrieves
the nearby landmark tags. If it just considers the distance
between these landmarks and the user, the app would end up
with the wrong tag (i.e., Trocadero which is the closest, but
it’s behind the user). Therefore, TagPix uses the orientation
sensors on the phone to determine the angle of view for the
photo (only the vertical angle of view, αV , is shown in the
figure). This operation helps to eliminate the Trocadero and
Pont d’Iena tags; the first is at the back of the user, and the
second is below the angle of view as the user is on a hill and
zooms in the Eiffel Tour.

Next, we would like to compute the distance to the object
in the camera focus and select the closest tag. Unfortunately,
distance estimation based on standard optics formulas can be
done only for objects within a few feet of the camera. This is
because the phones come with cameras and lenses that have

αv

Tour Eiffel

Pont d'Iena

Trocadero

Champ
de Mars

Musee du
Quai Branly

d1
d2

d3

Fig. 1: How to Select the Correct Tag for a Photo?

minimal ability in sensor size and focal length (e.g., the digital
zoom value is unusable in optics formulas, and the lens has
a fixed and small focal length). Instead of Euclidean distance,
TagPix computes the angular distance between the direction
of the camera focus and each of the remaining tag-identified
landmarks. This eliminates Musee du Quai Branly, and keeps
Tour Eiffel and Champ de Mars which both have 0 angular
distance in this example. In our basic solution, TagPix chooses
Tour Eiffel because it’s closer to the user position. In many
situations this method provides very good accuracy, but it’s
still possible to tag incorrectly in a few situations (e.g., the
landmark with the lowest angular distance is not the one in
focus).

However, if the user is willing to do a bit of extra work,
TagPix is able to estimate the distance to the object in focus
with good accuracy and solve this problem. We devised two
methods to do it: in one, the user is required to first point to
the base of the landmark being photographed, and then TagPix
uses simple trigonometric formulas to compute the distance.
In the other, the user is required to take two photos of the
landmark from two positions, which can be very close to each
other (e.g., 10 feet). With these methods, we can guarantee
the correct tag in our example, e.g., Tour Eiffel.

As a final observation, let’s note that determining the tag
through this distance estimation method can work with or
without the angular distance. However, by combining both of
them TagPix achieves the highest accuracy. For example, two
tags could be at the same Euclidean distance, but one could
be eliminated using the angular distance.

III. RELATED WORK

Besides the computer vision systems mentioned in the intro-
duction, geotagging for multimedia content has been proposed
in the literature as well [8]. Most of these projects are based
on 3D modeling and object matching. Similarly, the work
in [9] combines the 2D appearance of landmarks in photos
with 3D geometric constraints to extract scene summaries and
construct 3D models. This system uses “iconic scene graphs
for clustering based on geometric constraints, and then uses
structure from motion techniques to generate the 3D model of

the landmark. Thus, they are similar in nature to the computer
vision techniques already discussed, which are not suitable for
deployment on phones. TagPix provides a lightweight, real-
time, and privacy preserving alternative.

A number of other projects have addressed photo tagging or
used techniques similar to those in TagPix. In [5], the system
expects the user to tag a set of photos manually, and then tries
to correlate the other photos with this set using the time and
location of the photos. It suggests existing tags based on these
correlations. This system is lightweight, but it has limitations:
it requires significant actions from users, and may have low
accuracy in places with many landmarks. TagPix is able to
overcome these limitations.

TagSense [6] is a smartphone automatic tagging system,
which explored the opportunity of using the phone sensors to
get a clue about what is being shot. The accelerometer, GPS,
gyroscope, light sensor, and microphone are used to infer the
context. The phones also collaborate to learn who may be in
the captured photo. The main focus was to tag people and
include keywords about context, such as “outdoor”, “noisy”,
or “inside XYZ museum”. While this system proposed a novel
way of providing tags automatically based on sensor data
collected from the user’s phone, it still differs from TagPix in
a very important aspect. This system did not try to identify the
landmarks in the camera focus, and implicitly did not include
a method to do so. As we explained already, this is not a
straightforward problem: the landmarks in the photos may not
be nearby, and selecting the most appropriate tag is difficult.

