
A Mobile-Based System for Content Delivery over
SMS

Mauro Ricardo da S. Teófilo
Nokia Institute of Technology

Manaus, Brazil
Email: mauro.teofilo@indt.org.br

Daniel Risi
Nokia Institute of Technology

Manaus, Brazil
Email: daniel.risi@indt.org.br

Vicente Ferreira Lucena Junior
Federal University of Amazonas

Manaus, Brazil
Email: vicente@ufam.edu.br

Thomaz Philippe C. Silva
Nokia Institute of Technology

Manaus, Brazil
Email: thomaz.silva@indt.org.br

Luiz Carlos A. M. Cavalcanti
Nokia Institute of Technology

Manaus, Brazil
Email: luiz.cavalcanti@indt.org.br

Abstract—The proliferation of mobile applications for smart-
phones has been based on the presence of a data connection
between those devices and the Internet. Therefore, users of entry-
level mobile phones as well as users who cannot afford a data plan
are excluded from the current dynamics of mobile applications
consumption. A possible approach to include those users is the
usage of SMS as the communication channel. Although SMS is
widely supported by carriers and extremely popular among users,
it is not trivial to replace the data connection capabilities with
SMS. This work addresses this issue with an integrated solution
composed by a client platform and a server-side system.This
solution enables GUI-based mobile applications to be transferred
over a short number of concatenated SMSs. It also presents
components for the creation, deployment and distribution of
mobile applications. In order to attest the relevance of such
solution, an experiment was conducted and its results indicate a
substantial level of acceptance by target group.

I. INTRODUCTION

In recent years, the mobile applications business has grown
considerably in importance, which can be at least partially
explained by the worldwide increment of mobile internet
penetration. The estimated mobile penetration rate was 67%
in poor countries in 2010, and a worldwide mobile subscrip-
tion rate was 73%[1]. In fact, either the acquisition or the
usage of mobile applications for both smartphones and feature
phones is based on the existence of a data connection from
the mobile device to the Internet. Data connections allow
the transportation (download) of mobile applications from a
mobile application store or market place to the destined mobile
device, as well as the transportation of application or user
data between the mobile applications and their server-side
counterpart logic (e.g. Facebook server, Twitter server, and
various other 3rd party servers)[2].

This scenario, however, excludes the vast majority of mobile
phone users from the mobile applications consumer seg-
ment, especially in emerging regions[3]. Owners of entry-
level phones as well as those who cannot afford a costly
data plan have so far been underestimated as potential mobile
applications customers by manufacturers and carries alike.

Moreover, cell towers are rarely built in areas with low popu-
lation density, GRPS is relatively bandwidth constrained, and
faster connectivity (e.g. 3G) is typically only available in urban
areas[4]. Figure 1 illustrates the biggest carrier network’s 3G
coverage in Brazil[5].

Further constraining mobile information access is the preva-
lence of simple low-cost ”feature phones” with limited pro-
cessing and communication capabilities. Despite the excite-
ment surrounding ”smartphones” with increased functionality,
2011 estimates indicated that the ratio of feature phones to
smartphones globally was 4 to 1[4][6]; in the same year,
smartphones comprised less than 25% of the global handset
market[1]. The resulting mobile landscape in emerging regions
is a dominance of voice and SMS over data. Reflecting
this trend is a range of popular SMS-based applications and
services such as mobile money transfer[7], mHealth [8], and
social networking[9]. With global SMS volume tripling in
three years from 1.8 trillion in 2007 to 6.1 trillion in 2010,
SMS will likely continue to remain a primary communications
channel in emerging regions.

Among the reasons behind this disparity, one can distinguish
the technical obstacles presented to application and content
transportation to a mobile device in the absence of a data
connection. Both the size of the mobile apps (whether com-
piled to machine code or byte code, or compressed scripts that
are expected to be executed by an interpreter on the mobile
device) as well as the size of the HTML, RSS, and other XML
and JSON data formats used in state-of-the-art services on the
Web, are prohibitively large for transportation over alternative
means, such as popular messaging technologies (SMS, USSD,
etc.).

