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Abstract—With approx. 6 million macro cells worldwide and
a gross energy consumption of approx. 100 TWh per year as of
2013, mobile networks are one of the major energy consumers
in the ICT sector. As trends, such as cloud-based services and
other traffic-intensive mobile applications, fuel the growth of
mobile traffic demands, operators of mobile telephony networks
are forced to continuously extend the capacity of the existing
infrastructure by both implementing new technologies as well
as by installing new cell towers to provide more bandwidth for
mobile users and improve the network’s coverage. In order to
implement energy-efficient reconfiguration mechanisms in mobile
telephony networks as proposed by the project Communicate
Green, it is essential to anticipate traffic hotspots, so that a
network’s configuration can be adjusted in time accordingly.
Hence, predicting the movement of mobile users on a cellular level
of the mobile network is a crucial task. In this paper, we propose
a Movement Prediction System based on the algorithm of Yavas et
al. that allows to determine the future movement of a user on a
cellular level using precomputed movement patterns. We extended
the algorithm to be capable of preselecting patterns based on time
and contextual data in order to improve prediction accuracy. The
performance of the algorithm is evaluated based on real and live
user movement data from the OpenMobileNetwork, which is a
platform providing estimated mobile network topology data. We
found that the algorithm’s prediction quality is sufficient, but
requires an extensive amount of recorded user movements to
perform well.

I. INTRODUCTION

To enable customers of mobile telephony providers to
stay connected at all times at almost every place, network
operators need to maintain a highly sophisticated and complex
network infrastructure. The perpetual innovation in the area
of mobile communications is forcing network operators to
continuously extend the existing infrastructure by introducing
new technologies, such as LTE or WiMAX in order to meet the
constant growing capacity demands. Areas need to be covered
by multiple technologies (e.g., GSM and UMTS) as well as
the current state-of-the-art standards LTE/WiMAX in order
to provide the most recent technology available and support
full connectivity of legacy devices. Hence, a high number of
network cells is required. As of late 2012, mobile network
operators ran approx. 6 million base stations worldwide [1] to
fulfill the desire for the steadily growing bandwidth demands
in mobile telephony networks [2] [3]. The total power con-
sumption of mobile networks of approx. 100 TWh per year is

contributing to the overall carbon dioxide emissions, a number
that is expected to almost triple by 2020 [4].

Fig. 1. The basic principle of the project Communicate Green is to
dynamically suspend unused elements of mobile networks to reduce the overall
energy consumption

Therefore, introducing mechanisms to reduce the overall
energy consumption of mobile networks is considered to be
a crucial task. As base stations of mobile telephony networks
are operated 24/7 in an always-on-manner – regardless of the
actual traffic demands in the network – a massive amount of
energy could be saved by dynamically adapting the provided
bandwidth to the actual requirements in an area.

The project Communicate Green1, which is funded by
the German Federal Ministry of Economics and Technology
(BMWi) as part of the IT2green2 initiative, addresses issues of
energy efficiency in mobile telephony networks. This can be
achieved by applying an adequate reconfiguration of entities in
a network, where the network’s current state is monitored and
modeled by a Context Management Architecture as described
by Göndör et al. [5]. The reconfiguration solutions comprise
the de- and reactivation of a complete cell tower (see Figure 1)
as well as switching to a Bandwidth Expansion Mode (BEM)
[6] or sparse optimization [7].

1http://www.communicate-green.de/
2http://www.it2green.de/
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As presented by Bayer et al. [8], a certain amount of time
τ > 0 is required to apply a specific reconfiguration to network
elements, caused by re-initialization of distinct components of
the hardware as well as necessary maintenance tasks due to
the changes in the network’s structure. MORFEO, a flexible
energy-saving decision algorithm, has been implemented to
automatically determine the optimal time to de- or reactivate
specific energy efficiency procedures [9]. Still, reactive algo-
rithms could be improved by enabling them to foresee when
and where critical situations may occur, i.e., a reconfiguration
will become necessary. This requires mechanisms that are able
to anticipate the behavior of users, so that the network can be
adjusted to a situation that has yet to occur.

As network usage shows certain characteristic patterns as
depicted in Figure 2, one can use knowledge of such pattern
to estimate the load of a given base station. Dawoud [10]
demonstrated how traffic patterns of radio cells can be used
to compute a prediction of the future load of this radio cell,
where patterns appear to be diverse depending on whether the
cell is located in a city or rural area.

Fig. 2. Data traffic of a typical UMTS NodeB showing recurring patterns
over the course of one week

Anyhow, suspending radio cells in order to save energy
comes at the risk of some users experiencing an impaired
quality of experience (QoE). Hence, in order to avoid situations
where a user may be disconnected from the network or expe-
riences a low connection quality in a potentially reconfigured
mobile network, it is required to know where a user will be in
the future, i.e., which cell he will be connected to. With this
knowledge, suspended radio cells can be reactivated in time to
ensure seamless connectivity.

