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Abstract—The ever increasing number of mobile devices in 
Smart Cities and their heavy use, not only for personal 
communication but also as a distributed network of sensors, 
generate a data deluge that stresses the traditional wireless 
communication infrastructure. The opportunistic networking 
paradigm seems particularly well suited to the Smart City 
scenario because it exploits resources that temporarily fall into 
the connection range of mobile devices as communication 
proxies, thereby providing cheaper and more energy efficient 
alternatives to the use of the cellular city network and actively 
contributing to its offloading. However, its efficacy highly 
depends on the effectiveness of discovering and using those 
resources. To improve the effectiveness of opportunistic 
networking in Smart Cities, we propose a solution which exploits 
a prediction model tailored for the urban environment that, by 
detecting complex recurring patterns in nodes’ contacts, can 
forecast the future availability of strategic communication 
resources. Experimental results obtained in a simulated 
environment show that our solution can improve the 
dissemination process and ease the access to the wired network 
infrastructure. 

Keywords—Smart City; opportunistic networking; mobi le 
data offloading; prediction model; communication middleware 

I. INTRODUCTION 

The number of people living in the cities worldwide has 
been in the rising trend since way before the Internet era, and 
studies state that the urban population will almost double by 
the middle of the 21st century [1]. This incessant growth places 
new challenges to the city management under many points of 
view. For instance, new plans and strategies are required to 
assist both the public and the private transportation to meet the 
new requirements, new power grid infrastructures are 
necessary to distribute and control power resources in a smarter 
and more adaptable manner, and the public safety and the 
public health services need more efficient strategies and 
techniques to deliver information and data in real-time. 

The concept of Smart City has emerged to address these 
challenges, describing a modern urban environment where the 
Information and Communication Technology (ICT) plays an 
essential role as the provider of means and techniques to 
effectively access and exploit the other assets of a city, such as 
its social and economic capitals. Many actors are making a 

pervasive and intensive use of ICT techniques to realize 
effective and sustainable solutions that aim to improve the 
quality of life of the smart citizens in many different areas [2] 
[3] [4]. The efficient gathering, processing, and dissemination 
of data are essential to implement all these new services in 
dynamic and heterogeneous environments such as the Smart 
City. 

The ever-growing density of smartphones and tablets in the 
modern cities, their pervasiveness among the population, and 
their availability on the urban territory at no cost for the public 
administration make them extremely valuable resources. In 
fact, they have the potential to serve as sensors and collect 
many different types of environmental data, as well as the 
computational and the connectivity capabilities to implement 
non-trivial, effective dispatching strategies. Nevertheless, the 
mobility characteristic of these devices, which are carried 
around by the citizens as they move, makes it impossible to 
rely on the wired network infrastructure to reach the required 
levels of connectivity. However, due to the enormous growth 
in the mobile data traffic expected for the next years, the 
cellular network will be unable to satisfy, by itself, the future 
demand. For these reasons, the study of effective solutions to 
achieve mobile data offloading is becoming more and more 
important in the scientific community [5] [6]. 

Opportunistic Networking techniques have recently 
emerged to face many of the challenges that occur in Smart 
Cities. The Opportunistic Networking paradigm comes from 
the networking concepts that naturally emerged in the Mobile 
Ad-Hoc Networks and Delay Tolerant Networks research 
fields and evolved into a more complex and effective set of 
networking strategies and protocols. Differently from other 
solutions, this paradigm takes into account the information 
coming from both the application and the environment 
contexts. By analyzing the aspects in human interactions [7] or 
in mobility patterns [8], or both the context and the content of 
exchanged messages [9], applications that rely on 
Opportunistic Networking can maximize the effectiveness in 
reaching their goals, under the constraints provided by the 
current network status and by the communication means. 

Given the peculiarities of the urban environment and the 
challenging requirements of smart applications, it seems 
natural to try to take the maximum advantage out of the 
Opportunistic Networking paradigm by exploiting the 
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periodicity typical of the mobility patterns of some nodes (e.g., 
buses, trains, and metros, but also commuters, who might drive 
every day the same path to work) in order to support the data 
forwarding from the mobile sensors and devices to the wired 
network. In particular, this paper presents a sophisticated 
approach to discover a wide spectrum of complex periodic 
patterns that recur in the contacts with mobile nodes. In fact, in 
order to satisfy the needs of the citizens, the routes of public 
means of transportation might change periodically, for instance 
to adapt to congestion, to connect important areas of the city 
more frequently, or to serve different neighborhoods. Being 
able to detect these types of periodic patterns allows the 
prediction of future contact opportunities with nodes that 
represent potential communication resources, thus enabling a 
smarter usage of the scarce resources of the network. 

We implemented our pattern detection algorithm at the 
application middleware level, to facilitate reuse and 
maintainability of the forecasting system and to decouple the 
application logic from all the strategies and functionalities that 
support the opportunistic discovery and management of the 
available resources (routing, forwarding, message caching, 
prediction models, etc.). Experimental results run in a 
simulated environment show that our algorithm can effectively 
detect contact patterns with mobile nodes. This allows the 
design of advanced information dissemination strategies that 
favor the usage of alternative, cheaper communication 
solutions, such as Wi-Fi or Bluetooth, available in the majority 
of the modern mobile devices. Results of performed 
simulations proved that these dissemination strategies can ease 
the access to the wired network infrastructure by means of 
connectivity interfaces which do not include the cellular 
network, thereby significantly contributing to its offload. 

