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Abstract—The ever increasing number of mobile devies in
Smart Cities and their heavy use, not only for pemnal
communication but also as a distributed network ofsensors,
generate a data deluge that stresses the traditiohavireless
communication infrastructure. The opportunistic networking
paradigm seems particularly well suited to the Smar City
scenario because it exploits resources that tempaity fall into
the connection range of mobile devices as communi@n
proxies, thereby providing cheaper and more energyefficient
alternatives to the use of the cellular city netwdc and actively
contributing to its offloading. However, its efficacy highly
depends on the effectiveness of discovering and ngi those
resources. To improve the effectiveness of opportistic
networking in Smart Cities, we propose a solution wich exploits
a prediction model tailored for the urban environment that, by
detecting complex recurring patterns in nodes’ cordcts, can
forecast the future availability of strategic communication
resources. Experimental results obtained in a simated
environment show that our solution can improve the
dissemination process and ease the access to theedinetwork
infrastructure.

Keywords—Smart City; opportunistic networking; mobile
data offloading; prediction model; communication mddleware

. INTRODUCTION
The number of people living in the cities worldwitas

been in the rising trend since way before the hekera, and

studies state that the urban population will alnasible by

the middle of the 21st century [1]. This incesggoivth places

new challenges to the city management under mamispof
view. For instance, new plans and strategies ayained to

assist both the public and the private transportatd meet the
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pervasive and intensive use of ICT techniques t@lize
effective and sustainable solutions that aim torowp the
quality of life of the smart citizens in many diféat areas [2]
[3] [4]. The efficient gathering, processing, anidsémination
of data are essential to implement all these newicss in
dynamic and heterogeneous environments such aSrtiaat
City.

The ever-growing density of smartphones and talietise
modern cities, their pervasiveness among the ptipanjaand
their availability on the urban territory at no téar the public
administration make them extremely valuable resssirdn
fact, they have the potential to serve as sensudscallect
many different types of environmental data, as veall the
computational and the connectivity capabilitiesirtgplement
non-trivial, effective dispatching strategies. Neheless, the
mobility characteristic of these devices, which aaried
around by the citizens as they move, makes it isiptes to
rely on the wired network infrastructure to reahbk tequired
levels of connectivity. However, due to the enorsguowth
in the mobile data traffic expected for the nextarge the
cellular network will be unable to satisfy, by Ifs¢he future
demand. For these reasons, the study of effectitgiens to

achievemobile data offloadings becoming more and more

important in the scientific community [5] [6].

Opportunistic  Networking technigues have
emerged to face many of the challenges that ogtiBnart
Cities. The Opportunistic Networking paradigm confiesn
the networking concepts that naturally emergeché Mobile

recently

Ad-Hoc Networks and Delay Tolerant Networks researc

fields and evolved into a more complex and effectbet of
networking strategies and protocols. Differentlpnfr other
solutions, this paradigm takes into account therinftion

new requirements, new power grid infrastructures arcoming from both the application and the environmen

necessary to distribute and control power resourcasmarter

and more adaptable manner, and the public safaty tiaa

contexts. By analyzing the aspects in human inters[7] or
in mobility patterns [8], or both the context ain tcontent of

publiq health se;rvic_es neeq more effic.ienF strategand exchanged messages [9], applications that rely on
techniques to deliver information and data in teak. Opportunistic Networking can maximize the effectigss in
The concept of Smart City has emerged to addresseth reaching their goals, under the constraints pravitg the
challenges, describing a modern urban environméwetrevthe ~ current network status and by the communicationnsiea
Information and Communication Technology (ICT) mlagn Given the peculiarities of the urban environmend &me
essential role as the provider of means and teuBBIqO  chgllenging requirements of smart applications, séems
gﬁectl\{ely access and gxplon_the other assetsaify, SL_Jch 8S natural to try to take the maximum advantage outthef
its social and economic capitals. Many actors aeking a Opportunistic Networking paradigm by exploiting the
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periodicity typical of the mobility patterns of semodes (e.g.,

buses, trains, and metros, but also commuters,migbt drive
every day the same path to work) in order to supiher data
forwarding from the mobile sensors and devicesht wired
network. In particular, this paper presents a sijusted

approach todiscover a wide spectrum of complex periodic

patternsthat recur in the contacts with mobile nodesalet,fin
order to satisfy the needs of the citizens, theéewf public
means of transportation might change periodicédilyjnstance
to adapt to congestion, to connect important acéabe city
more frequently, or to serve different neighbortsoBeing
able to detect these types of periodic patternewall the
prediction of future contact opportunitiewith nodes that
represent potential communication resources, timabling a
smarter usage of the scarce resources of the networ

We implemented our pattern detection algorithm he t
reusenda

application middleware level, to facilitate
maintainability of the forecasting system and tcalmle the
application logic from all the strategies and fiummalities that
support the opportunistic discovery and managenoérthe
available resources (routing, forwarding, messagehiag,
prediction models, etc.). Experimental results rim a
simulated environment show that our algorithm déecévely
detect contact patterns with mobile nodes. Thisvall the
design of advanced information dissemination sfjietethat

would allow applications to maximize the beneftlisyt obtain
from nodes that temporarily fall under the conrettiange.