In this paper, we address the question how to predict the
mobility of users in mobile networks in order to be able
to proactively reconfigure distinct network elements. For this
purpose, we propose a Movement Prediction System that is able
to determine the future movement of a user on a cellular level
using precomputed movement patterns. This system uses real
and live user movement data including mobile network infor-
mation that has been acquired within the OpenMobileNetwork
[11] with the purpose of estimating mobile network and WiFi
access point topologies worldwide. Predictions are calculated
by utilizing the approach proposed by Yavas et al. [12], which
we have extended to be capable of preselecting patterns based
on contextual data (e.g., time or weather) provided by the
Context Management Architecture [5]. As a proof of concept,
we have implemented the OpenMobileNetwork Predictions

Visualizer3 – a map that shows the predicted user movements
on a cellular level.

The remainder of the paper is organized as follows: First,
we elaborate on existing techniques for movement prediction
and present previous work for energy optimizations in radio
networks in Section II. Section III describes the Movement
Prediction System comprising the OpenMobileNetwork as well
as the prediction algorithm with the proposed improvements,
whereas Section IV presents an evaluation of the algorithm.
Section V concludes the paper.

II. RELATED WORK

Human movement patterns are more regular than one might
expect. In contrast to the assumptions of random trajectories
predicted by the long prevailing Lévy flight and random walk
models, Gonzalez et al. [13] found that individuals follow
highly regular patterns and return with high certainty to a few
highly frequented places. Hence, methods that allow discovery
and extraction of regular patterns in user movements can
be utilized to describe and predict future movements of this
individual person.

Especially in urban environments, people tend to walk or
drive mostly on streets in order to reach a certain destination.
Hence, it is possible to confine the areas one is most likely to
move in by eliminating all areas off the street and therefore
adding even more regularity to one’s movements. Personal
habits result in daily routines, which let us choose the same
set of paths and sub-paths most of the time. Temporal aspects
also significantly contribute to the predictability of human
movement. Daily routines, such as going to work, shopping,
or attending other regular activities are likely to result in
distinct movement patterns, which mostly depend on the time
of the day, the day of the week or a day being a workday
or a holiday. Furthermore, environmental aspects may affect
human movement behavior. Depending on the weather, people
often favor certain destinations over others or accept detours if
they prevent from getting wet in rainy conditions. Big events
also play a role in movement behavior as big crowds of
people usually stream towards or from conventions, concerts
or other major occasions. All of these features can be taken
advantage of in order to identify patterns in human movement,
although some are more complicated to make use of or require
significantly more training data to be detected.

The rapid development of mobile networks and its services
has inspired research of user movement prediction tremen-
dously over the last decade. Knowing the future positions of
users allow network operators to allocate required resources
in advance, so that smooth handoffs and a continuously
high service quality become possible. As such proactive re-
configurations may not be applied just-in-time, mechanisms
that are able to predict the path a user will walk or drive enable
network operators to estimate the number of mobile devices
in a given area or cell and hence use this knowledge to derive
the expected traffic demands.

Two of the most influential algorithms in the beginning
of user movement prediction, which have also been used
for a long time, are the Mobile Motion Prediction algorithm

3http://www.openmobilenetwork.org/predictions/



developed by Liu and Maguire Jr. [14] and the LeZi-Update
algorithm proposed by Bhattacharya and Das [15]. The first
approach considers human movement that comprises determin-
istic and random movement. Deterministic movement can be
distinguished into circular movements and movements along
a path. This kind of movement can be found by pattern
extraction while the random part is modeled using Markov
models. The prediction is then done by searching the best
matching deterministic sequence in a given input sequence and
returning the next deterministic position. The latter approach
uses the Lempel-Ziv algorithm to minimize the data acquired
by a mobile device. The collected data is then utilized to
construct a k-order Markov model where the order is estimated
implicitly by the Lempel-Ziv dictionary. Outputs from the k-
order Markov model are returned as movement predictions.

Markov models were also used by Ashbrook and Starner
[16] to predict the movements of individuals that where tracked
by GPS enabled devices. If a user stays longer than a given
threshold at one position, the position is considered to be a
place, while these places are then clustered into higher-level
entities, called locations. Locations are used to generate a
second order Markov model for prediction purposes. Prasad
and Agrawal [17] employ Hidden Markov Models (HMM) to
model user movements. The HMMs are learned from the users’
movement history and then used for prediction.

Another approach considers the movement history consist-
ing of longitudinal, latitudinal, and altitudinal data to be a non-
linear time series. With the means of a non-linear estimator,
one then tries to predict future positions. A possible way to do
this is delay embedding [18], which was applied by Domenico
et al. [19] in the context of Nokia’s Mobile Data Challenge
20124. They showed that one can accurately predict user
positions with delay embedding. Even more interestingly, they
could considerably increase the accuracy by taking social ties
into account and compute predictions on correlated movement
histories. However, this comes at a price of high computational
cost and bad scalability.

NextPlace, which is developed by Scellato et al. [20],
also relies on delay embedding. The authors used GPS traces
of individuals to determine important places being locations
they spend a considerable amount of time. Once determined,
statistics on the arrival and duration times are collected. These
sequences are then transformed into the feature space by delay
embedding and used for prediction purposes: Given the current
visiting history (consisting of arrival and duration times),
similar patterns in the processed history are extracted. The
predicted arrival and duration time is the average of the next
values of all matching patterns. The advantage of this approach
is the considered spatio-temporal aspect, which allows the
algorithm to estimate when the user will most likely arrive
at a certain place and how long he will stay. However, this
only works with a rather small number of places at which
the user spends enough time. Hence, it will most likely not
perform well on the scale of mobile radio network cells.