The work presented in this paper proposes an end-to-end
solution called GEMS (Growth Economies Mobile Service)
that allows SMS to act as a viable way to provide a satisfactory
application store experience. By utilizing a mobile platform
containing a set of GUI components designed to interpret
and mount applications based on a custom protocol, the

MOBILWARE 2013, November 11-12, Bologna, Italy
Copyright © 2014 EAI
DOI 10.4108/icst.mobilware.2013.254273



communication with the server-side logic can happen over a
small amount of concatenated messages. The server platform
is also designed to allow the generation of new applications
as well as the integration with existing web services through
a set of building blocks and specific tools. Thus, application
developers can easily deploy and publish new applications,
making it possible to build a full ecosystem around SMS
applications.

This solution was tested in Brazil with a selected target
group from the low Total Cost of Ownership segment, and the
findings of such experiment suggest relevance and adequacy
of an SMS application store among that user group.

Fig. 1. Biggest carrier network 3G coverage in Brazil.

II. RELATED WORK

There have been certain attempts to solve the presented
issue, which can be classified in two categories:

1) ”vanilla client”, where a plain textual command set
is offered to the users, who can type in an SMS the
command they would like to execute on the application
logic that resides on the server and send the SMS to a
specific access number that is connected to the server-
side application logic. Examples of such approaches
include AppShup[10], UjU[11], ForntLineSMS[12],
RapidSMS[13] and MobileDeck[14][15]. These ap-
proaches do not focus on how to make mobile apps small
enough in size so that can be downloaded to the mobile
device over SMS (or other 2G technologies like USSD);
rather they focus on how to easily construct the server-
side application logic that will process the plain textual
messages sent over SMS from the mobile device to the
application server and construct the plain textual SMSs
that contain the response and which are sent back to the
mobile device.

2) ”browser client”, where a general purpose browser like
a WAP browser is used as the mobile device platform
for running the mobile application. An example of
such approaches is the work done in the WAP Fo-
rum (WAP over GSM USSD Specification, WAP-204-
WAPOverGSMUSSD-20010730-a). These approaches
support the creation of a GUI-based application on the
mobile device and thus a much richer UX compared
to the approaches in the previous category. However,
they have two limitations: first, due to the general
purpose GUI construction they support, the size of the
mobile application that needs to be downloaded from the
application server is still too large to fit in few SMSs;
second, the reference implementation of the WAP Forum
effort as well as the evolution of those ideas in proxy-
based browsing, require continuously interactions with
the application server (or network proxy) in order to
retrieve the mobile app every time it is launched, or
to execute some complicated application logic that the
mobile browser cannot execute.

In[16] is proposed a server-side architecture approach that
allowed developers to implement and deploy web services
that could be requested by mobile client applications that
employ SMS as communication channel. In this approach,
the authors presented an architecture model named SMBots
that provided SMS handling between the MobileDeck like
clients and services, services hosting and life-cycle control
using OSGi[17] as the services manager.

III. GEMS CONCEPT

The GEMS idea is based on a client platform for the mobile
device, which supports a finite set of GUI templates, i.e. visual
forms that dictate the layout of the mobile phone screen.
The set of GUI templates contains different kinds of menu
lists, text editors and input forms, and text layouts. A mobile
application for this client platform is a graph of GUI template
instances, where each GUI template instance is a reference to
a predefined visual form plus text and references to preloaded
texts and graphics that are used to fill in the visual form. Most
of the mobile application description is codified references to
preloaded constructs that are available to the client platform,
thus small mobile applications can fit to as little as three SMSs.
More complex mobile applications are decomposed to a core
application and a set of plugins, each fitting in three to four
SMSs. The core application gets downloaded first, and when
the user attempts to access functionality of the application that
belongs to a missing plugin, the client platform dynamically
downloads the missing plugin from the server. These mobile
application access small packages of content, again fitting in
three or four SMSs. Hence, any interaction between the mobile
application and the internet-based server is done over a small
ammount of SMSs.