Argon [11] and Wikitude [12] are two augmented reality
browsers which overlay tags for nearby landmarks or places of
interest over the live camera screen. The main similarity with
TagPix is that they use a place-tag database to find nearby tags.
Unlike TagPix, they do not attempt to place the tags precisely
over the landmarks they represent. They place info bubbles
on the camera screen to let the user know what landmarks are
nearby. Furthermore, Argon does not overlay tags for farther
away landmarks.

A location-driven tag suggestion system is proposed in [7].
This system use sources such as a public Geographic Names
Information System (GNIS) database, community tags from
Flickr pictures, and personal tags shared through users’ photo
collections. Bags of place-name tags are first retrieved, clus-
tered, and then re-ranked using spatial distance criteria. The
community tags from photos taken in the vicinity of the
input geotagged photos are ranked according to the distance
and visual similarity to the input photo. Compared with
this system, TagPix achieves much higher tagging accuracy
because it leverages the orientation sensors to eliminate the
tags that are not in the camera’s angle of view. By using
the Euclidean distance estimation, TagPix is able to further
improve the tagging accuracy.

Similar with this system, TagPix could use multiple tag-
place databases, especially community and personal tags. For
example, folksonomies such as the one presented in the MarkIt
game [10] could be added to TagPix. In the literature, there are
also tagging systems based on visual folksonomies, generate

tags for new visually similar photos. Such systems utilize
collaboratively annotated image databases, and then analyze
the images to find visually similar photos and propagate the
tags for them. TagPix is different in nature from this system
because it works on the phone and requires no (or minimal)
user actions.

The work in [13] focused on accurate localization of distant
objects, and used similar methods with TagPix for distance
estimation. The user needs to focus the target object in the
camera viewfinder and then take multiple photos from different
nearby positions. The distance is then estimated based on 3D
models of the captured photos. The major difference between
this work and TagPix is in terms of usability. TagPix provides
high tagging accuracy even without asking the users to move
or take multiple photos. Furthermore, even when it does ask
the users to move, it is only for a short distance and one
additional photo as opposed to larger distances and many
photos.

SmartMeasure [14] is a popular app in Google Play, which
uses the camera to estimate the distance to a target object. It
first asks the user to input the estimated height of the object.
Then, it uses a simple trigonometric formula to estimate the
distance. This method has some similarities with the methods
used by TagPix to estimate the distance to an object. However,
we do not require the user to input any value, which ultimately
improves the usability and could potentially avoid errors due
to wrong user input.

Google Goggles [15] is a visual search tool which require
the user to upload the image to a server, which then returns rel-
evant information. The servers supporting Goggles are trained
with more than a billion photos [16]. While this system works
relatively well for images containing text or logos, it does
not work well with landmarks missing such features. It also
needs very specific levels of light and resolution to work well.
We tested it, and it failed to identify all the landmarks that
TagPix tagged correctly by using the phone sensors and our
algorithm. Unlike Goggles, TagPix works independent of the
photo quality and protects the user privacy because photos are
not uploaded to a server to be tagged.

IV. DESIGN AND IMPLEMENTATION

Figure 2 shows the system architecture for TagPix, which
consists of three layers. The first is the Sensors layer, which
is responsible for managing the sensors, e.g., when to turn
them on and off, how to collect data from them, etc. The
second is the Data Aggregator and Manager layer, which is
responsible to do pre-processing and adjustment work (e.g.,
angular adjustment for magnetic declination) as well as merg-
ing operations on the collected sensor data. The third layer is
the Tag Suggestion Generator, which is responsible for tagging
decisions and providing suggestions to users. In other words,
it computes the distances (angular and Euclidean) between the
tagged landmarks and the object in the photo, and then selects
the best matched tag (or tags if the user configures the app
for multiple tags).

Camera GPS Orientation
Sensor

Tag Suggestion Generator

Data Aggregator and Manager

Landmarks
DB

Tags

Fig. 2: TagPix System Architecture

Algorithm 1 TagPix Pseudo-code

1: gps = getGPSData()
2: landmarkList = callGoogleLocationAPI(gps, tagsNumber)
3: orientData = getOrientationData()
4: cameraState = getCameraInfo()
5: aov = angleOfView(cameraState)
6: coordinateRange = calculateTargetedArea(aov)
7: tags = angularDistFilter(landmarkList, coordinateRange, cameraState, ori-

entData, AngThreshold)
8: if useEuclideanDist == true then
9: angles = getUserLandmarkAngles()

10: euclDistance = getEuclideanDist(angles, UserHeight, UserMovement-
Distance)

11: tags = euclideanDistFilter(tags, euclDistance)
12: end if
13: return tags

Algorithm 1 presents the pseudo-code for TagPix. In the
following, we describe each of the instructions in the pseudo-
code based on our Android implementation; we used Android
2.3.3 (Gingerbread), but TagPix works on newer Android
versions as well.

