
A Natural Handwriting Algorithm for Tablets
Kim Arvin S. Silvoza, Ryan A. Blonna, Rowel O. Atienza

Electrical and Electronics Engineering Institute, University of the Philippines-Diliman
kim.silvoza@gmail.com, ryanblonna3@gmail.com, rowel@eee.upd.edu.ph

Abstract—Note-taking applications today have features that
imitate the behavior of real handwriting such as smooth strokes,
responsive interface, and stroke thinning. However, the problem
is that the writing tools of these applications do not fully simulate
the feel of their real counterpart. Some of these applications
have flaws like unnatural pen thinning effect, pixelation of
strokes, and lack of highlighter blending. To solve these, an
iPad application with a custom smooth writing algorithm was
developed. It was compared to five commercially available
note-taking programs in the App Store.

Keywords—smooth, natural, handwriting, tablet, note-taking,
apps, mobile

I. INTRODUCTION

IN the past, people had used pen and paper as their primary
tools for writing. With the recent advent of electronic

tablets, this trend slowly began to change. Note-taking ap-
plications for touchscreen devices such as Bamboo Paper[1]
and Notability[2] were developed to facilitate convenient note-
taking.

To simulate the traditional handwriting experience as much
as possible, these applications employ various techniques such
as line thinning, object blending, and line anti-aliasing. While
these programs attempt to create an interface to replace pen
and paper, it is currently very difficult simulate a sufficiently
accurate pen-and-paper writing experience. As such, documen-
tation on the algorithms involved to create such an interface
is scarce, especially for the iOS. To this end, this paper
documents an iPad application with a custom pen-and-paper
writing interface.

To document the application’s implementation, a cubic
Bézier interpolation algorithm that allows the rendering of
smoothly flowing lines on virtual paper is described. Next, a
function that relates the instantaneous line width to the current
stylus speed to facilitate natural line thinning is discussed. And
finally, two representations of line segments are documented,
along with a fast edge anti-aliasing method.

For comparative analysis, the iPad application was tested
against five commercially available note-taking programs avail-
able in the App Store - namely Bamboo Paper[1], Note Taker
HD[3], Notability[2], Noteshelf[4], and UPAD[5].

II. RELATED WORK

A. Note-taking Applications on the iPad
The application review was limited to applications for the

iOS platform, since at the time of this project’s conception,

R. A. Blonna and K. S. Silvoza are with the UP EEEI. The adviser for this
project is Professor Rowel Atienza.

note-taking applications were more common on the said plat-
form than in others. Five applications - namely (1) Bamboo
Paper, (2) UPAD, (3) Noteshelf, (4) Note Taker HD, and (5)
Notability - were reviewed based on subjective observations
of their pen-and-paper writing interface.

The criteria for this review were (1) writing tool perfor-
mance, (2) natural ink thinning, (3) stroke anti-aliasing, and (4)
highlighter blending. The first criterion, pen tool performance,
was measured by the responsiveness and fluidity of each
stroke. Next, the quality of natural ink thinning was observed
as the realism of perceived line thinning during and after each
stylus stroke. The third criterion, stroke anti-aliasing, was taken
as the degree of pixelation along the edges of each stroke.
And finally, highlighter blending was seen as the presence of
a darkening effect when one or more highlighter strokes were
drawn in the same virtual space.

Bamboo Paper, UPAD, and Noteshelf exhibited excellent
natural ink thinning and the best pen tool performances out of
the five. These three applications, however, showed significant
stroke aliasing, especially upon zooming in on the strokes.

On the other hand, both Notability and Note Taker HD ef-
fectively eliminated stroke aliasing. The pen tool performances
of these two applications were noticeably inferior to the first
three, and it was interesting to note that Note Taker HD did
not exhibit any form of natural ink thinning at all. None of the
five applications featured highlighter blending.