The main difference with the vanilla-client approaches is
obvious: our idea supports GUI-based mobile applications,
which provide a much richer UX.



GEMS is more similar to the browser-client approaches.
The main difference with the browser-client approaches is
that GEMS system supports small-sized mobile applications
that can be downloaded and installed on the client platform.
Thereafter, accessed by the user in an offline mode until there
is need to send a request to the server, whereas the browser-
client approach supports medium-sized applications that are
fetched from the server or need to contact the server in order
to execute complex logic. On the other hand, GEMS concept
has the limitation that mobile apps cannot have arbitrary visual
layouts on the screen; rather, each mobile application screen
must conform to the specs of one of the supported GUI
templates out of which it is composed.

The GEMS was designed to improve MobileDeck
solution[14]. The MobileDeck application was launched in
the Brazilian market in 2009, where currently (March 2013)
has more than 800k active users. The main limitation of Mo-
bileDeck solution is a lack of downloadable applications, since
the SMS protocol for it only supplies content for embedded
applications. MobileDeck channels are integrated seamlessly
into GEMS ecosystem.

All GEMS supported applications can be searched, down-
loaded and installed through a Application Store feature,
embedded in GEMS client component.

The GEMS system architecture is composed of four major
components:

• GEMS Client: The mobile client is embedded software
that hosts lightweight applications. It acts as a container
for multiple lightweight applications. The Client stores all
the data and code templates that define each lightweight
Application.

• Cloud Platform: The GEMS Cloud is a server-side plat-
form that:

– Connects via SMS to a GEMS Client
– Provides service building blocks to cloud-enable

lightweight Applicationss
– Computes the instructions sent to it by a GEMS

Application and returns the result. Hosts a Service
that runs on behalf of each type of Application.

– Multiple instances can be deployed in different data
centers

– Highly Available and Highly Scalable
• Application Creation Toolkit: Create a new GEMS appli-

cation, which also creates a corresponding Service within
the cloud platform. The diagram in Figure 1 shows a high
level view of both the Client on the Device and the entire
Cloud Platform. The diagram uses the Application Store
as an example to highlight the interactions that occur
within the Cloud Platform components. The diagram
also shows the relationships between Tools and Cloud
Platform components.

• Service Building Blocks: The service building blocks
represent independent transaction or services capabilities
that are accessed by a service.

All those items will be examined in next sections of this

paper.

IV. GEMS CLIENT

The GEMS client platform consists of virtual machine
(VM), a table of localized texts (TXT), a library of graphics
(ICO), and a list of graphical layout templates (GUIT).

The VM interprets a sequence of instructions, which explain
how to combine TXT items and ICO items (possibly with text
sent from the server) in order to instantiate GUIT objects and
define transitions between them based either on user-generated
events (user input) or network-generated events (incoming
SMSs). In other words, the VM implements a sort of a state
machine where each state represents an instantiation of a GUIT
with parameters from the TXT and the ICO tables and each
transition between states is triggered by user- or network-
generated events. Every GEMS app is a set of such instructions
for the VM.

When launched from its home screen icon, the Client opens
into an Application Manager View that includes an Application
Store icon. The GEMS Application Store is part of the client.
Lightweight Applications purchased by the mobile user will
remain accessible via Icons within the Application Manager
View 2.

1.0) Main screen

Select

More apps

2.0) More apps

Get latest

Top News

Weather
Select Weather

Yes

Application name

Application 
category, 
information and 
cost.

Would you like to 
buy R$ 0,31?

3.0) Confirmation

NoYes

Weather

Receive the 
weather forecast 
of your city. 
Would you like to 
install this app for 
<price policy>?

BackSelect

More apps

Get latest

Weather

Top News

Football

Classi!eds

...

ExitSelect

More apps

SMS

ExitShow

1 Gems update

1.1) Main screenX.0) Notification

Select 
Show

ExitSelect

<Application name>

Fig. 2. GEMS Application store.