II.  OPPORTUNISTIC NETWORKING IN SMART CITIES 

Many recent studies focused on the importance of 
Opportunistic Networking as the communication paradigm to 
effectively address the challenges typical of heterogeneous, 
dynamic, and resource constrained scenarios [10] [11]. 

In the Smart City, several nodes in the network need to 
exchange high quantities of heterogeneous traffic. However, 
those nodes might not be able to directly access the wired 
network layer, or they could not be in range of any Wi-Fi or 
WiMax AP, causing the network to be partitioned. At the same 
time, the cellular network might not be an option, as the 
generated traffic could be excessive, the network might be 
congested, or sending data over it might be too expensive.  
Therefore, to be able to fulfill their goals to the best of their 
possibilities, applications running in Smart Cities have to 
consider other connectivity resources. 

The mobility and the variety of nodes, such as user mobile 
devices, sensors, and vehicles, which can all be equipped with 
(at least) a network interface, and the widespread availability of 
free Wi-Fi APs are typical characteristics of Smart Cities. They 
identify a very heterogeneous network, where connections 
between nodes are mostly unstable. Such environment 
challenges applications, which need a solution that enable them 
to discover and exploit new connectivity resources quickly and 
effectively. Relying on the Opportunistic Networking paradigm 

would allow applications to maximize the benefits they obtain 
from nodes that temporarily fall under the connection range. 

In Opportunistic Networks, applications need to adaptively 
apply the most appropriate dissemination strategies, choosing 
between many forwarding and replication protocols, 
communication semantics, and available connection 
technologies. To this end, applications have to take into 
account both their goals and the constraints placed by the 
environment. 

Fig. 1 below shows a Smart City scenario. Surveillance 
applications are installed on sensor nodes equipped with a 
camera to take high resolution pictures of the current traffic 
conditions in some critical areas of the city. To get the most out 
of this kind of applications, the captured images need to be 
gathered and stored in a data center, usually located in the 
cloud, where enough computational and memory resources are 
available to process them and derive useful information. We 
could imagine the cameras connected directly to the data center 
via powerline or 3G communications. However, powerline 
communications might be difficult to deploy, and 3G 
communications could suffer the problems we already 
described for cellular networks. 

An interesting option to improve nodes’ connectivity is to 
opportunistically take advantage of mobile nodes that come 
into proximity and that could operate as message ferries 
between the cameras and one or more “sink” nodes connected 
to the data center that manages the Smart City information 
layer. A possible solution could be, for instance, to provide the 
public transportation vehicles with Wi-Fi or Bluetooth devices, 
so that the camera nodes can use either one of the two 
technologies to send the images to buses and trains passing by. 
Those vehicles will then carry the images to one or more sink 
nodes connected to the Smart City data center. Notice that also 
bus passengers could exploit the proximity to a sink for 
uploading heavy data contents, like social network activities, 
videos, or high quality images, thereby avoiding to connect to 
the more expensive cellular network and contributing 
themselves to its offload. 

The issues described in the previous paragraphs call for an 
adaptive communication middleware designed for 
Opportunistic Networks, capable of analyzing the current 
network conditions and of exploring all the surrounding 
connection opportunities, to support the overlying applications. 
This middleware will tailor the dissemination strategy based on 
the discovered connection opportunities, under the constraints 
which characterize each device, and will provide applications 
with a set of mechanisms and tools to define policies to match 
their goals. 

An adaptive communication middleware needs to have a 
complete and accurate representation of the network status 
and its resources in order to be able to satisfy the application 
requirements. However, often the knowledge about the current 
state of the system is not enough. For example, it is possible 
that a node, which is not currently reachable, will soon fall 
under the Wi-Fi range of another device. This would open new 
connection possibilities in the near future, although currently 
unknown. Therefore, to provide applications with all the 
information to design effective policies, the communication 



middleware should implement techniques capable of predicting 
the presence of future resources, whenever possible.  

Having the knowledge of future contacts with other nodes 
at their disposal, applications can implement disruption tolerant 
policies. Also, the availability of predictions enables the design 
of policies that foster a fairer usage of the available resources. 
For example, prioritizing short-medium range communication 
technologies, like Wi-Fi or Bluetooth, against other types of 
solution, such as 3G communications, would assure a higher 
utilization of cheap wireless connectivity solutions, thus 
offloading the cellular network and leading to an improvement 
of the global performances of the Smart City network [6]. To 
the best of our knowledge, there is no communication 
middleware designed for Opportunistic Networks that features 
a prediction model to forecast the future contact times with 
other nodes of the network. 