By observation, good stroke anti-aliasing produced a marked
decrease in pen tool performance, and to some degree, natural
ink thinning. However, it is evident that these applications
use effective algorithms to accurately simulate pen-and-paper
writing. In order to achieve a comparable effect, several line
interpolation algorithms were reviewed.

B. Line interpolation

According to Kamermans, there are two basic drawing
primitives: the straight line and the curved line[6]. In real
handwriting, these primitives are created on the fly while
stroking. However, for computers, it is necessary to provide
a mathematical function that represents the object you have
to draw. Straight lines can be represented by simple linear
functions, while smooth curves can be represented using a
series of interconnected Bézier curves.

In generating Bézier curves, a minimum of three points
are needed: the start point, the end point, and the control
points. The control point is responsible for the curvature of
the generated stroke. Note that the curve does not pass through
any of the control points as seen in Figure 1.

MOBILWARE 2013, November 11-12, Bologna, Italy
Copyright © 2014 EAI
DOI 10.4108/icst.mobilware.2013.254278



Figure 1. Bézier curves sample

The number of control points depends on the kind of curve
to be generated. For quadratic curves (the left image in Figure
1), one control point (p1) and two end points (p0 and p2)
are needed. On the other hand, cubic Bézier curves (the right
image in Figure 1) need two control points (p1 and p2) and two
end points (p0 and p3). A characteristic of Bézier curves is that
they are parametric curves. This means that every dimension
(in this case, x and y) has its own function. Thus, x and y

are independent of each other like in normal functions but are
dependent on an external variable (in this case, t). Equations 1
and 2 represent cubic Bézier curves. Variable t ranges from 0 to
1 inclusive. Variables x0, x1, x2, x3 and y0, y1, y2, y3 represent
the x and y coordinates of the start point, two control points,
and end point respectively.

x(t) = (1� t)3 x0+3 (1� t)2 tx1+3 (1� t) t2x2+t

3
x3 (1)

y(t) = (1� t)3 y0+3 (1� t)2 ty1+3 (1� t) t2y2+ t

3
y3 (2)

To generate the curve given the start, end, and control
points, t must be scanned from 0 to 1. The more t values
are generated, the higher the accuracy of the generated curve.
The points generated from plugging in values would then be
connected and a cubic Bézier curve is formed. If these curves
are generated dynamically while the stylus moves across the
screen, smooth curves will be drawn. However, smooth curves
are not enough to make the strokes look realistic. Stroke
pixelation must be addressed and this is where anti-aliasing
comes in.

C. Overdraw
Overdrawing[7] is a smoothing method where an anti-

aliased line is drawn over the outline of the object. The anti-
aliased line is then blended with the edge of the object. This
removes the discontinuity between the background and the
object. Shown in Figure 2 is a sample of an object without
and with overdraw.

The advantage of using overdraw is that it is easy to
implement and relatively fast. This is because the application
does not need to calculate the correct color and alpha value for
each pixel in the edge of the object. It only has to obtain the
outline of the object. Quartz2D, an advanced two-dimensional
rendering engine used in iOS applications, has functions for
obtaining the outline of an object. It also has functions that can
be used to blend the overdraw with the object, thus making
overdraw relatively easy to implement.

The disadvantage of using overdraws is that one side of each
discontinuity edge is dilated by a pixel or two. Due to added

Figure 2. Images without and with overdraw[7]

processing, the application will also run slower than without
overdraws at all. However, this approach succeeds in greatly
reducing edge pixelation and improving rendering quality.

D. Line Thinning

Line thinning is another aspect of a physical pen stroke. It is
observed as an effect of the pressure and speed applied to the
pen during writing. Since current Apple tablets do not support
pressure sensing, this behaviour cannot be fully reproduced
on an iPad. There is little existing documentation in the public
domain on line thinning in drawing applications.

