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Abstract— In order to early diagnosis and treatment of knee 

abnormalities, in this study an automated diagnosis system using 

wearable EMG and goniometer sensors is proposed. Eight 

different classification techniques are investigated with a set of 

time-domain features. The experiments are conducted with 22 

subjects’ data and the best accuracy of 97.17% is achieved based 

on the Bagged Decision Trees classifier.  We have also evaluated 

the classifications quality with Fixed-size Overlapping Sliding 

Window (FOSW) segmentation technique where SVM and 

Bagged Decision Trees classifiers could obtain the accuracy of 

100% in distinguishing healthy subjects from people with knee 

abnormality.  
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I.  INTRODUCTION 

Since the knee joint bears the heaviest weight of the human 

body, it is the most susceptible body part to damage [1]. Knee 

related injuries in the US continue to be the most common 

career ending injuries in sports [2]. According to National 

Center for Health Statistics report [3], approximately 19 

million visits were made to physicians because of knee 

abnormalities in 2003. There are different methods for knee 

disorders diagnosis; however during early stages of 

deterioration, most patients typically have no symptoms of 

changes on standard diagnostic tests such as x-rays [4]. With 

the growth of sensor technology and the analysis methods, 

diagnosis systems based on wearable sensors carry the 

advantages of simple setup, high reliability and accuracy as 

well as providing useful information for health-related 

applications.  One area of interest is applying EMG sensors 

which record the electrical activity, provided by skeletal 

muscles. When muscles are active, the sensors produce an 

electrical current which is usually relative to the level of 

muscle activity [2]. EMG was introduced during the first half 

of the 20th century, and the premier major studies on EMG 

during walking were performed in the 1940s and 

1950s [5]. [6] shows that surface EMG signals provide reliable 

data for clinical evaluation of muscle activity since they 

provide valuable information about muscle contraction and 

fatigue. 

Designing a safe and non-invasive system using wearable 

sensors for knee pathology can play an important role in both 

diagnosis and treatment. Several classification schemes have 

been used for medical diagnosis through analysis of data 

collected by different on-body sensors. In this paper, we are 

going to use various classifiers to accurately identify people 

who suffer from a knee abnormality. First, data collecting 

from EMG electrodes and goniometer are divided into 

windows of size n, and features are derived from each separate 

window of data. Then, various classifiers are used to 

distinguish healthy subjects from people with knee 

abnormality. This system could be potentially used in the 

patient’s home or in a physical therapy office. In fact, early 

identification through such system and timely treatment of 

exacerbations can decrease the hospital admissions and slow 

deterioration while reducing disease costs [7]. 

II. SENSORS DATA ANALYSIS 

A. Data Collection and Setup 

In this paper, we have used EMG (electromyography) and 

goniometer sensors data which recently released in a well-

known machine learning repository [8]. Twenty two 

individuals were recruited in the study. Half of the subjects 

had different knee abnormalities which previously diagnosed 

by a professional. Each subject were instructed to perform 

three activities i.e. gait, knee extension and flexion in the 

seated and standing positions. Surface EMG electrodes were 

measured at 1 KHz and placed on four muscles crossing the 

knee: vastus medialis (VASMED), semitendinosus (STEN), 

biceps femoris (BIFEM), rectus femoris (RECFEM) as shown 

in Fig. 1.  

 
Fig. 1. Four muscles crossing the knee where surface EMG electrodes are 

placed  

The electrodes connect to DataLOG MWX8 [9] which can 

be worn on the arm or leg. It is capable of displaying and 

analyzing in real time within PC using Bluetooth and also 

store data into the Micro SD card. It is worth noting that the 

raw EMG data is used and no filtering has been applied to 

reduce artifacts. In addition to the electrodes, a Biometrics' 

goniometer [9] was utilized to accurately measure the joint 

movement of the knee and its data was extrapolated to 1000 

samples per second. The goniometer is operated by measuring 
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the change in the physical signal resulting from the angular 

changes. For further details of the study, the reader is directed 

to [8]. 

B. Feature Extraction 

Feature extraction is to obtain the important characteristics 

of a data and represent them into a set of features [10]. 

However, stream of sensory data requires segmentation in 

order to facilitate effective feature extraction. The first popular 

method is dividing the data stream into windows of fixed 

length with no inter-window gaps and no degree of overlap 

between adjacent windows (Fixed-size Non-overlapping 

Sliding Window (FNSW)) [11]. The second method is Fixed-

size Overlapping Sliding Window (FOSW) which is similar to 

FNSW except that the windows overlap during 

segmentation [12]. Due to their low complex implementations 

and reasonable performance, we have used these techniques. 