In Opportunistic Networks, applications need topidaly
apply the most appropriate dissemination strategiesosing
between many forwarding and replication protocols,
communication semantics, and available connection
technologies. To this end, applications have toe takto
account both their goals and the constraints plamedhe
environment.

Fig. 1 below shows a Smart City scenario. Survsika
applications are installed on sensor nodes equippiéd a
camera to take high resolution pictures of the endrttraffic
conditions in some critical areas of the city. B the most out
of this kind of applications, the captured imagegdto be
gathered and stored in a data center, usually ddcat the
cloud, where enough computational and memory ressuare
available to process them and derive useful inftionaWe
could imagine the cameras connected directly taléta center
via powerline or 3G communications. However, poimerl
communications might be difficult to deploy, and 3G
communications could suffer the problems we already
described for cellular networks.

An interesting option to improve nodes’ connecyivi to
opportunistically take advantage of mobile nodest ttome

favor the usage of alternative, cheaper commumigati into proximity and that could operate as messageefe

solutions, such as Wi-Fi or Bluetooth, availabléhia majority
of the modern mobile devices.

the access to the wired network infrastructure lams of

connectivity interfaces which do not include thellutar
network, thereby significantly contributing to @ffload.

1. OPPORTUNISTICNETWORKING IN SMART CITIES

Many recent studies focused on the importance og

Opportunistic Networking as the communication pepadto
effectively address the challenges typical of hmgeneous,
dynamic, and resource constrained scenarios [10] [1

In the Smart City, several nodes in the networkdnee
exchange high quantities of heterogeneous traffmwever,
those nodes might not be able to directly accessvtied
network layer, or they could not be in range of aMiyFi or
WiMax AP, causing the network to be partitioned ti#¢ same
time, the cellular network might not be an optiasg the
generated traffic could be excessive, the networgghtnbe
congested, or sending data over it might be tocesipe.
Therefore, to be able to fulfill their goals to thest of their
possibilities, applications running in Smart Citibave to
consider other connectivity resources.

The mobility and the variety of nodes, such as usabile
devices, sensors, and vehicles, which can all bgpgd with
(at least) a network interface, and the widespesa@ilability of
free Wi-Fi APs are typical characteristics of Sn@Gittes. They
identify a very heterogeneous network, where coimes

between nodes are mostly unstable. Such environme[]

challenges applications, which need a solutionehable them
to discover and exploit new connectivity resourgekly and
effectively. Relying on the Opportunistic Networgiparadigm

between the cameras and one or more “sink” nodesexted

Results of performedo the data center that manages the Smart Citynivaftion
simulations proved that these dissemination stiedetan ease

layer. A possible solution could be, for instartoeprovide the
public transportation vehicles with Wi-Fi or Blueth devices,
so that the camera nodes can use either one otwbe
technologies to send the images to buses and passng by.
Those vehicles will then carry the images to onenore sink
nodes connected to the Smart City data centercélthiat also
us passengers could exploit the proximity to &k sior
ploading heavy data contents, like social netwewtvities,
videos, or high quality images, thereby avoidingémnect to
the more expensive cellular network and contrilgtin
themselves to its offload.

The issues described in the previous paragraphocain
adaptive  communication  middleware  designed  for
Opportunistic Networks capable of analyzing the current
network conditions and of exploring all the surrding
connection opportunities, to support the overlyapglications.
This middleware will tailor the dissemination ségy based on
the discovered connection opportunities, underctivgstraints
which characterize each device, and will provideliaptions
with a set of mechanisms and tools to define pEgi¢d match
their goals.

An adaptive communication middleware needs to have
complete and accurate representation of the netvgbatus
and its resourcedn order to be able to satisfy the application
requirements. However, often the knowledge abaaitctirrent
state of the system is not enough. For exampils, ossible
that a node, which is not currently reachable, wilbn fall
der the Wi-Fi range of another device. This wapen new
connection possibilities in the near future, altjiowcurrently
unknown. Therefore, to provide applications witH tie
information to design effective policies, the cormmiwation
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Fig. 1.A Smart City Opportunistic Networking Scenario

middleware should implement techniques capabjaedicting
the presence of future resourcedenever possible.

Having the knowledge of future contacts with othedes
at their disposal, applications can implement ¢isan tolerant
policies. Also, the availability of predictions daes the design
of policies that foster a fairer usage of the aldé resources.
For example, prioritizing short-medium range comiuaition
technologies, like Wi-Fi or Bluetooth, against athigpes of
solution, such as 3G communications, would assunglaer
utilization of cheap wireless connectivity solusonthus
offloading the cellular network and leading to emprovement
of the global performances of the Smart City netw@]. To

the best of our knowledge, there is no communinatio

middleware designed for Opportunistic Networks tleatures
a prediction model to forecast the future contamies with
other nodes of the network.