III. SMOOTH WRITING ALGORITHM

A. Bézier Curves

As stated earlier, the iPad can only recognize stylus hand-
writing as a discrete set of points. It is the responsibility of
the software to interconnect these points to produce a fluid
curve. One approach is to connect the points using cubic Bézier
curves. The cubic Bézier curve was chosen since it strikes a
good balance between aesthetics and algorithmic speed. Higher
degree Bézier curves produce more fluid-looking curves, but
have more control points. Calculating a Bézier curve with
many control points will decrease application responsiveness.
Cubic Bézier curves still incur noticeable lag during process-
ing, due to the fact that the algorithm requires four input points,
two of which are endpoints and the other two control points.
To increase perceived responsiveness, intermediate lines are
rendered between each input point, and then replaced by the
final Bézier curve when a total of four input points are detected
by the iPad.

The following algorithm was used to create a smoothly
flowing line with cubic Bézier curves.

1) The first point is detected and stored.
2) The second point is detected and connected to the first

point with a straight line.
3) A third point is detected. The second and third points

are connected.



4) When a fourth point is detected, the straight lines are
discarded and a cubic Bézier curve is drawn.

Shown in Figure 3 is a graphical illustration of the algorithm.

Figure 3. Cubic Bézier curve algorithm

Since the stroke does not necessarily have to pass through
all four points, the second and third input points are used as
control points for the cubic Bézier curve. The first and fourth
input points are used as the start and end points, respectively,
of the Bézier curve. However, simply connecting two separate
Bézier curves will give the stroke a disjointed appearance at the
junction points. This undesirable effect is due to the difference
in slopes of the two connected Bézier curves as shown in
Figure 4.

Figure 4. Disjointed cubic Bézier curves

To solve this, Khan suggested that the junction point must
be adjusted such that the two Bézier curves appear to be
one continuous curve (the slopes at the common point are
equal)[8]. To do this, the junction point is re-calculated to
be the midpoint between the second control point of the first
Bézier curve and the first control point of the second Bézier
curve. This assures that the three points are collinear. Shown
in Figure 5 is a method to determine the new junction point
of the Bézier curve.

Figure 5. Adjustment of the junction point of the two Bézier curves

B. Pen Width vs Speed Algorithm

The next step in achieving a natural pen-and-paper handwrit-
ing experience is to emulate pen-and-paper physics. Physics
dictates that if the pen tip moves across the paper slowly, the
pen width should be relatively constant. Furthermore, as the
pen tip speed increases, the pen width should thin out.

For this effect, the application applies an algorithm that
relates the speed of the stylus and the perceived stylus stroke
width. The stylus speed is approximated by calculating the
distance between the current detected location and previous
detected location of the stylus (strokeDist) on the iPad display.
A limiting value (distLimit) dictates the maximum distance
between a pair of points for which line thinning has a per-
ceivable effect. It should be noted that without this limit,
the stroke width would thin out indefinitely. The algorithm
also has a control mechanism based on the previous width
(prevPenWidth) and a constant feedback factor (↵). There
is a set minimum for the stroke width that also takes into
account the size of the overdraw. Due to the overdraw, which
has a set width of two pixels, the change in stroke width is
less noticeable. Therefore, the minimum stroke width was set
to 10% of the maximum stroke width (setPenWidth). Other
ratios like 20% and 40% were also tested, but because of the
softening effect of overdraw, setting the percentage higher than
10% results in inperceivable the stroke thinning.

Based on the conditions stated, the pen width vs speed
functions were derived as seen in Equations 3 and 4.

calcPenWidth = ↵

✓
distLimit� strokeDist

distLimit

◆
(setPenWidth)

+ (1� ↵) (prevPenWidth)

(3)



calcPenWidth = MAX (calcPenWidth, 0.1 (setPenWidth))
(4)