A. Acquiring Location Data

Once the user pushes the camera button, TagPix queries
Android for the best location provider based on the accuracy
of existing sensor hardware, environment, energy level, etc. We
find that most of the time it provides GPS as the best provider.
But, in case the GPS signal is not available with a decent
accuracy or the battery level is too low to access the GPS
sensor, Android provides other location sensing options such
as WiFi, 3G, etc. TagPix registers a location listener to that
location provider, listens for a “location change” event, and
requests updates for a change in location of at least 1 meter.
Whenever the “location change” event fires, TagPix fetches
the longitude, latitude, and altitude for the current location.
The location API also provides a way to cache the previously
known location data in case it is unable to resolve the current
location. As long as the camera is open, the location provider
is updated once the user moves 20m from the previous place.

B. Fetching the Landmark List

Once the current location data is acquired, TagPix inquires
the place-tag database about the nearby landmarks list. TagPix
uses Google Places API [17] to retrieve tags associated with
places and landmarks. In this way, TagPix is able to access a
relatively up-to-date place-tag database. While TagPix sends
the user location to the database, it does not send the photos;
thus, it protects user privacy to a significant extent and reduces
the bandwidth usage. To avoid sending the user location to the
server, TagPix could store such a database on the phone and
update it periodically. For example, the GeoNames project [18]
provides a database of 8 million named places from all over
the world and is available for off-line use.

Resolving the location from GPS and then acquiring the
places list by calling the Google API is a fairly slow process
compared to the other calculations, which may degrade the
user experience. Therefore, we create an asynchronous task to
invoke the Google Places API before TagPix starts any other
computation. Thus, the places list is fetched in the background
while TagPix calculates the phone orientation.

Since it is not clear what radius value to set for “nearby”, we
choose to ask for a fixed number of tags ordered by proximity
to user location. The call returns a JSON array containing
the information of interest (i.e., name/tag and location) about
nearby landmarks and popular places. The JSON array is then
converted to Java objects to be used in the app.

C. Calculating the Orientation

x

y

z

y

x

z

Fig. 3: The World Geomagnetic Coordinate System vs. The Phones Coordinate
System

To determine the phone orientation, TagPix uses the
software-based orientation sensor in Android, which derives
its data from the accelerometer and the geomagnetic field
sensor. It provides geomagnetic field strength values for each
of the three coordinate axes. TagPix calculates the rotation
and inclination matrices that allow us to compute the rotation
around the three axes. However, there is one additional step
before this computation: the app has to align the phone’s
coordinate system to the World Coordinate System (as shown
in Figure 3). In the phone coordinate system, X and Y axes
are tangents to the ground location of the user and Z is
perpendicular on X-Y plane. TagPix uses the two matrices
to find the azimuth angle (angle around the Z axis) and the
tilt angle which are used to filter landmarks in a later stage.

αH /2

α /2

F

S2 S1

d

Object

Camera Body

Image

Fig. 4: Angle of View

D. Calculating the Angle of View

Calculating the angle of view (AoV) α is a standard proce-
dure used in Optics and Photography. As shown in Figure 4,
the AoV is defined as the angular extent of a given scene that
is imaged by a camera and is computed using the following
equation:

tan
α

2
=

d
2

S2
; (1)

For a well-focused photo, S2 equals the focal length of
the lens (F). When calculating the horizontal AoV (αH in
the figure), d is the camera sensor frame width (w); when
calculating the vertical AoV, d is the camera sensor frame
height (h). These sensor values are retrieved from the Android
Sensor API. For example, the horizontal AoV will be:

αH = 2arctan
w

2F
; (2)

camera

Our
target
object

landmark

ϒ

True North Magnetic
North

β

δ

z

Fig. 5: Angular Distance

E. Calculating the Angular Distance and Selecting Tags

Using the AoV and the orientation angles, TagPix computes
the angular distance between the object in focus and the
retrieved landmarks. This operation allows TagPix to filter out
many tags which are not located within the region targeted
by the camera. Then, TagPix orders the remaining tags as a

function of their angular distance (i.e., the closest to the object
in focus is the best).