III.  PREDICTION OF FUTURE CONTACTS FOR EFFECTIVE 

INFORMATION DISSEMINATION 

In order to make the best decisions when it comes to 
opportunistic routing, applications require a knowledge of the 
environment in which they are submerged that has to be as 
complete as possible. The type of knowledge required 
comprises the set of nodes available within communication 
range, their characteristics, the connectivity resources capable 
of reaching them, and the network status, as well as any 
requirement that the applications might have in terms of 
bandwidth allocation, maximum latency, transmission 
reliability, set of destinations, etc. 

Although this information is necessary for applications to 
select the best routing strategies, considering only the present 
conditions of the network might limit the output of the 
dissemination algorithm to a local optimum. In fact, in highly 
dynamic environments and under certain conditions, delaying 
the delivery of messages might open the door to better 
communication solutions. However, systematically delaying 

the dispatch of all messages to try to take advantage of better 
communication possibilities would place the risk of extremely 
increasing the latency of the information dissemination; this is 
unacceptable in some application domains and, anyway, never 
a desirable property. 

To delay the messages delivery only when convenient, the 
communication middleware has to provide applications with 
the knowledge about future contact times with potential 
communication resources. In order to do so, the middleware 
can exploit the history of past contacts with the communication 
resources to build a forecast model which is able to infer the 
next contact times. 

The computation of forecasts of future contacts with other 
nodes based on the history of past contacts is computationally 
expensive and, also, a challenging task. In fact, nodes can 
exhibit very complex periodic behaviors and so the process of 
discovering the patterns that underlie them might be very 
expensive. Also, forecast models need to be continuously 
reevaluated to keep their accuracy within a certain level. 
Finally, there is the need to provide applications with an 
evaluation of the reliability of the forecasts [12], so they can 
autonomously decide if and when to rely on the offered 
predictions. 

For example, let us consider the bus route depicted in Fig. 
1. The itinerary might have been conceived to prioritize the 
connections with certain areas of the city against others, 
situation which is not uncommon in modern urban realities. As 
a consequence, the bus might follow an itinerary which is not 
always the same, but varies accordingly to a predefined 
schedule. In the figure, the different paths are represented with 
two arrows: the dashed arrow represents the shortest path, 
whereas the normal arrow represents the longest one. To 
connect more frequently the most important served areas of the 
city (to the left in the figure) to the hospital, the route could be 
designed in such a way that the bus will take the shortest path 

 
Fig. 1. A Smart City Opportunistic Networking Scenario 



twice in a row, before taking the longest path once, and then it 
will start over, repeating the same pattern. 

While an unsophisticated forecast model would need less 
computing resources, it would also fail to recognize many 
common patterns in nodes mobility, or it would reach lower, 
possibly inadequate, levels of accuracy. For instance, a model 
which assumes that the nodes will follow a constant itinerary 
between consecutive contacts would fail to capture the 
behavior which characterizes the bus node in the scenario 
described above. 

Nonetheless, a completely different approach, based on 
accessing the Internet to download the timetables of bus lines 
which pass by the camera, would present other problems. In 
fact, Smart Cities might have smart bus systems available that 
can use the cellular network to provide all the interested nodes 
(traffic cameras, bus stops, traffic lights, etc.) with the 
information about the next arrival time of one or more buses. 
However, all the traffic generated to periodically distribute and 
update this information to all the nodes would place a great 
burden on the cellular network and contribute to its congestion. 
An interesting possibility to reduce the traffic could be to limit 
the number of update messages to only one message, which 
notifies when a bus leaves the closest bus stop. With this 
information, a camera node nearby would simply have to learn 
the amount of time required for the bus to reach it. These 
values can then be crossed with the times at which the update 
messages were sent, to capture fluctuations in travel times due 
to varied congestion levels at different moments of the 
day/week. Finally, note that data gathered for distinct buses 
which travel the same paths to reach a camera could be merged 
to reduce memory usage and to increase the accuracy of the 
predictions. 

For the reasons expressed above, there is the need for 
advanced prediction models that can recognize complex 
recurring patterns in the nodes’ mobility, leading to solutions 
which can perform well under many circumstances. However, 
the limited memory and computational resources available on 
sensors and mobile nodes require a trade-off between the 
accuracy, the refinement, and the complexity of the forecast 
model. The chosen trade-off can vary based on the 
characteristics of the device. Alternatively, the middleware 
might provide applications with a set of multiple models, each 
with different complexities and characteristics. In turn, the 
applications will be responsible for choosing the model which 
best satisfy their requirements. 

In this work we propose a general, middleware-based 
solution that, paying the cost of a more complex elaboration 
than the one necessary for simple approaches such as those 
described above, implements a model which can detect a broad 
spectrum of periodically recurring patterns in nodes’ mobility. 
We believe the patterns that our solution can detect are realistic 
representations of those which characterize the intrinsic 
periodic behavior of many subjects of the Smart City, such as 
the public means of transportation. The proposed solution 
exploits a mathematical approach which allows to search for 
and discover periodic patterns while keeping the computational 
complexity of the model relatively low. 