As seen in equation 3, the first term of the right side
of equation uses the current detected speed of the stylus to
calculate the appropriate width of the pen. The last term serves
as the feedback since it takes into account the previous width
of the pen. To make things simple, ↵ was set to 0.5 to perform
arithmetic averaging. It is noted that further studies could be
done to get a better value for ↵. The value of distLimit is
set to a constant 70 pixels. Other values for distLimit were
also tested, but it was observed that setting distLimit to lower
than 70 made the pen width change too abruptly, and setting
it higher than 70 made the pen width change so gradually that
it was barely noticeable. Note that most of the calculations
from the distLimit are based on subjective observations, and as
such, further experiments involving stroke modeling could be
performed to determine a better value for distLimit. Equation
4 ensures that the calculated pen width (calcPenWidth) does
not go below 10% of the setPenWidth.

C. Polygon Strokes
Even with the stroke width v.s. stylus speed algorithm,

the intersection between two strokes of different widths is
still noticeable. To solve this problem, the polygon strokes
algorithm was implemented. Polygons are interconnected with
each other in such a way that there is a smooth transition
between strokes. This solution was utilized by Zablocki[9] in
his paint brush application. Shown in Figure 6 is the polygon
he used in constructing the stroke.

Figure 6. Polygon stroke method[9]

The points p0 and p1 represent the previous and current
location of the stylus. The distance between these two points
is proportional to the current speed of the stylus. This affects
the shape of Figure 6 by relating the speed with the length of
AB or CD. AB represents the previous width of the pen stroke
while CD represents the current width of the stroke. These
widths are related to the previous and current speed of the pen
respectively.

This algorithm is sufficient for strokes that do not abruptly
change direction. For strokes with significant differences in the
angles between inter-connecting segments, the polygon stroke
algorithm outputs strokes with noticeable discontinuity at the
joints. To get around this, round caps were added to both ends
of each segment making up a stroke. This technique provides
an easy way to output rounded joints.

To approximate the Bézier curve polygon, the following
steps were implemented:

1) Divide the cubic Bézier curve into several line seg-
ments. The longer the Bézier curve, the more segments
are formed.

2) The difference between the previous pen width (pre-
vPenWidth) and current pen width (currPenWidth) is
divided by the number of segments formed in 1. This
value will be the change in stroke width for each
segment. The value will be negative if the stroke is
thinning out, or positive if it thickening.

3) Draw the first line segment (containing the starting
point) with its width equal to the previous width of
the pen stroke.

4) Draw the succeeding segments with their widths equal
to the width of the previously drawn segment, plus the
change in the stroke width per segment.

5) Repeat this process until all segments are drawn. The
last segment should have a stroke width equal to the
calculated current stroke width.

Shown in Figure 7 is the step by step illustration on how the
cubic Bézier polygon is formed.

Figure 7. Interconnected polygons representing a stroke



D. Overdraws
One of the features of Quartz2D is that it can anti-alias

objects in real time. This feature makes Quartz2D easy to use,
since there is no need to write the algorithms for anti-aliasing
from scratch. However, Quartz2D’s form of anti-aliasing does
not completely eliminate pixelation along line edges. Edge
pixelation can be observed as staircase-like anomalies along
the edges of a line. Since the strokes are opaque, this staircase
pattern is noticeable. This effect creates undesirable visual
jitters in the stroke.

The best way to eliminate pixelation is to hide it. In the iPad
application, this is done by adding overdraws to the strokes
in real-time. The overdraws are translucent overlays rendered
around the edges of the stroke. These overlays make the color
change from the center of the stroke to the stroke background
more gradual, making pixelation less visible. During writing,
two overdraw strokes are added: a one-pixel wide overdraw
with 50% alpha and a two-pixel wide overdraw with 25%
alpha. Shown below in Figure 8 are pen strokes without and
with overdraw, respectively.

Figure 8. Without v.s. with overdraw

As seen in Figure 8 above, the edges of the stroke to the
right is more blurred as compared to the one on the left. This
is the effect of the overdraw algorithm. The visual jitters are
less visible because the edges of the pen strokes are smeared
out.