Another class of algorithms related to the Mobile Motion
Prediction algorithm attempts to determine recurring patterns
in a given set of movement traces, which are then used to

4http://research.nokia.com/page/12000

compute the predicted movement of a person. Anagnostopou-
los et al. [21] proposed to consider the prediction problem as
a classification problem. The input data to this classification
problem are subsequences c1, ..., ci+l of length l and the label
of each data point is the subsequent cell ci+l+1. The authors
employed a voting scheme to achieve best classification results,
i.e., they used machine learning methods to train several
classifiers, such as 1-nearest-neighbor and C4.5 classifier, and
let them vote the label of an input data point. The vote is
decided by the majority rule.

Another way of learning the underlying movement regular-
ities is pattern mining as proposed by Yavas et al. [12]. Here,
sequential pattern mining methods are employed to detect
frequently occurring patterns in a user’s movement. These
patterns are then utilized to create movement rules, which
again are used to predict a user’s movement decisions. The
aforementioned movement rules are used as an implication: If
the user has recently moved in a certain way, which matches
a movement rule’s premise, then he is expected to continue to
move as the conclusion of the rule says. The proposed method
works on the network cell level and can predict the next cell.
However, it lacks the ability to estimate the arrival and the
duration time in this cell, as all state-of-the-art algorithms do.

Refined versions of this algorithm use more exact GPS data
but cannot make network cell predictions [22]. Furthermore,
Abo-Zahhad et al. [23] presented a multi-scale version of
the algorithm. The algorithm is able to compute movement
predictions on different scales depending on the user’s needs.
However, the algorithm requires a data source providing loca-
tion information on the different scales.

In the project Communicate Green, Göndör et al. [5] devel-
oped a Context Management Architecture, which is capable of
acquiring contextual information in distributed environments,
such as mobile radio networks. Context Sources (e.g., smart
mobile devices or base stations) forward relevant data to a
central management server, the Context Manager, which is
responsible for data management and modeling. A policy-
based, flexible decision algorithm uses this information to
determine an optimal configuration for the network, so that
all users are guaranteed to stay connected and the network
reduces its overall energy consumption with fully preserved
coverage [9].

Dawoud [10] showed that by using a pattern-based fore-
casting mechanism de- and reactivation of radio cells can
be orchestrated before overprovisioning of distinct areas or
bottlenecks in terms of bandwidth occur.

In order to improve the prediction capabilities of the
mechanisms proposed within Communicate Green by adding
functionality that allows us to predict a user’s future position,
we used the pattern mining approach presented by Yavas et al.
[12] due to it’s superior prediction accuracy in comparison to
other prediction methods and the fact that the required training
data has already been gathered by the Context Manager as
well as the OpenMobileNetwork as described in Section III.
The algorithm is extended by pattern preselection based on
time and context information. In the next section, the details
of the Movement Prediction System including the prediction
algorithm and the implemented improvements are presented.



III. MOVEMENT PREDICTION SYSTEM

This section describes the functional entities of the pro-
posed Movement Prediction System. The system is based on
the prediction mechanism proposed by Yavas et al. [12],
which consists of three main steps: First, available data is
preprocessed to extract distinct paths (UAPs). Second, the
resulting paths are used to extract movement patterns (UMPs).
Finally, the extracted patterns are used to forecast a user’s
actual movements.

A. Data Preprocessing

In order to mine a significant number of paths for the
following pattern extraction, a high amount of recorded move-
ment data is necessary. As the algorithm predicts a user’s
path on the cell layer of mobile networks, the data needs
to comprise at least a Cell-ID and a timestamp. Further
information, such as neighboring cells, WiFi hotspots, or GPS
coordinates have no direct impact on the prediction. For the
path segmentation and pattern extraction, we used data from
the OpenMobileNetwork5.

The OpenMobileNetwork [11] is an open-source crowd-
sourcing platform for providing mobile network and WiFi
access point topology data based on the principles of Linked
Data [24]. The data is acquired by a crowdsourcing community
using the OpenMobileNetwork for Android (OMNApp)6 and
Jewel Chaser7 apps [25]. These applications collect network
measurements on a user’s mobile device, which are then sent to
the OpenMobileNetwork server in order to compute cell loca-
tions as well as cell coverage information [26]. The estimated
topology data is semantically modeled using RDF8, RDF
Schema and other vocabularies enabling an easy integration of
the dataset into the Linking Open Data Cloud9 by defined links
to related datasets, such as LinkedGeoData10, Linked Food11,
or DBpedia12.

By the time of writing this paper, the OpenMobileNetwork
comprised data with a total of 201,108 unique measurements
for 11,214 mobile radio cells out of which 7,196 are located
in Germany. Due to the fact that each unique measurement
includes extensive information, such as GPS coordinates and
data about the radio cell the mobile device was connected to at
the time of the measurement, mobility traces can be generated
for distinct users, which we used as training data for the
algorithm as well as for evaluation purposes. Furthermore, the
cell location and coverage information in the dataset allowed
us to easily visualize both traces and cell layers on a map.