Figure 5 shows the angles used to calculate the angular
distance γ. The equation is:

γ = β − z + δ (3)

The angle z is the azimuth angle calculated from the
orientation data. The angle β is the GPS bearing between two
coordinates, which is defined as the horizontal direction of
travel of the phone from the first coordinate to the second
one. We can consider the bearing as the angle created by the
connecting line of the two coordinates and the geographic Y
axis. The GPS bearing is calculated using true North Pole
as reference. However, for Android devices, the orientation
sensor works with the magnetic north pole as a reference.

The difference among the true north and the magnetic north
is known as the magnetic declination, δ, and varies from place
to place; it also varies with time. The National GeoPhysical
Data Center [19] provides a calculator to know the exact value
of δ for a particular place. Android’s SDK offers a specific
class, GeoMagneticField, which provides utility methods to
adjust the magnetic declination with orientation sensor data.

In the ideal case γ is 0 (i.e., our targeted object is aligned
with the landmark). However, in many situations it is difficult
to achieve such accuracy. Therefore, we use a threshold angle
value θ to select the most appropriate tags: all the landmarks
which have an angular distance γ < θ are returned as the
suggested tag list. Keeping the threshold angle very low would
return only the most accurate tags.

F. Estimating Euclidean Distance

As we will show in Section V, using only angular distance
produces good results in practice with the major advantage of
not requiring any action from the users. However, if the user is
willing to do some simple actions, TagPix can further improve
the tagging accuracy by estimating the Euclidean distance to
the targeted object. For example, if two landmarks A and B fall
within the angle θ and both have the same angular distance,
the estimated Euclidean distance can be used to choose one
of them (i.e., the one closer to the targeted object).

We devised three methods for estimating the distance: one
requires the user to just point to the base of the landmark
after taking the photo; the other two require the user to move
short distances and take two photos. The first method is more
convenient for users, but it works well only for objects located
in the immediate vicinity of the user. At the cost of a slight
inconvenience, the other methods achieve better accuracy for
objects located farther away.

1) Method 1: This method does not require the user to
move or take multiple photos. All it needs is user’s height
(which is inputted by the user when the app is configured)
and the camera to be aimed at the base of the landmark after
taking the photo. In this way, TagPix obtains the angle x (as
shown in Figure 6) from the orientation sensor data, and then
it computes the distance:

∠𝒙

d

h

Fig. 6: Method 1 to Estimate the Object Euclidean Distance

∠α

d

h

∠β

h

s

H

Fig. 7: Method 2 to Estimate the Object Euclidean Distance

d = h ∗ tanx (4)

2) Method 2: This method needs two photos taken from
two different locations, as shown in Figure 7. First, the user
needs to aim the camera at the top of the landmark, and TagPix
measures the angle of inclination β from the orientation sensor
data. Then the user needs to move forward for a short distance
(s) and repeat the procedure; TagPix measures the angle α.
The longer the distance, the higher the accuracy of the method
will be. From [20], we know that there is a high correlation
between step length and height of a person. As we already
know the height of the user, the app will just ask the user to
move a fixed number of steps forward (e.g., 10). The distance
is then calculated using this equation:

d =
s ∗ tanβ

tanα− tanβ
(5)

3) Method 3: This method can be used instead of method
2 if the user cannot move forward (e.g., she would end up
in road traffic). In this method, the user moves sideways, and
TagPix measures the angles α and β as illustrated in Figure 8.
The distance is calculated as follows:

d =
s

tanα+ tanβ
(6)

∠𝛂 ∠𝛃

s

∠θ

Fig. 8: Method 3 to Estimate the Object Euclidean Distance

We found that measuring α and β accurately is problematic
due to the practical limitation of GPS and orientation sensor.
A better solution is to calculate the angle created at the target
by s (let us call it θ, measured in radians) from the two bearing
values corresponding to the two locations of the user, which
is comparatively more accurate. The user only needs to move
about 10 meters to achieve good accuracy. The distance is then
computed as follows:

d =
s

θ
(7)

We have tested all three methods by measuring the distance
of real world objects. Method 1 has the lowest accuracy
among them (about 20% average error), and is usable only
for distances less than 40 meters. Method 1 also has problems
with landmarks situated in elevated places. For method 2,
the average error is 15%. For method 3, it is 14%. Both
these methods maintain this level of accuracy for any practical
distance measurement. Finally, methods 2 and 3 can adjust
their calculations for elevated landmarks if we know the
elevation of the landmark.