Based on that, GEMS application is a sequence of instruc-
tions written to perform a specific task with the GEMS VM.
The sequence of instructions is defined by the designed GEMS
communication protocol, which contains all definition about
actions, GUI elements, and so on.

Every application on GEMS platform should be repre-
sentable as an N-ary tree. The tree concept was used to better
represent its behaviors, actions, and functionalities. Every node
represents an element (not necessarily a GUI element), and
every link is an action that leads to the next node. Polish
notation is used in order to represent the tree in a text format.
Every section of a tree is described with its children count,
and content. More precisely, a GEMS tree node is represented
textually by its number of children, node type (which element



is being described) and its parameters. That way, a slightly
more realistic tree would look like Figure 4, which represents
the screen flow illustrated in Figure 3.

Fig. 3. A practical example of a GEMS app flow.

Fig. 4. GEMS protocol sample, which builds the flow illustrated in Figure 3.
Note that, this string has line breaks for clarity purposes, the protocol don’t
support them.

Although GEMS has its own protocol, the GEMS VM
was designed to interpret other protocols. To achieve it a
new protocol interpreter must be previously integrated with
GEMS VM. Then, multiples protocols interpreters can coexist
in GEMS Client, enabling the client to be integrated with
current actives SMS services, like Twitter SMS API 1.

V. CLOUD PLATFORM

The Cloud Platform is the server side system that enables
a large number of services to be accessed by the user. This
platform provides a logical infrastructure that allows GEMS
developers and partners to build services and make them
available to the users as GEMS ecosystems.

1http://twitter.com/

When a user performs a service request through the GEMS
Client, an SMS message is sent to the Cloud Platform.
The Cloud Platform processes this message, computes the
service instruction contained in the message, stores data, saves
business logs and commonly returns a SMS back as response
to the GEMS Client. This is the main flow of data into the
Cloud Platform.

Different capabilities are required by the services that run
in GEMS. A Service Building Block (SBB) is developed for
each required capability to provide specific functionalities that
can be reused by the services. The SBBs exist to provide the
infrastructure to run the ecosystems developed over GEMS.
For instance, a news service requires that an advertisement
campaign must be sent in background to GEMS Clients while
the service is idle. This service implementation in the Cloud
Platform would utilize an Advertisement SBB to support the
news service with advertisement capabilities. Billing, Adver-
tisement, Application Inventory, Application Recommendation
and Content Manager are examples of SBBs.

Figure 3 presents the Cloud Platform context by the Appi-
cation Store service point of view. This service is responsible
for maintain a list of GEMS Applications available to be
downloaded, allow the users to search for applications, to buy
applications and to remove applications from their installed
list. In order to execute each functionality, the Application
Store service rely on specifics SBBs to create richer user
experience. For instance, the Application Store requests to the
Application Inventory SBB to update users data with most
recent users requests. It also access Application Recommen-
dation SBB to deliver applications that might be from user
interests. During users interaction with the Application Store
services, advertisement targeted to specific users have been
generated and are presented to users via Application Store.
Apart from that, billing data for applications downloaded by
users are constantly generated by the Application Store.

Given that the Application Store is the main business of
this work, the Cloud Platform provides the resources to allow
external developers and also GEMS developers to create and
upload GEMS Applications to the Application Store. There are
no logical limits in the number of applications made available
by GEMS. As an example of applications that can be created
we have: Home Banking, News, Sports, Soap Operas, etc. Each
of those applications must be created through an Application
Creation Toolkit.

After the deployment of an Application, an entirely new
ecosystem is ready to be accessed by users. The users will
use search and recommendation functions of the Application
Store to find Applications according to their interests. After
a GEMS Application download, the user is ready to enjoy its
functionalities through the GEMS Client.

VI. APPLICATION CREATION TOOLKIT

The Application Creation Toolkit (ACT) provides a friendly
interface that allows users without technical programming
background to create and deploy GEMS Applications on the
Cloud Platform. In order to achieve this, the ACT will offer



a set of visual building blocks that the GEMS Application
Developers will put together in order to mount an application
that satisfy their business needs. The GEMS Application
Developers are the users of the ACT that want to have their
applications available on GEMS.