By using the dataset provided by the OpenMobileNetwork,
our training data consisted of:

• Cell-ID, Location Area Code (LAC), Mobile Country
Code (MCC), Mobile Network Code (MNC), Primary

5http://www.openmobilenetwork.org/
6Available at Google Play Store
7Available at Google Play Store
8Resource Description Framework, http://www.w3.org/RDF/
9http://www.lod-cloud.net/
10http://www.linkedgeodata.org/
11http://www.linkedfood.org/
12http://www.dbpedia.org/

Scrambling Code (PSC), operator, network access type
and signal strength of the connected base station

• Cell-ID, Location Area Code (LAC), Primary Scram-
bling Code (PSC), network access type and signal
strength of nearby base stations if information is
accessible

• The time at which the data was measured

• The location of the user in longitude and latitude
determined by GPS

• The accuracy of the GPS measurement

• A list of services running on the user’s cellphone and
the traffic generated by those services

• Information about the user’s device: operating system,
brand, device name, hardware name, manufacturer,
model name, product name, SIM card information
(MCC, MNC, operator)

Using OpenMobileNetwork for Android (OMNApp), infor-
mation is polled from the mobile device every 15 seconds.
However, a measurement is omitted if relevant sensor data
is missing. A missing GPS location fix, for example, will
cause a measurement to be considered incomplete and hence
it would not be forwarded to the server. As a consequence,
incomplete measurements can cause a path of a user not to be
recorded end-to-end. Over time, data collection ideally results
in a sequence of Cell-IDs in which only neighboring cells can
follow its predecessor. Due to loss of signal, however, it can
happen that consecutive cells are not adjacent to each other.
Especially, when using underground transportation, sizeable
jumps between two consecutive cells usually occur since the
permanently missing view of sky makes it impossible to
retrieve location data via GPS. Moreover, if a user remains
within the same cell for a long period, then it is likely that
consecutive cell measurements comprise the same Cell-ID. To
wipe out such irregularities, a preprocessing step is required
in order to extract ”clean” paths from the available, possibly
flawed data.

In addition, the measurement data is augmented with
contextual information that has been acquired by the Context
Management Architecture. This information includes:

• weather information tailored for the location of the
device, including temperature, humidity, windspeed,
and chance of rain

• information about regional holidays and local events

The contextual information is used by the prediction mech-
anism to preselect the best fitting movement patterns for the
prediction calculation. In a second step, the raw movement
data is transformed into an appropriate format to get rid
off ambiguities in the data. First of all, the sequence of
Cell-IDs is segmented into reasonable subsequences, which
represent paths between two destinations. Considering only
those paths as logical units makes sense, because once arrived
at a destination, the next steps are usually not determined by
the previous movement history, but by the decision which next
destination one wants to reach.



Fig. 3. Overlapping cells might cause different Cell-ID assignment for
one and the same position. Furthermore, it might come to an oscillation
phenomenon even if one does not move.

A dimorphic problem arises from overlapping network cells
as visualized in Figure 3: On the one hand, it is possible to
obtain for one and the same path different sequences of Cell-
IDs as mobile devices may connect to a different cell. Hence,
regular patterns lose their significance as they appear more
often in a polymorphic form and will therefore be treated as
distinct movement patterns. As a consequence, the prediction
quality will not be as high as without overlapping network
cells resulting in a significantly higher amount of data for
path extraction. On the other hand, overlapping cells and a
continuous network related handover to the other cell cause
an oscillation phenomenon where it seems that a user moves
from one cell to the other and back. This phenomenon implies
a user movement even if the user does not move at all. Thus,
the oscillation deteriorates the overall prediction performance
as well. In the following, we present the path segmentation
and the cell clustering procedure, which has been proposed by
Bayir et al. [27].

Fig. 4. The user actual paths (UAPs) are extracted from a sequence of Cell-ID
measurements by the means of destination detection.

1) Path Segmentation: In order to segment sequences of
Cell-IDs into subsequences between two destinations, distinct
destinations have to be defined and extracted from the data.
Destinations are considered to be places where a user spends
a reasonable amount of time, such as at work, the shopping
mall, at a restaurant, or at home. Thus, one natural approach
would be to consider the resting time of a user in a given
area or mobile cell. If this time exceeds a certain threshold
δrest, then this indicates the arrival at a destination. The resting
time is defined as the time difference between the moment a
user enters a cell and the moment he leaves the same cell as
illustrated in Figure 4. Hence, the resting time in the k-th cell
in a given sequence is defined as Lkrest = Lkend − Lkstart.

However, situations in which the user’s device loses net-

work connectivity or is turned off (e.g., if the user attends
a meeting or the device’s battery dies), the sequence is inter-
rupted and a regular destination is not detected. By considering
the transition time between successively entered cells, these
interruptions can be detected. The transition time between the
k-th and the k + 1-th cell in a given sequence is defined as
Lktra = Lk+1

start−Lkend. If the transition time exceeds a threshold
δtra, then we assume that the user was at a hidden destination,
which was not detected as a regular destination. Given these
definitions of destinations, the UAPs being subsequences that
denote a path between two destinations can be defined. The
formal definition of a UAP is described in Equation 1.

UAP := (Li−1
tra > δtra ∨ Lirest > δrest)∧

(Li+1
tra > δtra ∨ Li+1

rest > δrest)∧
(∀j, i, i ≤ j < i+ l : Ljtra ≤ δtra)∧
(∀j, i, i < j < i+ l : Ljrest ≤ δrest)

(1)

2) Cell Clustering: In order to avoid the Cell-ID oscilla-
tion phenomenon, overlapping cells in the mobile telephony
network have to be detected. Since cell towers are usually
located closely to each other to guarantee seamless coverage,
cells involved into an oscillation can be clustered. By replacing
oscillating cells in a UAP by a cluster ID, cell oscillation can
be avoided at the cost of a loss in accuracy.