The features are extracted from each separate window of 

data and then used as inputs to the classifiers. In Table I, we 

describe the most representative techniques in time-domain for 

extracting signal features. Time-domain features are derived 

directly from a window of sensor data and are typically 

statistical measures.  

C. Classification Algorithms 

The raw sensors data are binary labeled based on the 

subjects who can be healthy or have knee pathology.  We have 

employed a wide range of classification algorithms including: 

Decision Tree (DT), Bagged Decision Trees (TB), 

Generalized Linear Model (GLM), Discriminant Analysis 

(DA), k-Nearest Neighbors (kNN), Support Vector Machines 

(SVM), Naïve Bayes (NB) and Artificial Neural Networks 

(NN).  

The decision tree which is similar to hierarchical 

classifications has been applied to a wide range of problems. It 

is a very successful technique for supervised classification 

learning [13]. TB builds an ensemble of classification trees (50 

trees in this paper) and uses bagging to combine the 

predictions [14]. kNN algorithm is used for classification 

problems based on the k closest training examples in the 

feature space (k=10). NB is a simple probabilistic classifier 

according to the Bayes’ theorem. A more general version of 

the naïve Bayesian is discriminant analysis, where cross-

correlations between features are taken into account. SVM is 

based on finding optimal separating decision hyperplanes 

between classes with the maximum margin between patterns 

of each class [15]. In our experiments, we have used the 

polynomial kernel function of order 3 for SVM classifier.  

TABLE I.  TIME SERIES FEATURES 

Feature Description Feature Description 

Mean 𝜇𝑠 =
1

n
∑ si

n

i=1

 Zero crossings Number of times the signal crosses its 

zero/median 

Minimum min(S) = min
𝑖=1:𝑛

si Skewness 
1

𝑛𝜎𝑠
3

∑(𝑠𝑖 − 𝜇𝑠)3

𝑛

𝑖=1

 

Maximum max (S) = max
𝑖=1:𝑛

si Kurtosis 
1

𝑛𝜎𝑠
4

∑(𝑠𝑖 − 𝜇𝑠)4

𝑛

𝑖=1

 

Median 
median

i=1:n
si 

is the median value of the elements in S 
Signal power ∑ si

2

n

i=1

 

Standard Deviation 𝜎𝑠 =√
1

n
∑ (si − 𝜇𝑠)2n

i=1  Peak intensity The number of signal peaks within a 

certain period of time 

Coefficients of 

variation 
𝑐𝜐 =

𝜎𝑠

𝜇𝑠

 
Lag-one-

autocorrelation 

∑ (𝑠𝑖 − 𝜇𝑠)(𝑠𝑖+1 − 𝜇𝑠)𝑛−1
𝑖=1

∑ (𝑠𝑖 − 𝜇𝑠)2𝑛
𝑖=1

 

Peak-to-peak 

amplitude 
max (S) −  min(S) 

Inter-axis Correlation 

Coefficient 

∑ (𝑠𝑖 − 𝜇𝑠)(𝑝𝑖 − 𝜇𝑝)𝑛
𝑖=1

√∑ (𝑠𝑖 − 𝜇𝑠)2 ∑ (𝑝𝑖 − 𝜇𝑝)2𝑛
𝑖=1

𝑛
𝑖=1

 

Percentiles 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (𝑆, 𝑝) , 𝑝 = 10, 25,50,75,90 
Root Mean Square 

(RMS) 
√

∑ 𝑠𝑖
2𝑛

𝑖=1

𝑛
 

Interquartile range 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (𝑆, 75) − 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (𝑆, 25) 
Trapezoidal 

numerical integration 

∫ 𝑆(𝑥)𝑑𝑥
𝑛

1
 using Multiple Segment 

Trapezoidal Rule 

 