To verify the effect of overdraws, a row of pixels was
obtained from each image, and then processed using the open-
source program Octave. The color values were then plotted as
shown in the Figure 9 below.

Figure 9. Color values plot

As seen in the graph, a stroke with overdraw has a more

gradual change in color as compared to one without overdraw.
This gradual change in color is what we see as the blur effect
along the edges of a stroke.

IV. EXPERIMENTAL RESULTS

To confirm that the application achieved its objectives,
a comparative analysis was done. The application, named
Writability, was tested compared against five commercially
available note-taking applications, namely, Bamboo Paper[1],
Notability[2], UPAD[5], Noteshelf[4], and Note Taker HD[3].
Penultimate[10], another popular iOS note-taking application,
was not included in the analysis due to its lack of a highlighter
tool. Testing was done on plain white virtual and real writing
pads. Exactly thirty inviduals participated in the test.

For the initial part of the test, the testers were asked to draw
a pattern using a real pen and paper. The pattern was then
drawn using the five previously mentioned applications and
Writeability. Shown in Figures 10 and 11 is the testing pattern
for the pen and highlighter tool drawn using Writability.

For the virtualised pen tool, the the tester was asked to write
all the alphanumeric characters, and then four lines in quick
succession. The alphanumeric writing test was used since it is
observed that most iPad users write notes using the English
alphabet, while the line drawing test was performed in order
to verify the ink thinning effect.

For the virtualised highlighter tool, four horizontal strokes,
four vertical strokes, and a back and forth stroke were chosen
as the test cases. The first two tests were used since high-
lighters are usually used to draw straight paths. The back and
forth stroke was chosen as a test case to verify highlighter
blending quality.

Figure 10. Pen testing pattern on Writability



Figure 11. Highlighter testing pattern on Writability

After drawing the patterns in each application, the tester was
asked to rate the application in different criteria, with ratings
ranging from 1 - 10 (10 being the highest). The two features of
Writeability that were tested were the pen and the highlighter
tools. These criteria were further divided into different sub-
criteria. Shown in Table I are the different criteria and their
corresponding descriptions. A comment section was added at
the end of the tester form for the tester’s additional thoughts
on his experiences with each application.

Table I. TESTING CRITERIA

Aspects Criteria Description
Pen Responsiveness Is there no lag between the stylus and

the ink trail?
Accuracy How close is what is written on the

tablet compared to what you intend to
write?

Smoothness of
Curves

Are the curves not edgy (like straight
lines joined together instead of a

smooth curve)?
Smoothness of

Strokes
Are there stray pixels (zigzags) in the

edges of the strokes?
Thinning Effect When you write fast, does it thin? Is

the thinning realistic?
Similarity to

Real-Life
How similar is the pen tool compared

to a real pen?
Highlighter Responsiveness How responsive is the app when you

use the highlighter tool?
Accuracy How close is what is written on the

tablet compared to what you intend to
write?

Smoothness of
Curves

Are the curves not edgy (like straight
lines joined together instead of a

smooth curve)?
Smoothness of

Strokes
Are there stray pixels (zigzags) in the

edges of the strokes?
Similarity to

Real-Life
How similar is it to a real highlighter?

Shown in Figures 12, 13, and 14 are the pen tool perfor-
mance, highlighter tool performance, and total performance
ratings, respectively.

Figure 12. Pen Tool Rating Summary

Figure 13. Highlighter Rating Summary

Figure 14. Total Summary

As seen in the Figure 12, Writability obtained high marks
in terms of stroke performance. It was confirmed that the



cubic Bézier curve algorithm was sufficient to create fluid
strokes, while overdraws effectively eliminated pixelation. It
also obtained a good score for natural ink thinning, because
the strokes thinned out more naturally in comparison to other
applications. In terms of the highlighter, Writability obtained
the highest mark in terms of similarity to a real highlighter as
shown in Figure 13. This is due to the fact that it was the only
application that exhibited highlighter blending. For both the
pen and highlighter, accuracy was high because Writeability
did not render lines that the user did not intend to write.
Based on the overall scores in Figure 14, Writability’s writing
tools was able to get fourth place out of the total of six that
applications tested. However, as can be seen in the results,
there is still room for improvement.