Given a user actual path, cell oscillation can be detected
by checking every following pair of Cell-IDs (x, y) how often
these two cells alternate. Since more than two cells can overlap,
oscillation between more than two cells is possible. Hence,
oscillations between three cells (x, y, z) need to be detected
as well, e.g., in a sequence C = (x, y, z, x, y, z, x, y, z). If
the number of oscillations of a pair (x, y) exceeds a given
threshold δosc, the pair is considered to be a possible merge
candidate. Once all oscillating pairs from a UAP have been
determined, the merge candidates are clustered by replacing
each Cell-ID with a cluster ID, where for each set of merge
candidates a new cluster is created if necessary.

3) Topology Construction: As a last preprocessing step,
the topology of the mobile network cells is reconstructed
from the available data. This is beneficial for the sequential
pattern mining algorithm in the learning phase of the prediction
algorithm. Knowledge of all neighboring cells for any given
cell enables the algorithm to determine which cells can be
reached from a given cell in the mobile network and hence
prune ”impossible” generated patterns, which then do not have
to be checked for plausibility in the prediction phase. The
topology is approximated by declaring cell y to be reachable
from x, if and only if the subsequence (x, y) occurs in one of
the UAPs.

B. Prediction Algorithm

The prediction algorithm utilizes a pattern mining approach
to predict future movements as proposed by Yavas et al. [12].
It attempts to find subsequences in the UAPs, which are more
common than others. These subsequences are the UMPs and
contain the essence of the regularities in a user’s movement
history. By using these UMPs, movement rules can be derived,
which consist of a premise and a conclusion part. The premise



stands for the movement history while the conclusion repre-
sents the expected future movement. Thus, by matching a given
user movement history with the premises of the movement
rules, we can select the best fitting rule and use the conclusion
part as our movement prediction. The algorithm is extended
by adding pattern preselection functionality that favors patterns
recorded under similar environmental conditions as sensed at
the time the prediction is computed.

This prediction approach consists of two phases: the learn-
ing phase in which movement rules from the UAPs are
extracted and the prediction phase in which a user’s future
movements are predicted on the basis of his latest movement
traces.

1) Learning Phase: The learning phase is an offline al-
gorithm, which can be run periodically or when new UAPs
have been computed. As input, the algorithm uses the available
UAPs and returns the calculated movement patterns (UMP) for
each user. To determine the movement rules, sequential pattern
mining is applied to find the most frequent user mobility
patterns. In Algorithm 1, the pattern mining algorithm is given
as pseudo code.

Algorithm 1 Sequential pattern mining algorithm as of Yavaş
et al. [12]

R← ∅
while P 6= ∅ do

T ← ∅
for p ∈ P do

for q ∈ UAPs do
p.supp← p.supp+ support(p, q)

end for
if p.supp > δsup then

T ← T ∪ {p}
end if

end for
P ← generateNewCandidates(T, topology)
R← R ∪ T

end while
return R

The algorithm starts initially with all patterns of length 1.
For every pattern, it then calculates its support value, which
indicates whether this pattern occurs frequently. The support
is determined via Equation 2, where a denotes the pattern for
which the support is being calculated and b is the support
giving UAP.

support(a, b) :=

{
1

1+dist(a,b) if pattern a is contained in b
0 otherwise

(2)

This function takes the influence of noise into account.
Usually, human movement consists of a highly deterministic
component and a random walk component. The random com-
ponent can also be considered to be noise in an otherwise
regular movement scheme and hence is added to the regular
component. If a UAP contains a lot of random movements,
then it is considered to be highly corrupted. By using the
function dist(a, b), which measures the distance between the

sequences a and b, we can assign different support values to
different candidate patterns depending on how corrupted they
are. In the context of this work, we used the so-called Lev-
enshtein distance. This means that candidate patterns, which
are only slightly corrupted, will have usually a lower distance
to the UAPs than candidate patterns that are highly corrupted.
Thus, higher support values are assigned to patterns, which are
less corrupted.

After calculating the support values for every candidate
pattern, only those patterns are kept whose support value is
higher than a given threshold δsup and which are user mobility
patterns of length of at least l. After the UMPs of length l
are determined, the new candidate patterns of length l + 1
are calculated in the same fashion. Usually, this is done by
appending to every UMP of length l all possible Cell-IDs.
However, this is not efficient as this would also generate paths
that contain sequences of non-neighboring cells. In order to
avoid this, the computed topology is utilized that has been
created in the third preprocessing step. Only Cell-IDs may be
appended to a UMP p that are reachable from the last cell of p.
This pruning helps to speed up the sequential pattern mining
process significantly. The algorithm then restarts with the new
set of candidate patterns of length l + 1.

The output of the pattern mining algorithm is a set of
UMPs, which are used to generate the movement rules by
splitting each UMP C = c1, c2, . . . , cn at every possible
position resulting in a set of R = {c1, . . . , ci → ci+1, . . . , cn |
1 < i < n} with a premise and a conclusion. The premises
represent the movement history and the conclusions stand for
the expected future movements for this user. Thus, given a
movement history, one can check all available movement rules
for this user for a matching premise and use the matching
conclusion as a movement prediction.