Ill.  PREDICTION OFFUTURE CONTACTS FOREFFECTIVE
INFORMATION DISSEMINATION

the dispatch of all messages to try to take adgantd better
communication possibilities would place the riskeafremely
increasing the latency of the information disseitidme this is
unacceptable in some application domains and, anymever
a desirable property.

To delay the messages delivery only when convenibat
communication middleware has to provide applicatiovith
the knowledge about future contact times with piddaén
communication resources. In order to do so, thedlaidare
can exploit the history of past contacts with tbenmunication
resources to build a forecast model which is ablefter the
next contact times.

The computation of forecasts of future contacts wither
nodes based on the history of past contacts is atatipnally
expensive and, also, a challenging task. In faotem can
exhibit very complex periodic behaviors and so ihecess of
discovering the patterns that underlie them migat very
expensive. Also, forecast models need to be contisly
reevaluated to keep their accuracy within a cerfeivel.

In order to make the best decisions when it conmes tFinally, there is the need to provide applicatiomgh an

opportunistic routing, applications require a knedde of the
environment in which they are submerged that habetas

evaluation of the reliability of the forecasts [[L2p they can
autonomously decide if and when to rely on the reffe

complete as possible. The type of knowledge reduirePredictions.

comprises the set of nodes available within comopatin
range, their characteristics, the connectivity uveses capable
of reaching them, and the network status, as wellaay
requirement that the applications might have immgerof
bandwidth allocation, maximum latency,
reliability, set of destinations, etc.

Although this information is necessary for applicas to
select the best routing strategies, considering tiré present
conditions of the network might limit the output olfie
dissemination algorithm to a local optimum. In fdaot highly
dynamic environments and under certain conditioletaying

transmission

For example, let us consider the bus route depictedg.
1. The itinerary might have been conceived to fiiker the
connections with certain areas of the city agaiosters,
situation which is not uncommon in modern urbatitiea. As
a consequence, the bus might follow an itinerarycivis not
always the same, but varies accordingly to a pheeef
schedule. In the figure, the different paths apresented with
two arrows: the dashed arrow represents the shqoes,
whereas the normal arrow represents the longest ©ae
connect more frequently the most important servedsof the
city (to the left in the figure) to the hospitabetroute could be

the delivery of messages might open the door tdebet designed in such a way that the bus will take tiartest path

communication solutions. However, systematicallyagag



twice in a row, before taking the longest path ¢reel then it
will start over, repeating the same pattern.

While an unsophisticated forecast model would nlesd
computing resources, it would also fail to recognimany
common patterns in nodes mobility, or it would tedawer,
possibly inadequate, levels of accuracy. For ircgaa model
which assumes that the nodes will follow a consitmerary
between consecutive contacts would fail to capttiie
behavior which characterizes the bus node in tfena®
described above.

Nonetheless, a completely different approach, based
accessing the Internet to download the timetabldsus lines
which pass by the camera, would present other @nadl In
fact, Smart Cities might have smart bus systemgadla that
can use the cellular network to provide all theliested nodes
(traffic cameras, bus stops, traffic lights, etevjth the
information about the next arrival time of one oorm buses.
However, all the traffic generated to periodicallgtribute and
update this information to all the nodes would plac great
burden on the cellular network and contribute sccitngestion.
An interesting possibility to reduce the trafficutd be to limit
the number of update messages to only one mesadis)
notifies when a bus leaves the closest bus stoph Wis
information, a camera node nearby would simply havearn
the amount of time required for the bus to reachThese
values can then be crossed with the times at whiehupdate
messages were sent, to capture fluctuations ielttames due
to varied congestion levels at different moments tioé
day/week. Finally, note that data gathered forimtistbuses
which travel the same paths to reach a camera teuiderged
to reduce memory usage and to increase the accofaitye
predictions.

IV. AN EFFICIENTMOBILITY PREDICTION MODEL FOR THE
URBAN ENVIRONMENT

In a modern city, the intrinsic periodic behavidrpublic
transportations allows us to approach the problédetecting
periodically recurring mobility patterns of nodesorfh a
simpler perspective. In fact, public means of tpans
equipped with a medium-range network device suchn\as-Fi
card, or with a small-range, low-power Bluetootteiface, can
become mobile nodes with a very predictable behavio

Most of means of transportation either have a fixed
schedule throughout the day (that is, the intdkaritime at
the same destinations stays constant), or they raowerding
to a certain constant pattern that repeats itsétlh wome
periodicity (several times a day, daily, weeklyc.pt These
observations reduce the complexity of the probldrfinaling
predictable patterns in the nodes’ behavior, acaveassume
the existence of periodically recurring patterret timderlie the
intercontact times between two nodes. In additie, can
consider that discovered patterns will not chamgéhé short
period, since bus and train schedules and routestteremain
unvaried for a long time, usually months or yearghis paper
we address the latter case, whereas the formestigjspecial,
simpler case.