It was observed that both tools of Writeability were rel-
atively slow to respond during writing. The perceived delay
during the transition from straight lines to the final cubic
Bézier curve was noticeable, resulting in low scores in terms of
responsiveness. Also, the ink thinning effect of Writability was
barely noticeable when the writing was small. This is because
the length of the strokes in small writing are not long enough
for the stroke thinning algorithm to produce a noticeable effect.
This is a possible reason for the low ranking in terms of stroke
thinning. With regards to the highlighter tool, it ranked only
fifth in terms of smoothness, since there were visible anomalies
in the highlighter strokes.

V. CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the testing, Writability fulfills its
objective of providing a competitive natural pen-and-paper
handwriting interface. The rendered strokes are fluid and stroke
pixelation is not significant. It also has a natural ink thinning
effect, and is able to simulate highlighter blending.

However, there is still room for improvement. The main
flaw of Writability is that it does not strike the correct balance
between responsiveness and aethetics. One solution to im-
prove responsiveness during writing is to include a predictive
algorithm to anticipate touch points. Another solution is to
implement the same algorithms on the GPU using OpenGL
ES, which should result and faster rendering.

In terms of natural ink thinning, the stroke width v.s. stylus
speed algorithm could be made more context-sensitive in order
to achieve ink thinning for small writing.

The highlighter tool could be further improved by removing
the anomalies that appear in the strokes. This can be done by
improving the polygon stroke algorithm directly, or using a
transparency layer in a two-stage rendering process.

VI. ACKNOWLEDGEMENTS

This research is supported by the Office of the Vice
Chancellor for Research and Development (OVCRD) of the
University of the Philippines Diliman. Special thanks to Ms.
Angelica Acierto for providing invaluable insight during the
development of this project.

REFERENCES

[1] Wacom. (2013, Feb.) Bamboo Paper. [On-
line]. Available: http://itunes.apple.com/us/app/bamboo-paper-
notebook/id443131313?mt=8

[2] G. L. Inc. (2012, Dec.) Notability. [On-
line]. Available: https://itunes.apple.com/ph/app/notability-take-notes-
annotate/id360593530?mt=8

[3] S. Garden. (2012, Oct.) Note Taker HD. [Online]. Available:
http://itunes.apple.com/us/app/note-taker-hd/id366572045?mt=8

[4] R. Krishna. (2012, Oct.) Noteshelf. [Online]. Available:
http://www.fluidtouch.biz/noteshelf/

[5] PockySoft. (2013, Jan.) Upad. [Online]. Available:
https://itunes.apple.com/en/app/upad/id401643317?mt=8

[6] M. Kamermans. (2011, Dec.) Bezier curves - a primer. [Online].
Available: http://processingjs.nihongoresources.com/bezierinfo/

[7] P. Sander, H. Hoppe, J. Synder, and S. Gortler, “Discontinuity Edge
Overdraw,” in Proceedings of the 2001 symposium on Interactive 3D
Graphics, 2001, pp. 167–174.

[8] A. Khan. (2012, Oct.) Smooth Freehand Drawing on iOS. [Online].
Available: http://mobile.tutsplus.com/tutorials/iphone/ios-sdk_freehand-
drawing/

[9] K. Zablocki. (2012, Apr.) Drawing smooth lines
with cocos2d ios inspired by paper. [Online]. Avail-
able: http://www.merowing.info/2012/04/drawing-smooth-lines-with-
cocos2d-ios-inspired-by-paper/

[10] Evernote. (2013, May) Penultimate. [Online]. Available:
http://itunes.apple.com/us/app/penultimate/id354098826?mt=8