V. EVALUATION

TagPix was tested with 6 users and evaluated for many
places and landmarks in 8 cities in USA: New York City;
Newark, Harrison, Kearny, Jersey City, Morristown, and
Parsippany-Troy Hills in New Jersey; and Columbus in Ohio.
For ground truth, we used user’s feedback in real time to verify
the generated tags. For incorrectly generated tags, the users
entered the right tags. We have tested the app for both very
famous landmarks and more obscure ones, and it performed
well in both cases. For example, we tested the app with
university buildings, hospitals, churches, museums, libraries,
schools, restaurants, coffee shops, etc.

For visual illustration, Figures 9 10 show examples of
photos correctly identified by TagPix. Figure 9 shows two
of the test photos where there were more than one landmarks

Target

Target

A
B

B

A

Fig. 9: Photos Taken During the Test Phase. Despite Having Other Landmarks
in the Photos, the First Tag Correctly Identified Both of Them: Rio Rodizio
Restaurant (Top) and Saint Patrick’s Pro-Cathedral (Bottom)

Fig. 10: TagPix Works Well with Blurred Photos or Photos Taken in Low
Light. The First Tag Correctly Identified Both of Them.

in close proximity and also in close angular distance. In the
top photo, the user’s target was to capture the restaurant Rio
Rodizio, while two other landmarks, namely The Berkeley
College (A in the figure) and The IDT Energy (B in the
figure), were present in the frame. Our angular distance
based calculation ranked the target landmark (Rio Rodizio)
as the top suggestion, and TagPix also filtered out a false
positive tag (a tag which has small angular distance, but is
incorrect) which was lying behind the target object by using
the Euclidean distance estimation. The photo shown at the
bottom of the figure illustrates a similar scenario: TagPix

TABLE I: TagPix Accuracy and Comparison with Google Places API

User
#

of
photos

1st
Tag
Cor-
rect
(%)

2nd
Tag
Correct
(%)

Incorrect
(%)

Accuracy
%

Google
Places
Accu-
racy(%)

1 7 100 0 0 100 42.86
2 67 86.57 1.49 11.94 88.06 14.93
3 7 42.85 0 57.143 42.85 28.57
4 4 75 25 0 100 50
5 1 100 0 0 100 100
6 3 100 0 0 100 33.33
Total 89 84.27 2.25 13.48 86.52 21.35

ranked the Saint Patrick’s Pro-Cathedral as the top suggestion,
while the Newark Museum (A in the figure) and Horizon Blue
Cross Blue Shield (B in the figure) are ranked second and
third, respectively.

Figure 10 shows two of the test photos taken during night
when there was very little available light to shoot. But, as
TagPix does not rely on visual contents of the image, it worked
perfectly for such scenarios.

Table I shows the tagging accuracy of TagPix for each user
when only angular distance (angular distance threshold is set
to 20 degrees) is used to select the tags. This is the method
with the best usability as it does not require any action from
the user. The table shows the accuracy when the first suggested
tag is the correct one and when the second suggested tag is the
correct one. For few photos, the landmark list was not fetched
in time due to technical problems (e.g., GPS signal taking
too much time or lack of Internet connectivity). We do not
consider these photos as usable in our experiment. Overall, the
results indicate 86.52% accuracy. Among the incorrect tags,
10.11% were just outside of our angular distance threshold.

To understand the extent of improvement due to TagPix,
we also compare our results with the tag list returned by
Google Places, ranked by distance to the user (i.e., the closest
landmark is ranked first). We calculated the accuracy of
Google Places by considering any of the first two tags in the
list. The last two columns in Table I show that TagPix obtains
a much higher accuracy due to our algorithm that leverages
the phone sensors in the process of tag selection.

Figure 11 shows the overall distribution of tags. Each
bar represents how many tags were in that class (e.g., first
suggested tag, second suggested tag, etc.) For this graph, we
considered the first 4 tags, while any other tags were deemed
incorrect. The results show excellent accuracy for the first
tag: 84.2%. Many users may actually accept multiple tags for
their photos. In such a situation, if we consider all 4 tags, the
tagging accuracy becomes 96%.