IV.  AN EFFICIENT MOBILITY PREDICTION MODEL FOR THE 

URBAN ENVIRONMENT 

In a modern city, the intrinsic periodic behavior of public 
transportations allows us to approach the problem of detecting 
periodically recurring mobility patterns of nodes from a 
simpler perspective. In fact, public means of transport 
equipped with a medium-range network device such as a Wi-Fi 
card, or with a small-range, low-power Bluetooth interface, can 
become mobile nodes with a very predictable behavior. 

Most of means of transportation either have a fixed 
schedule throughout the day (that is, the inter-arrival time at 
the same destinations stays constant), or they move according 
to a certain constant pattern that repeats itself with some 
periodicity (several times a day, daily, weekly, etc.). These 
observations reduce the complexity of the problem of finding 
predictable patterns in the nodes’ behavior, as we can assume 
the existence of periodically recurring patterns that underlie the 
intercontact times between two nodes. In addition, we can 
consider that discovered patterns will not change in the short 
period, since bus and train schedules and routes tend to remain 
unvaried for a long time, usually months or years. In this paper 
we address the latter case, whereas the former is just a special, 
simpler case. 

In a Smart City, there are several categories of nodes which 
could take advantage of predictions about future contacts with 
other nodes. For example, the surveillance application 
described in section 2 could use predictions to implement a 
smart information dissemination policy, which aims to increase 
the ratio of messages sent using cheap, short-medium range 
communication links, like Wi-Fi or Bluetooth, instead of more 
expensive ones such as 3G. In fact, the knowledge derived 
from the prediction model enables informed decisions on 
whether to send the images via one communication interface or 
the other, according to both the estimated likelihood that a bus 
will approach the camera in the near future and with the 
urgency of the data. 

Our middleware implements a prediction model to analyze 
the sequences of intercontact times collected for each node. It 
features a mathematical approach which can effectively 
compute the autocorrelation of a time series, thereby allowing 
the discovery of periodic patterns in the data. Moreover, the 
relatively low complexity of our solution makes it appropriate 
to be employed on devices with low computational resources, 
such as sensors or smartphones. 

The ability to keep track of the nodes’ contact history is a 
key feature of our communication middleware. This way, it 
gathers the necessary data to feed its prediction model, thereby 
enabling the forecast of the next contact times with the nodes 
and the computation of the predictions’ reliability. The model 
can be configured with parameters which specify the maximum 
tolerance and the minimum accuracy and reliability allowed, so 
that applications are able to control the quality of the forecasts 
and change their dissemination strategy accordingly (readers 
can refer to [12] for a more detailed discussion on these 
parameters). This permits to design applications which can 
implement adaptive and sophisticated dissemination strategies, 
based on the current state of the network and on the 
information about future contacts with strategic nodes. 



We further extended our communication middleware by 
adding the feature to collect statistics concerning the link 
duration within the nodes’ contact history. Combining this 
knowledge with the prediction of the next contact time, the 
middleware can assess the amount of data which will be able to 
exchange with another node during the next contact window. 
This feature further increases the adaptability of the 
middleware, which puts at the overlying applications’ disposal 
an evaluation of the bandwidth available during the next 
contact with a node, allowing applications to design more 
robust and refined policies. The investigation of the impact that 
this functionality might have on the dissemination process is, 
however, out of the scope of this paper. 

In the next three sections we are going to introduce two 
possible approaches to detect periodically recurring patterns in 
the nodes’ mobility and the algorithm to predict the next 
contact time with other nodes which is implemented in our 
middleware. 

A.  A Straightforward Approach for Detecting Recurring 
Mobility Patterns 

Both the approaches we are going to present in this and in 
the following section consider the sequence of intercontact 
times with a certain node η as the finite time-series xn, where  
0 ≤ n < N, and N is the number of intercontact times observed 
so far. A straightforward way to extrapolate the periodicity of 
xn is to calculate its autocorrelation function for some set of 
predefined lags (with the largest lag that cannot be greater than 
N/2). 

Nodes that identify public means of transportation, as 
discussed in the previous chapters, show a regular, recurring 
behavior, which repeats itself with some periodicity. These 
characteristic gave us reasons to assume that the time series 
composed of the intercontact times between a static node and a 
node which identifies a public means of transportation can be 
described by a wide-sense stationary processes. In case of such 
a stochastic process, the autocorrelation function is defined as 
follows: 

 rxx(τ) = Ε[x[n] · x*[n - τ]] (1) 

where τ is the lag at which the expected value E[•] is 
computed and x* is the complex conjugate of x. Since xn is 
finite for each value in the range [0, N - 1], the autocorrelation 
function rxx() also exists and is finite. Once the autocorrelations 
for all the predefined values of τ have been calculated, the 
value of τ which corresponds to the highest output of the 
autocorrelation function will be the periodicity we were 
looking for. 

B. Leveraging the Wiener–Khinchin Theorem to Discover 
Recurring Patterns in Nodes’ Mobility 

The problem of the solution described above lies in its 
complexity. In fact, if k is the number of lags we want to 
include in our search, the complexity of computing the 
autocorrelation is O(n2 · k). Even if it is reasonable to assume 
k « n2, the complexity is still quadratic in the length of the 
input. 