In a Smart City, there are several categories désavhich
could take advantage of predictions about futurgams with
other nodes. For example, the surveillance apjmicat
described in section 2 could use predictions tolement a
smart information dissemination policy, which aitasncrease
the ratio of messages sent using cheap, short-medinge
communication links, like Wi-Fi or Bluetooth, insig of more
expensive ones such as 3G. In fact, the knowledyived
from the prediction model enables informed decisian

For the reasons expressed above, there is the foeed whether to send the images via one communicati@nface or
advanced prediction models that can recognize ammpl the other, according to both the estimated likaththat a bus

recurring patterns in the nodes’ mobility, leadiogsolutions
which can perform well under many circumstanceswéicer,

the limited memory and computational resourceslalvi@ on
sensors and mobile nodes require a trade-off betvibe
accuracy, the refinement, and the complexity of fibrecast
model. The chosen trade-off can vary based on

characteristics of the device. Alternatively, theddeware
might provide applications with a set of multipl@dels, each
with different complexities and characteristics. turn, the
applications will be responsible for choosing thedal which
best satisfy their requirements.

In this work we propose @eneral, middleware-based K
. . . ke
solution that, paying the cost of a more complex elabanatio

than the one necessary for simple approaches suthoae
described above, implements a model which can tetemad

spectrum operiodically recurring patterns in nodes’ mobility

We believe the patterns that our solution can detecrealistic
representations of those which characterize theingit

periodic behavior of many subjects of the Smary,&Gtch as
the public means of transportation. The proposedtisn

exploits a mathematical approach which allows tarce for
and discover periodic patterns while keeping thematational
complexity of the model relatively low.

will approach the camera in the near future anch wite
urgency of the data.

Our middleware implements a prediction model tolyaea
the sequences of intercontact times collected &hexode. It
features a mathematical approach which can effagtiv
(e,ompute the autocorrelation of a time series, themdlowing
the discovery of periodic patterns in the data. &édoer, the
relatively low complexity of our solution makesaippropriate
to be employed on devices with low computationabugces,
such as sensors or smartphones.

The ability to keep track of the nodes’ contactdrig is a
y feature of our communication middleware. Thigywit
gathers the necessary data to feed its predictmstemthereby
enabling the forecast of the next contact time$ Wit nodes
and the computation of the predictions’ reliabilifyne model
can be configured with parameters which specifynlagimum
tolerance and the minimum accuracy and reliabditywed, so
that applications are able to control the qualityhe forecasts
and change their dissemination strategy accordifgigders
can refer to [12] for a more detailed discussion thase
parameters). This permits to design applicationsclhwvitan
implement adaptive and sophisticated disseminaimtegies,
based on the current state of the network and an th
information about future contacts with strategides



We further extended our communication middleware by To improve the efficiency of the search for pereodi

adding the feature to collect statistics concernihg link
duration within the nodes’ contact history. Combithis
knowledge with the prediction of the next contdotet, the
middleware can assess the amount of data whictbevitible to
exchange with another node during the next contéautiow.
This feature further increases the adaptability thie
middleware, which puts at the overlying applicasiodisposal
an evaluation of the bandwidth available during thext
contact with a node, allowing applications to desigore
robust and refined policies. The investigationhaf impact that
this functionality might have on the disseminatjmocess is,
however, out of the scope of this paper.

In the next three sections we are going to intredtveo
possible approaches to detect periodically recgnpatterns in
the nodes’ mobility and the algorithm to predice thext
contact time with other nodes which is implementecour
middleware.

A. A Straightforward Approach for Detecting Recurring
Mobility Patterns

Both the approaches we are going to present inattisin
the following section consider the sequence ofrautetact
times with a certain node as the finite time-series,, where
0<n <N, and N is the number of intercontact timbsesved
so far. A straightforward way to extrapolate theiquticity of
Xn is to calculate its autocorrelation function famse set of
predefined lags (with the largest lag that canmogiteater than
N/2).

Nodes that identify public means of transportatias,
discussed in the previous chapters, show a reguaunrring
behavior, which repeats itself with some periogliciThese
characteristic gave us reasons to assume thaintieeseries
composed of the intercontact times between a statie and a
node which identifies a public means of transpantatan be
described by a wide-sense stationary processesskof such
a stochastic process, the autocorrelation fundsatefined as
follows:

NodT) = )] - X'[n -1]] )

where tis the lag at which the expected value E[¢] is

computed and( is the complex conjugate of Sincex, is
finite for each value in the range [0, N - 1], #agtocorrelation
functionrxx() also exists and is finite. Once the autocorietet

patterns in the time-series we present a diffegggroach,
based on the Wiener—Khinchin theorem and charaegthy a
smaller complexity. In the discrete-time case oflevsense
stationary processes for which the autocorrelafiomction,
defined as in (1), exists and is finite, the theostates that the
spectral density $( of x, can be computed from the
autocorrelation, as follows:

+o

S0 = 3 raltleriwk @)

15—

From (2), it is possible to obtain the autocorietat
functionry() by computing the inverse Fourier transformation
on S(f). Compared to the solution which directlynputes the
autocorrelation values, the complexity of this setapproach
mainly depends on the complexity of performing divect and
inverse Fourier Transformations.