As several matching movement rules might be found, a
confidence value conf(R) for every rule R = c1, . . . , ci →
ci+1, . . . , cn is determined using Equation 3.

conf(c1, . . . , ci → ci+1, . . . , cn) :=
#c1, . . . , cn
#c1, . . . , ci

(3)

Here, #c denotes the number of occurrences of a cell c
in the given set of movement rules, i.e., the confidence value
determines the significance of a rule. A threshold δconf is used
to exclude rules with a worse confidence value from being used
in the later prediction phase.

2) Pattern Preselection: As behavioral habits strongly de-
pend on environmental parameters, such as the time of the
day, the weather, or events in vicinity, we propose to privilege
movement rules during the prediction phase of the algorithm
that have been recorded with environmental parameters similar
to the situation in which the prediction should be computed.
We argue that this gives more relevant patterns an advantage
and results in more accurate movement predictions. The re-
mainder of this section describes the proposed timed- and
contextual pattern preselection.

a) Timed Pattern Preselection: As movement patterns
in everyday life strongly depend on time (e.g., in the morn-
ing people are moving to work and in the afternoon they



go to the shopping centers), the prediction system utilizes
temporal knowledge. For this purpose, the day is divided
into four phases: morning (6 to 12 o’clock), afternoon (12
to 18 o’clock), evening (18 to 24 o’clock), and night (24
to 6 o’clock). For each of these intervals, it is determined
for each movement rule how often it has been used during
this time. After normalizing over all rules in one interval,
a probability distribution is obtained about which rules are
most adequate for the current day phase. The distribution
is denoted by Pt(R) with R being a movement rule and
t ∈ {morning, afternoon, evening, night}. This knowledge
is then incorporated into the prediction phase in order to
preselect the most fitting movement rules, thus making the
prediction more accurate.

b) Contextual Pattern Preselection: A similar mech-
anism is used to preselect movement rules with matching
contextual data. Contextual data acquired by the Context
Management Architecture is used to describe certain features of
the environment for which a movement prediction is being cal-
culated. The contextual data is classified into distinct features,
e.g., temperature ∈ {cold, warm, hot} or humidity ∈
{dry, humid, raining}, where for each recorded rule, a set of
features is determined. In the later prediction phase, rules with
a contextual feature set that match with the current surrounding
of the user will have a greater impact on the prediction
accuracy. For example, one might take the bus home from work
when it’s raining instead of walking home. A weighting factor
W (R) ∈ [1, 2] for a movement rule R is chosen depending on
how many contextual features could be matched.

3) Prediction Phase: In the prediction phase, the current
movement history h = c1, . . . , ci−1 of a user for which
movement rules have already been calculated is used to predict
his future movements. This is done by searching for movement
rules whose premise contains h such that the last cell of the
premise equals ci−1. These rules are called matching rules.
Since there can be several matching rules, we have to select
the best for our prediction. For this purpose, we calculate a
weighting factor and choose the rule with the highest weight

w(R) := (support(R) + conf(R)) · Pt(R) ·W (R) (4)

with support(R) being the support of the UMP from which
R has been generated, conf(R) being the confidence of R,
Pt(R) the probability that the rule R has been used during
the time interval t, and W (R) being the weighting factor for
contextual information.

C. System Architecture

The prediction mechanism has been implemented in C++
on a Debian-based system. The data preprocessing is triggered
periodically and automatically fetches new measurement data
from the external OpenMobileNetwork. Hence, new movement
rules are generated continuously extending the dataset of
available movement patterns for active users over time. The
architecture (see Figure 5) features a visualization frontend
that allows users to directly review the predicted paths on a
map.

In the learning phase of the algorithm, movement patterns
containing the movement regularities are extracted from the

Fig. 5. Architecture of the Movement Prediction System. Data is acquired
from both the OpenMobileNetwork and the Context Manager and used for
predictions. The resulting predictions are then used by the visualizer.

calculated UAPs. For this purpose, sequential pattern mining is
applied. Once a set of frequent UMPs has been determined, the
movement rules representing the actual movement regularities
are generated automatically, which are then used during the
prediction phase to determine the user’s next cell movement.
Here, all matching rules are weighted according to their
support and confidence values where the highest ranked rules
are then used for the requested number of cell movement
predictions.

1) OpenMobileNetwork Predictions Visualizer: In order to
visualize the predicted user movements, a web-based demon-
strator has been developed as shown in Figure 6. For this
purpose, data acquired from the OpenMobileNetwork is used
to predict user movements in cellular networks.

Utilizing the visualizer, known paths of OpenMobileNet-
work users are displayed, which have been used as training data
for the prediction algorithm. Hence, the visualizer attempts to
predict the next cell association for each step a user made
during recording. This allows us to evaluate the accuracy of the
predictions by comparing the predicted next cell association
from the last step with the actual recorded cell association in
the current step.