To improve the efficiency of the search for periodic 
patterns in the time-series we present a different approach, 
based on the Wiener–Khinchin theorem and characterized by a 
smaller complexity. In the discrete-time case of wide-sense 
stationary processes for which the autocorrelation function, 
defined as in (1), exists and is finite, the theorem states that the 
spectral density S(f) of xn can be computed from the 
autocorrelation, as follows: 

  
(2)

 

From (2), it is possible to obtain the autocorrelation 
function rxx() by computing the inverse Fourier transformation 
on S(f). Compared to the solution which directly computes the 
autocorrelation values, the complexity of this second approach 
mainly depends on the complexity of performing the direct and 
inverse Fourier Transformations. 

C.  An Algorithm for the Prediction of the Next Contact Time 

Starting from the result of the Wiener–Khinchin theorem, 
in this section we are going to present two algorithms 
implemented in our communication middleware: the one for 
the discovery of periodically recurring patterns in time series 
and the one for the forecast of the next contact time with a 
node. It is important to note that the output of the former 
algorithm is part of the input of the latter. Let X be the vector 
containing all the intercontact times observed so far for the 
node η; we can define an algorithm to discover the pattern 
recurring in the samples in X with the following steps: 

1)  Compute the Fast Fourier Transform (FFT) of X: 

Y = FFT(X) 

2) Compute the spectral density S(Y): 

S(Y) = Y · Y*  

3) Obtain the autocorrelation vector RXX applying the 
Inverse Fast Fourier Transform (IFFT): 

RXX = IFFT(S(Y)) 

4) Find the index p, with p > 0, for which the value of RXX 
is the greatest. p is the output of the algorithm. 

 
The complexity of the second solution is dominated by the 

FFT and IFFT functions which, as explained in the previous 
section, can both be computed with a complexity of 
O(n · log(n)). 

The result of step 3 is a vector containing the values of the 
autocorrelation function computed over the input vector X for 
the lags in either the range [0, (N-1)/2] or the range [-(N-1)/2, 
(N-1)/2], depending on the implementation of the algorithms 
for computing the FFT and its inverse. In either case, given the 
symmetry of the autocorrelation function, the information 
contained in the output vector RXX is the same. 



If the number of samples in the vector X is large enough, 
the value of p returned by the algorithm in step 4 is the 
periodicity of the time series. Note that the described algorithm 
cannot discover periods greater than (N-1)/2. While this means 
that the algorithm needs the samples from at least two 
complete cycles to discover the periodicity in a time series, our 
experience with the problem suggests that the samples from 
three complete cycles are enough for it to produce accurate 
results. 

Once the periodicity in the data has been discovered, two 
more steps are necessary to predict the next contact time with 
the node η. The first one involves the assessment of the next 
intercontact time. In order to do this, we used a technique 
based on the Exponentially Weighted Moving Average 
(EWMA), as we described in [12]. Considering p the 
periodicity of the input vector X (p is the output of step 4 of the 
algorithm described above), t the highest index in the nodes’ 
contact history with respect to the node η (with the first entry 
having index 0), ewma_s the value returned by each invocation 
to the EWMA function, and α the smoothing parameter, the 
pseudocode of the algorithm that predicts the value of the next 
intercontact time can be written as follows: 

time find_next_intercontact_interval 

(period p, contacts_vector X) { 

i = (t + 1) % p; 

ewma_s = X[i + 1].start - X[i].end; 

i += p; 

for (; i < t; i += p) { 

ewma_s = EWMA (α, X[i + 1].start - 
X[i].end, ewma_s); 

} 

return ewma_s; 

} 

The first three lines serve to initialize the ewma_s variable 
with a valid value before it is used as a parameter for the call to 
EWMA(). The forecast of the next contact time can be 
computed by retrieving the end time of the last contact with the 
node η from the nodes’ contact history and by adding it to the 
evaluation of the next intercontact time, obtained calling the 
find_next_intercontact_interval() function. 

V.  EXPERIMENTAL RESULTS 

We tested our solution using a simulated environment to 
reproduce the scenario depicted in Fig. 1. More specifically, 
we used the Network Simulator 3 (http://www.nsnam.org), 
version 3.16, for all the results presented in this paper. 

To enable the message dissemination and replication in the 
simulated environment we took advantage of DisService, an 
information dissemination middleware purposely designed for 
extremely dynamic communication environments [13]. 
DisService supports the overlying applications by enabling the 
smart management of multiple links and by providing several 
message forwarding, caching, and replication strategies. These 
features characterize DisService as a general, effective solution 

for enabling opportunistic networking in challenging 
environments. 

To support applications’ adaptivity, we extended the 
DisService middleware with additional features to keep track 
of the nodes’ contact history and to collect statistics on the 
duration of the links with those nodes. Based on this 
information, applications can build the strategy which best fits 
both their requirements and the current status of the network, 
as inferred from the statistics.  More importantly, the new 
features allowed us to further enhance DisService, by 
implementing the prediction model which can forecast the 
future contact times with other nodes. 

DisService pushes and receives information in the context 
of messages belonging to a subscription. Multiple instances of 
an application running on different nodes can share the same 
subscription and exchange data within it. DisService allows the 
nodes to receive, store, and carry those messages throughout 
the network, obeying to any configured policy, in a best effort 
manner. 