C. An Algorithm for the Prediction of the Next Coritdione
Starting from the result of the Wiener—Khinchin dhem,
in this section we are going to present two alpong
implemented in our communication middleware: the dor
the discovery of periodically recurring patternstime series
and the one for the forecast of the next contawe twith a
node. It is important to note that the output o tormer
algorithm is part of the input of the latter. Letbé¢ the vector
containing all the intercontact times observed @&ofér the
noden; we can define an algorithm to discover the patter
recurring in the samples in X with the followin@s:

1) Compute the Fast Fourier Transform (FFT) of X:
Y = FFTK)

2) Compute the spectral densgygy):
SY)=Y-Y

3) Obtain the autocorrelation vector xR applying the
Inverse Fast Fourier Transform (IFFT):

Rxx = IFFT(S())

4) Find the index p, with p > 0, for which the valueRax

for all the predefined values afhave been calculated, the IS the greatest. p is the output of the algorithm.
value of t which corresponds to the highest output of the

autocorrelation function will be the periodicity weere
looking for.

B. Leveraging the Wiener—Khinchin Theorem to Discover
Recurring Patterns in Nodes’ Mobility

The problem of the solution described above liestsn

The complexity of the second solution is domindtgdhe
FFT and IFFT functions which, as explained in tmevjpus
section, can both be computed with a complexity of

O(n - log(n)).
The result of step 3 is a vector containing theiealof the

autocorrelation function computed over the inputtee X for

complexity In fact, if k is the number of lags we want to the lags in either the range [0, (N-1)/2] or thega [-(N-1)/2,

include in our search, the complexity of computitige

(N-1)/2], depending on the implementation of thgoathms

autocorrelation i©(r? - k). Even if it is reasonable to assume for computing the FFT and its inverse. In eithesecayiven the

k « r?, the complexity is still quadratic in the length the
input.

symmetry of the autocorrelation function, the infi@tion
contained in the output vectokRis the same.



If the number of samples in the vector X is largewgh,

for enabling opportunistic networking in challengin

the value ofp returned by the algorithm in step 4 is theenvironments.

periodicity of the time series. Note that the divsat algorithm

cannot discover periods greater than (N-1)/2. Wihile means
that the algorithm needs the samples from at |dast

complete cycles to discover the periodicity inradiseries, our
experience with the problem suggests that the smipbm

three complete cycles are enough for it to prodaceurate
results.

Once the periodicity in the data has been discaolyemo
more steps are necessary to predict the next dadimae with

To support applications’ adaptivity, we extendeck th
DisService middleware with additional features e track
of the nodes’ contact history and to collect stiaison the
duration of the links with those nodes. Based ois th
information, applications can build the strategyichhtbest fits
both their requirements and the current statuhefretwork,
as inferred from the statistics. More importantlge new
features allowed us to further enhance DisServibg,
implementing the prediction model which can foréctse

the noden. The first one involves the assessment of the neXuture contact times with other nodes.

intercontact time. In order to do this, we usedeehnique

based on the Exponentially Weighted Moving Average

(EWMA), as we described in [12]. Considering the
periodicity of the input vector Xp(is the output of step 4 of the
algorithm described above)the highest index in the nodes’
contact history with respect to the nogéwith the first entry

having index 0)ewma_ghe value returned by each invocation

to the EWMA function, andx the smoothing parameter, the
pseudocode of the algorithm that predicts the vafufie next
intercontact time can be written as follows:

time find_next _intercontact interval
(period p,
i =(t +1) %p;

+ 1] .start

contacts_vector X) {
ewra_s = X[i - Xi].end;
i += p;

<t; i

for (5 i +=p) {

EWA (o, X[i + 1].start
Xi].end, ewra_s);

ewna_s

}

return ewna_s;

}

The first three lines serve to initialize thema_svariable
with a valid value before it is used as a paranfetethe call to
EWMA() The forecast of the next contact time can
computed by retrieving the end time of the lastactwith the
noden from the nodes’ contact history and by addingitte
evaluation of the next intercontact time, obtaimadling the
find_next_intercontact_intervalfiinction.

V.

We tested our solution using a simulated envirorini@n
reproduce the scenario depicted in Fig. 1. Morecifipally,
we used the Network Simulator 3tip://www.nsnam.orfg
version 3.16, for all the results presented in plaiger.

EXPERIMENTAL RESULTS

To enable the message dissemination and replicatitire
simulated environment we took advantage of Dis$ervan
information dissemination middleware purposely gesd for
extremely dynamic communication environments
DisService supports the overlying applications bal#ing the
smart management of multiple links and by providesyeral
message forwarding, caching, and replication gjiese These
features characterize DisService as a generattieesolution

[13].