A set of Application Creation Building Blocks are provided
as visual components that will be assembled to create a GEMS
Application. They can be of the following types:

• Container: represents the main visual component that
composes the application screen.

• Item: represents the information items presented inside
the containers. Items can contain elements of the Action
type.

• Action: represents components that trigger events on
GEMS like messages, navigation flows and requests to
the Cloud Platform.

• Content Provider: it represents how data of a given set
of Application Creation Building Blocks are fulfilled. It
can be of static or dynamic type.

All the available visual components must be present in
the main screen of the ACT where the GEMS Application
Developers can visualize them. They will be placed in a
separate area of the user screen called Component View. The
number of components and their configuration must reflect the
actual GEMS Client version. Hints about the functionality of
each component must be provided to the users before they
actually decide to use it (when the user passes the mouse
over the component, for instance). There must be a way to
differentiate or grouping similar categories of components like
Containers, Items, and Actions.

In addition to this view, it will also be present the Appli-
cation Creation Canvas which is an area of the ACT where
the application composition is made. It contains the whole
set of building blocks, properties and component connections
that will form a given application. This view, is the area that
reflects the current status of the application composition. The
GEMS Application Developers will see the available list of
components and will be able to add those components to the
canvas. Once in the canvas, the components can be moved
and edited. Figure 5 presents a sketch of the ACT with the
Component View and Application Creation Canvas.

Each component has specific set of properties that can be
edited by the GEMS Application Developers in order to cus-
tomize the applications. Validation rules for properties values
must be applied as defined on each component specification.
Properties view must be presented in a standard way for all
components.

Connections between two components determine navigation
flow rules between them. Connections between components
can be of one of the following types:

• Adding a component of the type Item inside a compatible
component of the type Container;

• Linking a component of the type Item to a component of
the type Container;

• Linking a component of the type Action to a component
of the type Container.

Fig. 5. Application Creation Tool presenting the Component View and the
Application Creation Canvas.

No component without any in/out connection (orphan com-
ponents) can exist on the canvas at application saving or
updating time. This will invalidate the GEMS Application
configuration.

The GEMS Application Developers will be able to save
the work in progress for further development. It will be also
possible to reload a saved GEMS Application to edit on the
application. After the work is completed, the developers will
be able to publish their applications to the Cloud Platform.
In doing so, GEMS Application metadata is created into
Cloud Platform Application database. For brand new GEMS
Applications, they will be immediately available for recom-
mendations and search in the Application Store service. For
already published applications, the platform must retrieve the
entire database of users that have already subscribed for this
application and push the new configuration to their phones.

As a part of the ACT, there must be a module called GEMS
Application Emulator. This is a widget that enable the develop-
ers to see an application behaviour during development. This
module will provide the means to emulate GEMS Applications
behaviour as similar as possible of what would be viewed in
the mobile phone.

VII. SERVICE BUILDING BLOCKS (SBB)
The Cloud Platform offers a set of SBBs that can be reused

by the GEMS Application developers while they are building
an application. During the development, some functionalities
might be required by the developer to finish the application.
Some examples of functionalities are: security, advertisemnt,
billing, recommendation, etc.

For each new type of service capability demanded to build
GEMS Applications, a new SBB must be implemented. As



the goal of GEMS is to support ecosystems to be created in
a dynamic mobile environment, new SBBs are going to be
implemented to improve the support to GEMS Applications
developers.

In this work we are going to present five fundamental SBBs.
Notice that it is not in the scope of this paper to perform a deep
investigation about the functionalities present in each SBB.

• Content: Provides communication with external content
providers. Each GEMS Application that processes the ser-
vice business in a external content provider servers must
set properties of this component during the application
development.

• Billing: Required by applications to manage the billing
information about themselves in the GEMS usage.

• Advertisement: Provides a set of capabilities to insert
advertisement in applications.