The demonstrator displays the recorded locations of users
and the network cell their mobile device was connected to
at this moment. Each cell is represented by a circle with
different colors depending on whether the cell has not yet been
visited, i.e., is part of the path and will be visited later on
(yellow color), has already been visited (blue color), or is the
cell the users’ device is currently connected to. Furthermore,
the predicted cells are colorized depending on the question
whether the calculated prediction was correct (green color) or
false (red color). This allows a user to directly see how well
the algorithm performed on a certain UAP. While using cell
diameter data from the OpenMobileNetwork, the displayed cell
diameter is adjusted to fit to the viewport. This is depicted
using a dashed line for the cells and can be deactivated by
unchecking the option Simplify Cells in the configuration menu
on the top right. Also, cells that are not part of the selected
UAP are not displayed by default, but can be shown using the
option Show all cells.

The OpenMobileNetwork Predictions Visualizer enables
the selection of a distinct path for a user that has been recorded
via the OpenMobileNetwork mobile application as described
in [25]. This is done by first choosing an anonymous user ID
and then selecting one of the recorded paths from this user.



Fig. 6. The OpenMobileNetwork Predictions Visualizer showing a UAP and relevant radio cells. The visualizer uses OpenStreetMap data: c© OpenStreetMap
contributors.

By checking the option Custom Path, the visualizer allows
to create mock paths by clicking on the map. In this case,
the ”simulated” path is then used to predict the movement of
a non-existing user using an ignorant predictor that randomly
chooses a cell from the neighboring cells as a prediction. Once
a path has been selected, it is displayed on the map. The Play
button displays an icon representing the user moving along
this path, while the predictions are calculated and visualized
in real time.

IV. EVALUATION

In this section, the performance of the implemented Move-
ment Prediction System is evaluated using real and live
user movement data from the OpenMobileNetwork. First, the
dataset that has been used to generate the movement rules is
described. Second, parameters chosen for the algorithm are
determined. Third, the quality of the computed predictions is
evaluated.

A. Movement Data

The used prediction method strongly depends on the num-
ber of collected paths for each user, i.e., a significant amount of
UAPs is required to extract recurrent patterns and thus being
able to detect implicit regularities. The dataset provided by
the OpenMobileNetwork comprises data of 1,269 users out of
which only 209 contributed with measurements at all. Only
about 10 users contributed about 50% of the total measure-
ments. Therefore, only data from users were utlilized, who
provided a significant amount of measurements. Restricting

the dataset to users with at least 10 recorded paths, paths with
a length of at least one cell, and continuous measurements
for at least 60 seconds, a total of 1,377 paths remained. As a
comparison, for evaluation purposes, Yavas et al. [12] used a
dataset of 10,000 UAPs for one user generating the data from
a model. In our dataset, only 3 users recorded enough data
to extract at least 100 paths. Hence, we focus our evaluation
on data of these users, while omitting the pattern preselection
technique as it would further reduce the number of available
UAPs.

B. Threshold Values

The prediction model strongly depends on the values of the
support and the confidence threshold, as they control which
rules will be generated. Since there is no way to know a priori
which values yield the highest prediction accuracy, reasonable
values needed to be determined. In order to determine appro-
priate values, the path segmentation algorithm has been run
using different parameter values. The resulting optimal values
for the various thresholds are listed in Table I.

TABLE I. DETERMINED THRESHOLD VALUES

δrest 600s
δtra 600s
δosc 3

C. Evaluation

We applied our evaluation on the users with the most
recorded paths using cross validation and compared the results



to an ignorant prediction technique that randomly chooses one
of the cells in vicinity of the currently visited cells as the
predicted one. Here, we focus on the user with the User ID
290, who had 224 recorded path at the time of the evaluation.
The accuracy is measured as the ratio of correctly predicted
cells to the number of computed predictions.

Fig. 7. Prediction accuracy for User 290 with respect to the support threshold

Figure 7 shows the prediction accuracy for User 290 with
respect to the support threshold, which filters movement rules
with a high corruption due to a high amount of noise. Here,
the confidence threshold has been fixed to δsup = 0.7. As can
be seen, a higher support threshold results in a higher portion
of correctly predicted next cells and clearly outperforms the
ignorant predictor, while the amount of failed predictions due
to insufficient data increases with δconf > 2.5.

Fig. 8. Prediction accuracy for User 290 with respect to the confidence
threshold

The same holds for the prediction accuracy with respect to
the confidence threshold with δsup = 2.5 (see Figure 8). Here,
the prediction accuracy increases with a higher confidence
threshold, but the number of failed predictions increases for
δsup > 0.7.

We achieved similar results for other users with less paths.
The measured accuracy is between 30% and 50%, which is far

less accurate than the results found by Yavas et al., who had
accuracy values of up to 90% for a generated set of 10,000
UAPs. Hence, we argue that the performance of the Movement
Prediction System is sufficient, but limited by the fact that an
extensive amount of movement data has to be recorded per
user for the prediction to function properly and reliable.

V. CONCLUSION

In this paper, we proposed a Movement Prediction System
that extends the algorithm introduced by Yavas et al. [12]
by a pattern preselection technique. The implemented system
utilizes live user movement data (including information about
the mobile network) collected within the OpenMobileNetwork
and other contextual information provided by the Context
Management Architecture in order to compute an estimation
for the future movements of a user. By knowing the most likely
future position of mobile internet users, network operators can
anticipate traffic hotspots and reconfigure network elements
accordingly, so bottlenecks or bandwidth overprovisioning can
be avoided.