DisService pushes and receives information in thretext
of messages belonging to a subscription. Multipktainces of
an application running on different nodes can shiaeesame
subscription and exchange data within it. DisSerdtows the
nodes to receive, store, and carry those messhgasghout
the network, obeying to any configured policy, ibest effort
manner.

For the computation of the Fast Fourier TransfoRRT)
and of the Inverse FFT we relied on the high-penfurce
FFTW library fttp://www.fftw.org, which includes fast
routines optimized for several CPU architectures.

A. Scenario

In the simulation scenario there are 5 differenBNM®des
that model three cameras, one bus, and one sinlemsted in
Fig. 1. Every node has a standard 802.11b wireidesface
installed, with a maximum available bandwidth set1 Mbps.
DisService is installed on each node, to handlen btbe
reception and the dispatching of messages. Iniaddid Wi-
Fi, the camera nodes also have a 3G-enabled io¢erihich
allows them to connect directly to the sink noder Ehe
purposes of the simulation, we used an NS3 pokpitot
radio link with a bandwidth of 1 Mbps to model tl3&
connection between the cameras and the sink.

A surveillance application is running on each cam@&hey
generate messages containing highly detailed pistof the

bemonitored area which need to be delivered to tha danter

managing the Smart City. DisService takes carearfng the
messages in the local cache and of delivering tteeome or
more sink, which have direct access to the inteanelt to the
data center in the cloud.

The application running on the cameras implemehés
following policy for managing the cached imageshé cache
is full and the camera takes a new picture, thestldnage is
replaced. This behavior is consistent with the pses of the
application, because we can assume that a sungslla
software is more interested in delivering the mostent
information. Nevertheless, to provide more flextibnd more
control over the lifetime of the generated messageshe
overlying applications, DisService allows the agstian of
different priority levels to messages. This way]yoalder,
lower-priority messages can be replaced with neesoihe
application we used for the experiments generatessages
with 3 different priority levels: low (normal image medium
(images took at fixed intervals, to provide perodipdates



about the status of the street traffic throughbat$mart City),
and high (images generated in correspondence o swents
detected in the monitored area, or requested firegithe data
center). Only messages belonging to the two higirity

levels can be delivered via 3G, if no other paththte data
center is available. This restriction is necessaryavoid
overloading the cellular network with low priorityraffic,

which should be reserved for the delivery of urgiata. In our
tests, the average size of a picture is 5 MB.

Each camera is more than one kilometer from thersth
and from the sink, installed in a strategic areahef Smart
City, like a large crossroad, or a traffic light ialn regulates
the vehicle flows in streets likely to be subjextcbngestion.
Given the importance of those areas, it is readerabthink
that there might be at least one bus stop in threiximity. For
this reason, and to increase the interval durindchvhhe
camera nodes are under communication range wittoikes
passing by, in our simulation scenario we assuntes t
presence of a bus stop close to each camera atte tsink.
The distance between each node prevents any dive¢t
communications, so the only way to use Wi-Fi igxploit the
temporarily available connections with a mobile eolike the
bus in our scenario, which will function as a fearyd carry the
messages from the cameras to the sink.

DisService periodically broadcasts packets (catH&d LO
messages) to signal the presence of a node teighbiors. The
instances of DisService running on camera noddsugd the

ran for 6 hours of simulated time. During the fingb hours no
messages were generated: this allowed the Dis®ervic
instances running on the camera nodes to colleoug
information about the mobility pattern of the busle to feed
the prediction model. Also, this made possible #@&efa
comparison between the solution with predictiond tre one
without them. The chosen amount of time was adeqtmt
generate enough messages for each class in ordmlléat
significant statistics.

B. Results

During the experiments we collected data represgritie
status of the simulations to elaborate statisticdescribe the
evolution of the tests. Fig. 2 shows ti\-Fi delivery ratiq
that is the percentage of messages delivered taittenode
via Wi-Fi, i.e., that reached the sink node via lhes, against
the cache size, for the cases with predictions ledabnd
predictions disabled.

Independently from the specific cache size, the
performances in terms of Wi-Fi delivery ratio argngficantly
higher when camera nodes can leverage predictiomgt ahe
future presence of a ferry node. With predictiorsabled, the
Wi-Fi delivery ratio goes from about 67% to 81% whtbe
cache goes from 5 to 20 messages, while, enabladjgbions,
those percentages range from about 86% to almoi. 94
Labels in the figure show how many messages wdreeded
using Wi-Fi against the total. The difference betwéehe two

information derived from the reception of the HELLO series of data ranges from 217 messages, withtecaee of

messages to fill in the vector containing all theeicontact
times with the bus node (referred to as X in sadiiaC).