For the computation of the Fast Fourier Transform (FFT) 
and of the Inverse FFT we relied on the high-performance 
FFTW library (http://www.fftw.org), which includes fast 
routines optimized for several CPU architectures. 

A. Scenario 

In the simulation scenario there are 5 different NS3 nodes 
that model three cameras, one bus, and one sink, as depicted in 
Fig. 1. Every node has a standard 802.11b wireless interface 
installed, with a maximum available bandwidth set to 11 Mbps. 
DisService is installed on each node, to handle both the 
reception and the dispatching of messages. In addition to Wi-
Fi, the camera nodes also have a 3G-enabled interface which 
allows them to connect directly to the sink node. For the 
purposes of the simulation, we used an NS3 point-to-point 
radio link with a bandwidth of 1 Mbps to model the 3G 
connection between the cameras and the sink. 

A surveillance application is running on each camera. They 
generate messages containing highly detailed pictures of the 
monitored area which need to be delivered to the data center 
managing the Smart City. DisService takes care of storing the 
messages in the local cache and of delivering them to one or 
more sink, which have direct access to the internet and to the 
data center in the cloud. 

The application running on the cameras implements the 
following policy for managing the cached images. If the cache 
is full and the camera takes a new picture, the oldest image is 
replaced. This behavior is consistent with the purposes of the 
application, because we can assume that a surveillance 
software is more interested in delivering the most recent 
information. Nevertheless, to provide more flexibility and more 
control over the lifetime of the generated messages to the 
overlying applications, DisService allows the association of 
different priority levels to messages. This way, only older, 
lower-priority messages can be replaced with new ones. The 
application we used for the experiments generates messages 
with 3 different priority levels: low (normal images), medium 
(images took at fixed intervals, to provide periodic updates 



about the status of the street traffic throughout the Smart City), 
and high (images generated in correspondence of some events 
detected in the monitored area, or requested directly by the data 
center). Only messages belonging to the two higher priority 
levels can be delivered via 3G, if no other path to the data 
center is available. This restriction is necessary to avoid 
overloading the cellular network with low priority traffic, 
which should be reserved for the delivery of urgent data. In our 
tests, the average size of a picture is 5 MB. 

Each camera is more than one kilometer from the others 
and from the sink, installed in a strategic area of the Smart 
City, like a large crossroad, or a traffic light which regulates 
the vehicle flows in streets likely to be subject to congestion. 
Given the importance of those areas, it is reasonable to think 
that there might be at least one bus stop in their proximity. For 
this reason, and to increase the interval during which the 
camera nodes are under communication range with the buses 
passing by, in our simulation scenario we assumed the 
presence of a bus stop close to each camera and to the sink. 
The distance between each node prevents any direct Wi-Fi 
communications, so the only way to use Wi-Fi is to exploit the 
temporarily available connections with a mobile node, like the 
bus in our scenario, which will function as a ferry and carry the 
messages from the cameras to the sink. 

DisService periodically broadcasts packets (called HELLO 
messages) to signal the presence of a node to its neighbors. The 
instances of DisService running on camera nodes will use the 
information derived from the reception of the HELLO 
messages to fill in the vector containing all the intercontact 
times with the bus node (referred to as X in section IV.C). 

We modeled the bus movements with a fixed waypoint 
mobility model. In accordance with the behavior of the bus, the 
node which identifies it in the network does not follow a 
constant route, but it changes periodically. As shown in Fig. 1, 
there are two possible paths that the node can take whenever it 
reaches the fork near CAM #1. In our experiment, the bus will 
take the shortest route twice in a row (identified by the dashed 
arrow in the figure), and then drive the longest path the third 
time (identified by the normal arrow). These choices will then 
be repeated until the end of the simulation, identifying a pattern 
which recurs with a periodicity of 3. 

Two bus stops and the sink belong to the shorter path, 
while the bus encounters all the stops and the sink when 
traveling the longer path. 32 and 40 segments describe the 
shorter and the longer path, respectively. The bus travels over 
these segments each time with a different speed, randomly 
chosen from a uniform distribution which ranges from 46.8 
km/h to 57.6 km/h. The bus also remains at each stop a random 
amount of time, uniformly distributed between 30 and 40 
seconds, before resuming its ride. The choices above introduce 
a certain degree of variability and allowed us to simulate the 
effects of small changes in the current traffic conditions and of 
other elements which affect the bus’ behavior, as well as to 
evaluate the robustness of our solution. 

We performed 8 different simulations, to cover all the 
possible configurations of the prediction algorithm (enabled 
and disabled) with 4 different values for the cache size of the 
camera nodes (5, 10, 15, and 20 messages). Each simulation 

ran for 6 hours of simulated time. During the first two hours no 
messages were generated: this allowed the DisService 
instances running on the camera nodes to collect enough 
information about the mobility pattern of the bus node to feed 
the prediction model. Also, this made possible a fairer 
comparison between the solution with predictions and the one 
without them. The chosen amount of time was adequate to 
generate enough messages for each class in order to collect 
significant statistics. 