Next, we performed experiments to quantify the accuracy
benefits of using Euclidean distance estimation together with
angular distance. First, we have applied the distance estimation
for some of the unrecognized photos from the dataset used
in the previous experiments. We found that applying this
method minimizes the number of false positive tags. A false
positive tag is defined as a tag that falls within the angular

Total

Class 1

Class 2

Class 3

Class 4 Incorrect

0

10

20

30

40

50

60

70

80

90

100
Co

un
t

Distribution of correct tags in different classes

Fig. 11: Distribution of tags in different classes

TABLE II: TagPix Results with Euclidean Distance Estimation

Photo
#

Actual
Dist.

Estimated
Dist.

Dist.
Accu-
racy

Correct
Tag?

False
Posi-
tive

False
Positive
Re-
moved

1 59 52.1 88.3 Y 1 1
2 47 50.9 91.6 Y 0 0
3 74 77.9 94.7 Y 2 2
4 57 63.7 88.3 Y 2 2
5 24 26 91.5 Y 1 0
6 41 38.2 93.2 Y 0 0
7 39 44.3 86.5 Y 2 1
8 41 36.7 89.4 N N/A N/A
9 101 122 79.5 Y 2 1
10 75 64.5 85.9 Y 1 1
11 62 74.1 80.4 Y 0 0
12 17 19.8 83.3 Y 1 1
13 170 120 70.5 Y 3 3
14 21 19.1 90.9 Y 0 0
15 14 15.6 88.4 Y 1 1

distance, but it is not the correct one. For example, one of
our photos contains a landmark named “Burger King”, but
the landmark was not in the middle of the frame. It has an
angular distance of 47 degrees. Whereas two other nearby
landmarks (not visible in the photo due to the distance, and
thus false positives), “Cosmos Bar” and “Manor Bar & Grill”,
had angular distance of 21 and 22 degrees, respectively. If
only angular distance is considered, then both Cosmos Bar
and Manor Bar come before the Burger King in the suggested
list; in fact, Burger King is not even considered because we
selected only the first two tags. The ground truth distance
between the user and Burger King is 47 meters, whereas
Cosmos Bar and Manor Bar are 188 and 135 meters away,
respectively. The best of our distance estimation methods has
86% accuracy. If we apply it to this scenario, TagPix can easily
select Burger King as the best tag

Second, we have used TagPix with Euclidean distance
estimation (method 3 in particular) for a new set of photos.
TagPix adjusts the spatial distance +/-15% to take into account
the observed average error. Specifically, we apply it for the tags
returned after the filtering done using the angular distance in

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Di
st

an
ce

 (m
)

Data Points

Estimated Distance

Actual Distance

Fig. 12: Comparison Between Actual and Estimated Distance Using Method
3

order to select the best one. Table II presents the results. The
accuracy increases to 93%, compared to 86% when using only
angular distance. Additionally, TagPix is able to remove 81%
of the false positive tags.

For better illustration, Figure 12 shows the comparison
between the actual distance and the estimated distance by
method 3. As we can see, our estimated distances are good
enough to be used in TagPix for most practical situations.

Finally, we tried to find the reason why some landmarks
cannot be recognized by TagPix in a few occasions. We
determined that this is mainly due to the place-tag database,
which did not contain information for these landmarks. In
a few other cases, the reason was the noisy nature of the
geomagnetic orientation sensors. If two landmarks are very
close, their correct order can be inversed due to this reason.

VI. CONCLUSION

This paper presented a smartphone app for real-time land-
scape photo tagging. This app, TagPix, leverages the phone
sensors and a place-tag database to achieve very good tag-
ging accuracy. At the same time, TagPix is lightweight as
it consumes a modest amount of resources on the phones
and protects users’ privacy as the photos are not uploaded to
servers for tagging. In the basic design, TagPix is completely
automatic, thus offering very good usability. For even higher
accuracy, users are asked to do simple actions such as moving
a short distance and taking an additional photo. TagPix was
implemented in Android and successfully tested for many
photos in different cities.