5, to 143 messages, with the cache capable ohgtap to 20
messages. Considering the average message siz®MBf 5
enabling predictions redirected about 700MB-1GBtraffic

We modeled the bus movements with a fixed waypoinkom the cellular network to the opportunistic netk

mobility model. In accordance with the behavioth# bus, the
node which identifies it in the network does nolida a
constant route, but it changes periodically. Aswghin Fig. 1,
there are two possible paths that the node canvthkeever it
reaches the fork near CAM #1. In our experimerg,kibs will
take the shortest route twice in a row (identiftgdthe dashed
arrow in the figure), and then drive the longeghphe third
time (identified by the normal arrow). These cheiedll then
be repeated until the end of the simulation, idginty a pattern
which recurs with a periodicity of 3.

Two bus stops and the sink belong to the shortéh, pa
while the bus encounters all the stops and the sihkn
traveling the longer path. 32 and 40 segments ibest¢he
shorter and the longer path, respectively. Thettawels over
these segments each time with a different speedjoraly
chosen from a uniform distribution which rangesnird6.8
km/h to 57.6 km/h. The bus also remains at eaghat@andom
amount of time, uniformly distributed between 30d a0
seconds, before resuming its ride. The choicesaburoduce
a certain degree of variability and allowed us itautate the
effects of small changes in the current trafficdions and of
other elements which affect the bus’ behavior, &l as to
evaluate the robustness of our solution.

We performed 8 different simulations, to cover #ie
possible configurations of the prediction algoriti{gnabled
and disabled) with 4 different values for the caslm of the
camera nodes (5, 10, 15, and 20 messages). Eadlatim

corresponding to about 12-19% of the total traffic the
simulation.

We believe that these results show a very imporairit.
In fact, knowing in advance if a new resource wibon be
available, applications can develop smarter pditiat better
fit their goals. This opens up the possibility tonare uniform
usage of the network resources, which will lead twetter QoS
and will reduce the load placed on the strategitspaf the
network.

The Wi-Fi delivery ratio allowed us to prove thé@éncy
of our solution as a means to reduce the load en3@
network, enhancing the use of low-medium range ectivity
solutions. Instead, Fig. 3 shows the impact of kmgb
predictions on theelivery ratia We can notice that the results
for medium and high priority messages are the sawhde
only low priority messages suffer from a reduction the
delivery. Although the results may seem countettiviel at
first, the behavior they delineate is expectable iais a direct
consequence of the cache limit.

When an application generates a message, if valid
predictions of future contacts with ferry nodes axailable,
DisService will store the message in its cache @sldy its
delivery, waiting for the next ferry to approachl tis is, of
course, necessary in order to exploit the Wi-Fingation with
the ferry node and avoid transmissions via 3G. dche fills
up, low priority messages will be discarded, thdfeciing



negatively the delivery rate. However, an incréasache size
would mitigate this effect. As appears in Fig. 8 tifference
between the number of messages delivered with giredls

enabled and those delivered with predictions deshtdrops
significantly with a cache capacity of 15 messagdsigher.

These observations and results demonstrate that
exploitation of future connectivity resources regaia higher
memory usage. In session 4 we had discussed the itpns
terms of computational power to set up a predictioodel.
Now, the experimental results allow us to point dhé
different cache management that arises from thiiaion of
predictions of future contacts with potential coctidty
resources. Because of it, messages tend to ochamathe for
longer times when the prediction feature is enabéed,
consequently, a higher number of low priority megssaneed
to be discarded. For our experiments we have cereida
scenario where DisService provided each applicatéying
on it with a static cache size. Nonetheless, wébelthat a
dynamic management of the cache share could hdlirg
the effect that enabling predictions has on the orgm
management.

Finally, we would like the reader to note that wied to
design the experiment so that it mirrors the bedrasd a public
means of transportation, like the bus in the sdenan a
realistic way. To this end, we included random riaeival
times and variable routes in our simulations. ldigoh, the
efficacy of the theorem, and in turn of our solaticloes not
depend on the pattern chosen. To verify this, we tests
changing the lengths of the short and long patlasveamying
the type of pattern, i.e., changing the numbeiiroés$ the bus
would travel the short and long paths before repgathe
scheme. The results were all comparable with thes af the
experiments we reported.

VI. RELATED WORKS

A significant number of studies related to Oppodtia
Networking and Information dissemination in SmaiitieS
assume the existence of a fixed infrastructureippsrt mobile
nodes and ease their connectivity [14] [15] [16bwéver,
infrastructures of that kind are seldom availabieniodern
cities and, even when available, they might noecdake whole
urban area. Therefore, solutions that rely on tedilability to
fulfill the information dissemination cannot be geally
applied, as they would not be able to operate iefitty in
realities devoid of such supporting infrastructudescontrast,
one target of our work is to develop a generaltgmiy capable
of operating properly in most scenarios. As a ttese tried to
keep the list of assumptions on the operating enment as
short as possible, avoiding to rely on any existihgd
network infrastructure, unless it is widespread rimany
realities, e.g., free Wi-Fi APs that allow the aax® the wired
city network.