B. Results 

During the experiments we collected data representing the 
status of the simulations to elaborate statistics to describe the 
evolution of the tests. Fig. 2 shows the Wi-Fi delivery ratio, 
that is the percentage of messages delivered to the sink node 
via Wi-Fi, i.e., that reached the sink node via the bus, against 
the cache size, for the cases with predictions enabled and 
predictions disabled. 

Independently from the specific cache size, the 
performances in terms of Wi-Fi delivery ratio are significantly 
higher when camera nodes can leverage predictions about the 
future presence of a ferry node. With predictions disabled, the 
Wi-Fi delivery ratio goes from about 67% to 81% when the 
cache goes from 5 to 20 messages, while, enabling predictions, 
those percentages range from about 86% to almost 94%. 
Labels in the figure show how many messages were delivered 
using Wi-Fi against the total. The difference between the two 
series of data ranges from 217 messages, with a cache size of 
5, to 143 messages, with the cache capable of storing up to 20 
messages. Considering the average message size of 5MB, 
enabling predictions redirected about 700MB-1GB of traffic 
from the cellular network to the opportunistic network, 
corresponding to about 12-19% of the total traffic in the 
simulation. 

We believe that these results show a very important point. 
In fact, knowing in advance if a new resource will soon be 
available, applications can develop smarter policies that better 
fit their goals. This opens up the possibility to a more uniform 
usage of the network resources, which will lead to a better QoS 
and will reduce the load placed on the strategic parts of the 
network. 

The Wi-Fi delivery ratio allowed us to prove the efficiency 
of our solution as a means to reduce the load on the 3G 
network, enhancing the use of low-medium range connectivity 
solutions. Instead, Fig. 3 shows the impact of enabling 
predictions on the delivery ratio. We can notice that the results 
for medium and high priority messages are the same, while 
only low priority messages suffer from a reduction in the 
delivery. Although the results may seem counterintuitive at 
first, the behavior they delineate is expectable and it is a direct 
consequence of the cache limit. 

When an application generates a message, if valid 
predictions of future contacts with ferry nodes are available, 
DisService will store the message in its cache and delay its 
delivery, waiting for the next ferry to approach. All this is, of 
course, necessary in order to exploit the Wi-Fi connection with 
the ferry node and avoid transmissions via 3G. As cache fills 
up, low priority messages will be discarded, thus affecting 



negatively the delivery rate. However, an increase in cache size 
would mitigate this effect. As appears in Fig. 3, the difference 
between the number of messages delivered with predictions 
enabled and those delivered with predictions disabled drops 
significantly with a cache capacity of 15 messages or higher. 

These observations and results demonstrate that the 
exploitation of future connectivity resources requires a higher 
memory usage. In session 4 we had discussed the costs in 
terms of computational power to set up a prediction model. 
Now, the experimental results allow us to point out the 
different cache management that arises from the exploitation of 
predictions of future contacts with potential connectivity 
resources. Because of it, messages tend to occupy the cache for 
longer times when the prediction feature is enabled and, 
consequently, a higher number of low priority messages need 
to be discarded. For our experiments we have considered a 
scenario where DisService provided each application relying 
on it with a static cache size. Nonetheless, we believe that a 
dynamic management of the cache share could help reducing 
the effect that enabling predictions has on the memory 
management. 

Finally, we would like the reader to note that we tried to 
design the experiment so that it mirrors the behavior of a public 
means of transportation, like the bus in the scenario, in a 
realistic way. To this end, we included random inter-arrival 
times and variable routes in our simulations. In addition, the 
efficacy of the theorem, and in turn of our solution, does not 
depend on the pattern chosen. To verify this, we ran tests 
changing the lengths of the short and long paths and varying 
the type of pattern, i.e., changing the number of times the bus 
would travel the short and long paths before repeating the 
scheme. The results were all comparable with the ones of the 
experiments we reported. 

VI. RELATED WORKS 

A significant number of studies related to Opportunistic 
Networking and Information dissemination in Smart Cities 
assume the existence of a fixed infrastructure to support mobile 
nodes and ease their connectivity [14] [15] [16]. However, 
infrastructures of that kind are seldom available in modern 
cities and, even when available, they might not cover the whole 
urban area. Therefore, solutions that rely on their availability to 
fulfill the information dissemination cannot be generally 
applied, as they would not be able to operate efficiently in 
realities devoid of such supporting infrastructures. In contrast, 
one target of our work is to develop a general solution, capable 
of operating properly in most scenarios. As a result, we tried to 
keep the list of assumptions on the operating environment as 
short as possible, avoiding to rely on any existing fixed 
network infrastructure, unless it is widespread in many 
realities, e.g., free Wi-Fi APs that allow the access to the wired 
city network. 

The scientific research identified many techniques which 
have been proved successful under other challenging 
environments with characteristics similar to Smart Cities, such 
as Tactical Edge Networks, Wireless Sensor Networks or 
disaster recovery scenarios [10]. These techniques comprise, 
but are not limited to, message prioritization, restricting 

information dissemination boundaries [17], optimizing cache 
size [18], identifying strategic nodes for the success of the 
dissemination process, and battery life-saving strategies [19]. 
In order to support distributed applications in Opportunistic 
Networks, DisService provides a large set of methodologies 
and tools for the smart communication resources management 
which implements these techniques. 