• Application Inventory: Used by services that requires data
of the GEMS Applications. For instance, applications
downloaded by a user, application properties and appli-
cation metadata are example of the data returned by this
SBB.

• Security: Provides several levels of security for the mes-
sages being transferred during the user interaction with
applications.

The GEMS Application interactions with SBBs are defined
by the developer. During the application development the de-
veloper has the possibility to integrate the SBB functionalities
in a way that makes sense to the application context. In
the ACT, the SBB’s functionalities are available as actions.
The developer has the possibility to select the required SBB,
select the required action and integrate it in the application
accordingly.

VIII. GEMS ECOSYSTEM

GEMS can be understood as an entire ecosystem in a sense
that it contains more dimensions than the technical infras-
tructure per se (mobile and cloud). The architecture based on
SBB together with the tools and the numerous combinations
of GUI components that can be accessed on the client side
enables services to be quickly rolled out, also facilitating their
operation and the relations with business partners that will
provide apps, service transactions, and content.

Figure 6 shows a high level view of the possible interactions
between the GEMS client on the device and the entire cloud
platform, including the system tools.

The diagram shows a hypothetical flow (A, in a dotted line)
taking the App Store as an starting point and exemplifying
how the App Store Service can interact with other SBBs,
resulting in a series of possible data exchanges (advertisement,
billing, etc), which will result on other possible interactions
with the tools. Eventually the App Store service would send
the corresponding protocol to install (mount) the chosen app
on the client.

If, on a second example, Football news is taken as a starting
point (B; full, gray line) it is possible to predict that the mobile
app will interact with its server-side counterpart. This service

will then access the Content SBB, which will be exchanging
data with the content manager tool.

Fig. 6. High level view of component interaction.

IX. EXPERIMENT

This section describes a preliminary experiment carried out
in order to investigate the GEMS initial perception and its
services, and observe the comprehension of the icons, text
messages and forms of interaction.

In order to evaluate the GEMS concept, the embedded
GEMS client will be used by different mobile phone users.
All these users are considered as a potential customer on our
evaluation. 929 people were considered in this experiment and
their profile is described as follows:

• They were 399(43%) men and 530(57%) women;
• User age was between 18 and 40 years old, with an av-

erage age of 28. This represents the major concentration
of mobile phone users in Brazil;

• Most of the users had high-school level of education
(71%);

• Social classes where distributed among upper-medium
(19%), lower-medium (79%) and low (2%);

• Income was up to 2 Brazilian minimum wages (about
US$ 622);



• They were not mobile internet users and had low internet
usage on computers;

• The most used services of the participants in mobile
device are: voice calls, text messages and camera;

• We did not consider real users of the mobile phone
under observation. It avoids different experience levels
of handling the mobile phone.

A large user base was chosen for server load and traffic
behavior testing, and those results are beyond the scope of
this paper.

A brand new low-end feature phone (a US$ 50 Nokia X1-00
device) with the GEMS client embedded and a prepaid SIM
card were delivered for each experiment’s participant, free of
charge. Instructions were provided with the package, covering
GEMS basic usage.

Each participant was able to use the device for two months.
The participant was responsible for provide funds to the SIM
card. This experiment intended to simulate a real GEMS
system usage. After that, the devices were given back and the
users’ impressions were collected by an interviewing team.

During the experiment, the participant could access the Mo-
bileDeck’s channels[14], the Nokia Life2 service, and Twitter
service over SMS.

MobileDeck channels are simple content providers grouped
by subject such as: world news, Brazilian news, soap opera
summaries, horoscope, weather, religion, jokes, etc. Those
channels could be accessed on-demand (paid per message)
or through an experimental subscription model of 3 days with
3 messages per day. An option to cancel a subscription was
also available at any moment. No channel was preloaded,
leaving the user free to search for desired channels through
a keyword search or through a recommendation service on
the Application Store embedded in GEMS client.