The scientific research identified many techniqudsch
have been proved successful under other
environments with characteristics similar to Sn@ittes, such
as Tactical Edge Networks, Wireless Sensor Netwarks
disaster recovery scenarios [10]. These technigoesprise,
but are not limited to, message prioritization, tnieSng
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information dissemination boundaries [17], optimgicache
size [18], identifying strategic nodes for the s&x of the
dissemination process, and battery life-savingtesgias [19].
In order to support distributed applications in Ogpnistic
Networks, DisService provides a large set of metlugles
and tools for the smart communication resourcesagement
which implements these techniques.

To the best of our knowledge, these studies diccoesider
the problem of sharing the limited network and laeaources
among several applications that simultaneously esguo
access them. To answer this question, DisServipteiments a
prioritization mechanism: applications can spedcifylifferent
priority level for each message they generate thatjrn, will
have access to different shares of the availabteurees.

Previous research works already recognized the rizpce
of studying nodes’ contact patterns in the conteft
opportunistic networking [20], especially focusing social-
based forwarding [21] [22]. In [23], we demonstthtthe
importance of extending those ideas to take adganiaf
highly mobile nodes to support the disseminatioocess and
we identified many reasons to foster the use ofliptiens

out future contacts. Among them, we listed aebetisource
usage, more informed and intelligent data fusiahnéejues,
and more energy-efficient communication strategies.



In [24], the authors proposed a solution which tages the
history of nodes’ past positions to predict thetufe locations
and to enable predictive QoS routing in Mobile Amth
Networks. The study assumes that mobile nodes heness to
the GPS to take accurate measurements of theidicates
and that their clocks are all synchronized. Eactienm the
network periodically broadcasts data about its mu@s to
all the other nodes, so that they can reconsthecthistory of
its past positions and predict its future locatidine packet
routing decisions are then based on the future orktw
topology, computed from the predicted locationsabf the
nodes. This approach incurs in a large network ureso
consumption, as nodes need to flood the networttigpatch
the data relative to their position. Also, using tBPS to
retrieve geographic coordinates increases the guemand.

The approach to enable predictions about futurdacts
with other communication resources that we preserite
chapter 4 of this paper exploits a pattern detectilgorithm
which extrapolates periodic patterns from time exeriThe
scientific community recognized the problem of pdit
pattern mining in data series to be very challegpgamd of
great importance in many applications [25]. Manud&s
focused on mining synchronous and asynchronousodgieri
patterns to design approaches which are resilemtoise, to
shifts in the data series, or to the presencermpkss which do
not belong to any pattern, hence polluting the .dataposed
solutions are effective, but their cost in termsre$ources
consumption is significant. However, the operatingtexts of
communication middleware functioning in urban eoriments
are very different from the ones traditionally ciolesed in
those studies. DisService is designed to operatéhése
environments and exploit their peculiarities tovide simple,
nonetheless effective approaches which can be imgited on
resource constrained devices.

VIl.  CONCLUSIONS ANDFUTURE WORKS

Smart cities will provide many services and appiices
that can improve the quality of life of citizensowever, the
increasing traffic demand requires a communicagiaradigm
that enables applications to operate and interHiettively.
The scientific interest concerning the study of Qqbymistic
Networking in the context of Smart Cities is stéadicreasing
as it can exploit many characteristic of the nodash as social
aspects, mobility patterns, and the applicationtexdn to
realize a smart management of the scarce commiaricand
memory resources.

In this paper, we presented a solution which takes

advantage of an efficient mathematical approackisocover
periodic patterns in the contacts with highly mebiiodes,
such as the ones identified by the public means
transportation equipped with  wireless
interfaces. The results obtained collecting siatisfrom a
simulated environment allowed us to state thatiptiets can
effectively be used to design policies that sigaifitly reduce
the traffic conveyed over expensive, bandwidthdadi
connection solutions, like the 3G cellular networkis would
support the cellular network
increasing amount of mobile traffic flowing through

communication

in withstanding the erev

Experimental results also emphasized the cosgring of
memory consumption, placed by the use of predistion
However, we think that the knowledge about futuoatacts
with other nodes makes it possible also to desigarter
resource management policies, thereby reducing thmgact
on the memory usage. Future works will study thpdot of
using such policies to implement algorithms for thmamic
allocation of the memory shared between multiplgliegtions
on the dissemination process.

The evaluation of our algorithm with traces fromalre
measurements or generated with domain specific lators
would be extremely interesting. This would perngtta test its
effectiveness with different scenarios and multipddfic loads,
and assess its scalability. Moreover, the useawfes coming
from real measurements would give us the chandestothe
robustness of our approach against several formsisé (such
as the presence of varying inter-arrival pattem®focontact
outages with the ferry nodes). This is a very rahtvmatter
that we would like to study more in depth.

Another interesting research topic will study iéthrocess
of collecting statistics to measure the averagditguaf the
links can produce a more accurate representatiorthef
network and will investigate scenarios where thpliagtions
could take advantage of it. Finally, the promisirgsults
obtained with the simulated experiments rose therést of
some companies in testing an implementation ofsolution;
this will give us the chance to test it in the exttof a real
urban environment.
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