REFERENCES

[1] M. T. Review, “Smart phones are eating the world,” 2013.
[Online]. Available: http://www.technologyreview.com/photoessay/
511791/smartphones-are-eating-the-world/

[2] D. Tam, “Facebook processes more than 500 tb of data daily.”
[Online]. Available: http://news.cnet.com/8301-1023 3-57498531-93/
facebook-processes-more-than-500-tb-of-data-daily/

[3] J. Li and J. Wang, “Real-time computerized annotation of pictures,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 30, no. 6, pp. 985–1002, 2008.

[4] S. Lindstaedt, R. Mrzinger, R. Sorschag, V. Pammer, and G. Thallinger,
“Automatic image annotation using visual content and folksonomies,”
Multimedia Tools and Applications, vol. 42, pp. 97–113, 2009,
10.1007/s11042-008-0247-7. [Online]. Available: http://dx.doi.org/10.
1007/s11042-008-0247-7

[5] M. Naaman, R. Yeh, H. Garcia-Molina, and A. Paepcke, “Leveraging
context to resolve identity in photo albums,” in Digital Libraries, 2005.
JCDL ’05. Proceedings of the 5th ACM/IEEE-CS Joint Conference on,
june 2005, pp. 178 –187.

[6] C. Qin, X. Bao, R. Roy Choudhury, and S. Nelakuditi, “Tagsense: a
smartphone-based approach to automatic image tagging,” in Proceedings
of the 9th international conference on Mobile systems, applications,
and services, ser. MobiSys ’11. New York, NY, USA: ACM, 2011, pp.
1–14. [Online]. Available: http://doi.acm.org/10.1145/1999995.1999997

[7] D. Joshi, J. Luo, J. Yu, P. Lei, and A. Gallagher, Using Geotags to
Derive Rich Tag-Clouds for Image Annotation, 2011, p. 239.

[8] J. Luo, D. Joshi, J. Yu, and A. Gallagher, “Geotagging in
multimedia and computer vision–a survey,” Multimedia Tools Appl.,
vol. 51, no. 1, pp. 187–211, Jan. 2011. [Online]. Available:
http://dx.doi.org/10.1007/s11042-010-0623-y

[9] R. Raguram, C. Wu, J.-M. Frahm, and S. Lazebnik, “Modeling and
recognition of landmark image collections using iconic scene graphs,”
International Journal of Computer Vision, vol. 95, no. 3, pp. 213–239,
2011. [Online]. Available: http://dx.doi.org/10.1007/s11263-011-0445-z

[10] K. Patel, M. Ismail, S. Motahari, D. Rosenbaum, S. Ricken, S. Grandhi,
R. Schuler, and Q. Jones, “Markit: Community play and computation
to generate rich location descriptions through a mobile phone game,” in
System Sciences (HICSS), 2010 43rd Hawaii International Conference
on, 2010, pp. 1–10.

[11] “Argon browser.” [Online]. Available: http://argon.gatech.edu/
[12] W. GmbH, “Wikitude.” [Online]. Available: http://www.wikitude.com/

app/
[13] J. G. Manweiler, P. Jain, and R. Roy Choudhury, “Satellites

in our pockets: an object positioning system using smartphones,”
in Proceedings of the 10th international conference on Mobile
systems, applications, and services, ser. MobiSys ’12. New York,
NY, USA: ACM, 2012, pp. 211–224. [Online]. Available: http:
//doi.acm.org/10.1145/2307636.2307656

[14] “Smart measure.” [Online]. Available: https://play.google.com/store/
apps/details?id=kr.sira.measure&hl=en

[15] Google, “Google goggles.” [Online]. Available: http://www.google.com/
mobile/goggles

[16] D. Takahashi, “How google goggles works to
deliver visual search results for mobile phones,”
2010. [Online]. Available: http://venturebeat.com/2010/08/23/
how-google-goggles-works-to-deliver-visual-search-results-for-mobile-phones/

[17] Google, “Google places api.” [Online]. Available: https://developers.
google.com/places/

[18] GeoNames, “The geonames project.” [Online]. Available: http:
//www.geonames.org/

[19] NOAA.gov, “The magnetic declination calculator.” [Online]. Available:
http://www.ngdc.noaa.gov/geomagmodels/struts/calcDeclination

[20] M. Merlijn, “Gait analysis.” [Online]. Available: http://www.geradts.
com/html/Documents/gait.htm