Results show that our system’s performance is limited by
the amount of available UMPs acquired from the recorded
UAPs and hence shows a relatively low but acceptable ac-
curacy compared to the results of Yavas et al. At the same
time, however, it clearly outperforms an ignorant prediction
technique based on simple guessing.

At the moment, our system focuses on individual user
movements on a cellular level. However, for a power manage-
ment solution in mobile networks, the movement of a large
group of users has to be taken into consideration. Therefore,
we plan to extend the Movement Prediction System by user
group prediction mechanisms. We further work on solutions
to make the OpenMobileNetwork for Android app more ”at-
tractive” in order to increase the number of user movement
paths within our system. Our overall goal is to provide good
prediction results based on real user movements rather than
using simulated data.
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[11] A. Uzun and A. Küpper, “OpenMobileNetwork - Extending the Web of
Data by a Dataset for Mobile Networks and Devices,” in Proceedings
of the 8th International Conference on Semantic Systems, ser.
I-SEMANTICS ’12. New York, NY, USA: ACM, 2012, pp. 17–24.
[Online]. Available: http://doi.acm.org/10.1145/2362499.2362503

[12] G. Yavas, D. Katsaros, O. Ulusoy, and Y. Manolopoulos, “A data
mining approach for location prediction in mobile environments,” Data
& Knowledge Engineering, vol. 54, no. 2, pp. 121–146, Aug 2005.
[Online]. Available: http://dx.doi.org/10.1016/j.datak.2004.09.004

[13] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding
individual human mobility patterns,” Nature, vol. 453, no. 7196,
pp. 779–782, Jun 2008. [Online]. Available: http://dx.doi.org/10.1038/
nature06958

[14] G. Liu and G. Maguire Jr., “A Predictive Mobility Management
Algorithm for Wireless Mobile Computing and Communications, year
= 1995, pages = 268-272, doi = 10.1109/ICUPC.1995.496902, url =
http://dx.doi.org/10.1109/ICUPC.1995.496902, publisher = IEEE,” in
Fourth IEEE International Conference on Universal Personal Commu-
nications.

[15] A. Bhattacharya and S. K. Das, “LeZi-Update: An Information-
Theoretic Approach to Track Mobile Users in PCS Networks,” in
Proceedings of the 5th Annual ACM/IEEE International Conference
on Mobile Computing and Networking, ser. MobiCom ’99. New
York, NY, USA: ACM, 1999, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/313451.313457

[16] D. Ashbrook and T. Starner, “Using GPS to learn significant locations
and predict movement across multiple users,” Personal Ubiquitous
Computing, vol. 7, no. 5, pp. 275–286, Oct 2003. [Online]. Available:
http://dx.doi.org/10.1007/s00779-003-0240-0

[17] P. Prasad and P. Agrawal, “Movement Prediction in Wireless Networks
Using Mobility Traces,” in 7th IEEE Consumer Communications and
Networking Conference (CCNC 2010). IEEE, 2010, pp. 1–5. [Online].
Available: http://dx.doi.org/10.1109/CCNC.2010.5421613

[18] A. Basharat and M. Shah, “Time series prediction by chaotic modeling
of nonlinear dynamical systems,” in 12th IEEE International Confer-
ence on Computer Vision.

[19] M. D. Domenico, A. Lima, and M. Musolesi, “Interdependence and

Predictability of Human Mobility and Social Interactions,” CoRR, vol.
abs/1210.2376, 2012. [Online]. Available: http://arxiv.org/abs/1210.
2376

[20] S. Scellato, M. Musolesi, C. Mascolo, V. Latora, and A. T.
Campbell, “NextPlace: A Spatio-Temporal Prediction Framework
for Pervasive Systems,” in Proceedings of the 9th International
Conference on Pervasive Computing, ser. Pervasive ’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 152–169. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2021975.2021989

[21] T. Anagnostopoulos, C. Anagnostopoulos, S. Hadjiefthymiades,
M. Kyriakakos, and A. Kalousis, “Predicting the Location of Mobile
Users: A Machine Learning Approach,” in Proceedings of the
2009 International Conference on Pervasive Services, ser. ICPS ’09.
New York, NY, USA: ACM, 2009, pp. 65–72. [Online]. Available:
http://doi.acm.org/10.1145/1568199.1568210

[22] T. H. N. Vu, K. H. Ryu, and N. Park, “A method for predicting
future location of mobile user for location-based services system,”
Computers & Industrial Engineering, vol. 57, no. 1, pp. 91–105, Aug
2009. [Online]. Available: http://dx.doi.org/10.1016/j.cie.2008.07.009

[23] M. Abo-Zahhad, S. Ahmed, and M. Mourad, “Future Location
Prediction of Mobile Subscriber over Mobile Network Using Intra
Cell Movement Pattern Algorithm,” in 1st International Conference
on Communications, Signal Processing, and their Applications
(ICCSPA 2013). IEEE, 2013, pp. 1–6. [Online]. Available: http:
//dx.doi.org/10.1109/ICCSPA.2013.6487272

[24] T. Heath and C. Bizer, Linked Data: Evolving the Web into
a Global Data Space, ser. Synthesis Lectures on the Semantic
Web. Morgan & Claypool Publishers, 2011. [Online]. Available:
http://dx.doi.org/10.2200/S00334ED1V01Y201102WBE001

[25] A. Uzun, L. Lehmann, T. Geismar, and A. Küpper, “Turning the
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