To the best of our knowledge, these studies did not consider 
the problem of sharing the limited network and local resources 
among several applications that simultaneously request to 
access them. To answer this question, DisService implements a 
prioritization mechanism: applications can specify a different 
priority level for each message they generate that, in turn, will 
have access to different shares of the available resources. 

Previous research works already recognized the importance 
of studying nodes’ contact patterns in the context of 
opportunistic networking [20], especially focusing on social-
based forwarding [21] [22]. In [23], we demonstrated the 
importance of extending those ideas to take advantage of 
highly mobile nodes to support the dissemination process and 
we identified many reasons to foster the use of predictions 
about future contacts. Among them, we listed a better resource 
usage, more informed and intelligent data fusion techniques, 
and more energy-efficient communication strategies. 

 
Fig. 2. Ratio of messages delivered via Wi-Fi to the sink node against 

the cache size; predictions enabled and disabled. 

 
Fig. 3. Number of messages correctly delivered to the sink node against 

the cache size; predictions enabled and disabled. 



In [24], the authors proposed a solution which leverages the 
history of nodes’ past positions to predict their future locations 
and to enable predictive QoS routing in Mobile Ad-hoc 
Networks. The study assumes that mobile nodes have access to 
the GPS to take accurate measurements of their coordinates 
and that their clocks are all synchronized. Each node in the 
network periodically broadcasts data about its movements to 
all the other nodes, so that they can reconstruct the history of 
its past positions and predict its future location. The packet 
routing decisions are then based on the future network 
topology, computed from the predicted locations of all the 
nodes. This approach incurs in a large network resource 
consumption, as nodes need to flood the network to dispatch 
the data relative to their position. Also, using the GPS to 
retrieve geographic coordinates increases the energy demand. 

The approach to enable predictions about future contacts 
with other communication resources that we presented in 
chapter 4 of this paper exploits a pattern detection algorithm 
which extrapolates periodic patterns from time series. The 
scientific community recognized the problem of periodic 
pattern mining in data series to be very challenging and of 
great importance in many applications [25]. Many studies 
focused on mining synchronous and asynchronous periodic 
patterns to design approaches which are resilient to noise, to 
shifts in the data series, or to the presence of samples which do 
not belong to any pattern, hence polluting the data. Proposed 
solutions are effective, but their cost in terms of resources 
consumption is significant. However, the operating contexts of 
communication middleware functioning in urban environments 
are very different from the ones traditionally considered in 
those studies. DisService is designed to operate in these 
environments and exploit their peculiarities to provide simple, 
nonetheless effective approaches which can be implemented on 
resource constrained devices. 

VII.  CONCLUSIONS AND FUTURE WORKS 

Smart cities will provide many services and applications 
that can improve the quality of life of citizens. However, the 
increasing traffic demand requires a communication paradigm 
that enables applications to operate and interact effectively. 
The scientific interest concerning the study of Opportunistic 
Networking in the context of Smart Cities is steadily increasing 
as it can exploit many characteristic of the nodes, such as social 
aspects, mobility patterns, and the application context, to 
realize a smart management of the scarce communication and 
memory resources. 

In this paper, we presented a solution which takes 
advantage of an efficient mathematical approach to discover 
periodic patterns in the contacts with highly mobile nodes, 
such as the ones identified by the public means of 
transportation equipped with wireless communication 
interfaces. The results obtained collecting statistics from a 
simulated environment allowed us to state that predictions can 
effectively be used to design policies that significantly reduce 
the traffic conveyed over expensive, bandwidth-limited 
connection solutions, like the 3G cellular network. This would 
support the cellular network in withstanding the ever 
increasing amount of mobile traffic flowing through. 

Experimental results also emphasized the cost, in terms of 
memory consumption, placed by the use of predictions. 
However, we think that the knowledge about future contacts 
with other nodes makes it possible also to design smarter 
resource management policies, thereby reducing their impact 
on the memory usage. Future works will study the impact of 
using such policies to implement algorithms for the dynamic 
allocation of the memory shared between multiple applications 
on the dissemination process. 

The evaluation of our algorithm with traces from real 
measurements or generated with domain specific simulators 
would be extremely interesting. This would permit us to test its 
effectiveness with different scenarios and multiple traffic loads, 
and assess its scalability. Moreover, the use of traces coming 
from real measurements would give us the chance to test the 
robustness of our approach against several forms of noise (such 
as the presence of varying inter-arrival patterns or of contact 
outages with the ferry nodes). This is a very relevant matter 
that we would like to study more in depth. 

Another interesting research topic will study if the process 
of collecting statistics to measure the average quality of the 
links can produce a more accurate representation of the 
network and will investigate scenarios where the applications 
could take advantage of it. Finally, the promising results 
obtained with the simulated experiments rose the interest of 
some companies in testing an implementation of our solution; 
this will give us the chance to test it in the context of a real 
urban environment. 
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