Nokia Life is an on-going service that provides information
on several communication skills like: developing interpersonal
skills, building self-confidence and improving financial liter-
acy. Just as MobileDeck channels, users could ask for content
on-demand or subscribe for 3 days.

Twitter application is a front-end for the existing Twitter
SMS service[18]. It does not use any GEMS server-side
component, but the client is built entirely with GEMS tem-
plate solution, just as MobileDeck channels and Life Skills
application.

X. RESULTS

In order to analyze acceptance and relevance of GEMS
system, an external research group was responsible for inter-
viewing and compiling user’s opinions.

The participant responded to several affirmation with a
numerical value ranging form 0 to 10. A score from 0 to
5 meant ”Disagree”, 6 to 8 meant ”Fairly agree”, and 9 to
10 meant ”Strongly agree”. A final question left space for the
user to point out positive and negative aspects of GEMS usage
during the experiment.

2http://www.nokia.com/in-en/life/

The collected results are summarized in Table I, Table II,
Table III and Table IV.

Score Strongly agree Fairly agree Disagree
Rating 57% 26% 17%

TABLE I
OVERALL EXPERIENCE (”I FELT COMFORTABLE WITH THE OVERALL

USAGE OF GEMS.”)

Score Strongly agree Fairly agree Disagree
Rating 54% 28% 18%

TABLE II
EASE OF USE (”I FELT COMFORTABLE TO DO THINGS FOR THE FIRST

TIME, SPECIALLY WITHOUT HAVING TO LOOK FOR THE INSTRUCTIONS
BOOKLET.”)

Score Strongly agree Fairly agree Disagree
Rating 57% 24% 19%

TABLE III
PURCHASE INTENTION (IF GEMS WERE RELEASE ON MARKET. I WOULD

PAY FOR ITS SERVICES)

Score Strongly agree Fairly agree Disagree
Rating 46% 26% 28%

TABLE IV
SERVICE COSTS FAIRNESS (IN TERMS OF COST, GEMS IS APPROPRIATE

WITH MY OVERALL LIFE COST, AS WELL AS SIMILAR SERVICES)

Positive aspects mentioned:
• Relevant content;
• Service agility, even on remote areas;
• Gathering of information on a single application;
• Receiving subscribed information is better than look for

it everyday;
• Good for people with no time or availability of internet.
Negative aspects mentioned:
• A lot of content was not delivered, even though was

billed;
• Twitter application doesn’t have all features;
• High daily cost compared to cheap internet access out of

the mobile phone;
• Applications’ English names don’t help;
MobileDeck channels had good perception regarding rel-

evance and earned value, but users complained about con-
voluted usability. Further studies should be done to improve
that aspect. The most used MobileDeck channels are shown
in Table V.

Twitter application got a very positive feedback, regarding
ease of use and satisfaction about the features presented. Users
praised the possibility to receive a lot of Twitter content,
following news websites’ twitter accounts, with no cost.



Channel Rating
Soap opera 26%
Football 20%
Psalms 13%
Horoscope 9%
Weather 8%

TABLE V
FAVORITE MOBILEDECK’S CHANNELS

Life Skills got a very bad perception, due to lack of
content and technical problems with the service that made
it unavailable to a great amount of users. A quick study on
the matter revealed that one of the carriers was blocking Life
Skills messages on their SMS broker.

The Table VI shows the favorite application among the ones
available on the experiment.

Application MobileDeck Twitter Life Skills
Rating 46% 45% 9%

TABLE VI
FAVORITE APPLICATION

The results lead us to believe that GEMS is relevant and
suitable to provide information access for people with low
internet availability. We also believe that the user experience
is straightforward, easy, but with some room for improvement.

The billing system also needs improvement. Nowadays,
very cheap, focused SMS services are available for users, and
GEMS current model is perceived as an expensive one. Lower
monthly and weekly fees should be available in the future, so
the system could not only be relevant, but also attractive for
lower-income users. In future experiments, a more robust and
reliable SMS broker should be use, since message losses and
improper billing had impact on users’ perception on the overall
experience.