III. EXPERIMETNAL RESULTS AND DISCUSSIONS 

A. Data Segmentation Analysis 

All methods were trained with data collected by the 

electrodes and goniometer sensors. First, we used FNSW as the 

segmentation technique and Fig. 2 shows the classifications 

accuracies for a range of window sizes with 10-fold cross-

validation. The best accuracies of 92.14%, 97.17%, 87.95%, 

88.73%, 92.38%, 80.08%, 96.14% and 88.06% were achieved 

by DT, TB, GLM, DA, kNN, NB, SVM and NN classifiers, 

respectively. We also investigated another common 

segmentation technique called FOSW with five different 

overlap percentages. The classifiers accuracies with respect to 

the window size and the percentage of adjacent windows 

overlap for feature extraction are shown in Fig. 3. As can be 

seen, this technique significantly improves the accuracy of all 

classifiers; and two classifiers TB and SVM yield the highest 

classification accuracy 100% with windows size 5.5 sec and 

overlap size 90%. The red points in Fig.3 indicate the best 

obtained accuracies for different methods and windows 

parameters. These results also summarized in Table II. 

B. Number of Sensory Nodes  

As mentioned earlier, data collected form four surface 

EMG and one goniometer sensors are used for features 

extraction and classification. However, it is important to 

minimize sensors redundancy as this can result in reducing 

computational and cost demand. Therefore, in this section, we 

empirically investigated the classifications accuracies when 

the number of the sensors is reduced. Table III reports 

effective results showing that we can keep the accuracy 100% 

with employing only one sensor either the EMG at vastus 

medials muscle or the goniometer. It is worth mentioning that 

the overlap percentage of 90% is kept for this analysis. 

Moreover, as observed from the results, accuracy of some 

classifiers can be increased by utilizing less sensors. 

IV. FEATURE SELECTION  

The problem of finding an optimal subset of features out of 

all extracted features that best discriminate between classes is 

called feature selection [16]. It not only reduces the 

dimension, but also avoids misleading the classifier with 

redundant or irrelevant features. There are many feature 

selection algorithms in the literature [16]; however, we found 

each feature importance through permuting the feature across 

the out-of-bag observations and measuring the increase in 

prediction error. Then, the assessment of top five important 

features led us to choose only a set of 2 features i.e. maximum 

and interquartile range while classification accuracy remains 

100%. 

V. CONCLUSION 

In this paper, eight classification algorithms were analyzed for 

distinguishing healthy subjects from people with knee 

abnormality. These techniques used a large set of real data 

from 22 subjects. The surface EMG sensors were mounted on 

four muscles of knee. Besides a goniometer was considered to 

intervene the impacts of joint angles in the diagnosis 

methodology. The accuracy of 100% was achieved in this case 

study while using either the EMG on vastus medials muscle or 

the goniometer. We also investigated the effect of changing 

the number of sensors, segmentation technique, window size 

and overlap percentage. 

TABLE III. LIST OF CLASSIFIERS WHICH KEEP THE ACCURACY OF 100% 

USING LESS THAN THREE SENSORS 

S1 S2 S3 S4 S5 Method 
Window size 

(Sec) 

  
X 

  
TB 5.5 

X 
 

X 
  

TB 4 

X 
 

X 
  

TB 5.5 

X 
 

X 
  

TB 6 

 
X X 

  
TB 5.5 

 
X X 

  
NN 6 

 
X X 

  
NN 6.5 

  
X X 

 
TB 5.5 

    
X TB 6.5 

  
X 

 
X DT 5.5 

  
X 

 
X TB 5.5 

  
X 

 
X TB 6 

  
X 

 
X GLM 6.5 

  
X 

 
X DA 6.5 

S1 is the electrode located on rectus femoris, S2 is the electrode located on biceps 

femoris, S3 is the electrode located on vastus medials and S4 is the electrode located 

on semitendinosus. S5 is the goniometer  

TABLE II. THE HIGHEST ACCURACIES FOR WINDOW OVERLAP AND WINDOW SIZE 

COMBINATIONS IN DIFFERENT CLASSIFIERS 

 

Method 

Window 

Size(Sec) 

Window 

Overlap 

Value (%) 

Highest 

Classification 

Accuracy (%) 

DT 4 90 99.75 

TB 5.5 90 100 

DA 3 75 99.25 

GLM 3 75 99.43 

kNN 7 90 97.72 

NB 4.5 90 96.44 

SVM 5.5 90 100 

NN 6 90 99.72 

 

 
Fig. 2  Classification accuracy of 8 methods with different window 

sizes using the FNSW segmentation technique 
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Fig. 3. The accuracies for window overlap and window size combinations in (a)DT, (b)BT, (c)DA, (d)GLM, (e)kNN, (f) NB, (g) SVM, (h)NN classifiers 