XI. CONCLUSION

There is a huge number of people that do not have internet
access on their mobile phones . Moreover, great part of these
users have access to feature phones with less processing
and memory capacity than smartphones. This work presented
GEMS: a mobile-based system that allows the creation and
distribution of content as services that reach users through
SMS.

In this work, we presented a mobile client platform that sup-
ports the installation of mobile applications that fits in a small
number of SMS. In our approach, the mobile applications are
services created by content providers using the presented App
Creation Toolkit. The applications are built using a set of Ser-
vice Building Blocks that provides capabilities like security,
billing, advertisement, content delivery and applications meta-
data recovery. All the applications are made available in a
app store that the users can interact through SMS in order to
reach the applications that most fit their demands. Finally, we
presented the Cloud Platform system that provides the logical
infrastructure that allows GEMS developers and partners to

build services and make them available to the users as GEMS
ecosystems.

After carrying out a experiment to test all GEMS ecosystem
in a real world scenario, we figured out that GEMS system
indicates potential to solve the presented issue, bringing In-
ternet services to low end devices. However, more detailed
experiments must be performed with the purpose of confirming
GEMS system adoption by target users.

REFERENCES

[1] International telecommunication union. [Online]. Available:
http://www.itu.int/

[2] J. Harno, “Impact of 3g and beyond technology development and
pricing on mobile data service provisioning, usage and diffusion,”
Telemat. Inf., vol. 27, no. 3, pp. 269–282, Aug. 2010. [Online].
Available: http://dx.doi.org/10.1016/j.tele.2009.10.001

[3] E. Brewer, M. Demmer, M. Ho, R. J. Honicky, J. Pal, M. Plauche,
and S. Surana, “The challenges of technology research for developing
regions,” IEEE Pervasive Computing, vol. 5, no. 2, pp. 15–23, Apr.
2006. [Online]. Available: http://dx.doi.org/10.1109/MPRV.2006.40

[4] J. Chen, “Re-architecting web and mobile information access for emerg-
ing regions,” Ph.D. dissertation, 2011.

[5] GSM Association Association. [Online]. Available: www.gsma.com
[6] Mobithinking global mobile statistics 2011. [Online]. Available:

http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/
[7] M-pesa. [Online]. Available: http://www.safaricom.co.ke
[8] FrontlineSMS. [Online]. Available: http://www.frontlinesms.com/
[9] Gupshup. [Online]. Available: http://gupshup.me/

[10] AppShup - http://api.smsgupshup.com/. [Online]. Available:
http://api.smsgupshup.com/

[11] L. Wei-Chih, M. Tierney, J. Chen, F. Kazi, A. Hubard, J. G.
Pasquel, L. Subramanian, and B. Rao, “Uju: Sms-based applications
made easy,” in Proceedings of the First ACM Symposium on
Computing for Development, ser. ACM DEV ’10. New York,
NY, USA: ACM, 2010, pp. 16:1–16:11. [Online]. Available:
http://doi.acm.org/10.1145/1926180.1926200

[12] K. Banks and E. Hersman, “Frontlinesms and ushahidi - a demo,” in
Proc. Int Information and Communication Technologies and Develop-
ment (ICTD) Conf, 2009.

[13] RapidSMS - http://www.rapidsms.org/. [Online]. Available:
http://www.rapidsms.org/

[14] Reference deleted for double-blind review.
[15] Proceedings of the Eleventh Workshop on Mobile Computing Systems

& Applications. New York, NY, USA: ACM, 2010.
[16] Reference deleted for double-blind review.
[17] D. Marples and P. Kriens, “The open services gateway initiative: an

introductory overview,” Comm. Mag., vol. 39, no. 12, pp. 110–114,
Dec. 2001. [Online]. Available: http://dx.doi.org/10.1109/35.968820

[18] Twitter SMS Commands. [Online]. Available:
https://support.twitter.com/groups/34-apps-sms-and-mobile/topics/153-
twitter-via-sms/articles/14020-twitter-sms-commands


