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Abstract—This paper investigates the tradeoff between accu-
racy and complexity cost to predict electrocardiogram values
using auto-regressive moving average (ARMA) models in a fully
functional body area network (BAN) platform. The proposed
BAN platform captures, processes, and wirelessly transmits six-
degrees-of-freedom inertial and electrocardiogram data in a wear-
able, non-invasive form factor. To reduce the number of packets
sent, ARMA models are used to predict electrocardiogram (ECG)
values. However, in the context of wearable devices, where the
computing and memory capabilities are limited, the prediction
model should be both accurate and lightweight. To this end,
the goodness of the ARMA parameters is quantified considering
ECG signal, we compute Akaike Information Criterion (AIC) on
more than 900000 ECG measures. Finally, a tradeoff is given
accordingly to the hardware constraints.

Keywords—Body area network, autoregressive moving average,
akaike, energy efficiency

I. INTRODUCTION

Wireless Body Area Networks (BAN) are formed by
several low-energy wirelessly interconnected biomedical or
inertial sensor devices. The sensors usually capture various
physiological parameters of the human body (e.g. temperature,
heart rate, Electroencephalography (EEG), Electrocardiogra-
phy (ECG), blood pressure, blood oxygen saturation, etc.). It
also determines parameters of the physical environment, such
as the amount of sunlight exposure or ambient air quality.

In a typical BAN architecture, sensor data are transmitted
wirelessly to a coordinator (also called aggregator or gateway)
where the data are forwarded to an access point and then,
sent over Internet to a remote medical server for storage and
analysis. Due to constraints such as energy and computation
capability, non-deterministic sensor failures, radio links insta-
bility, and distrusted environments, designing and deploying a
robust BAN platform are some of the challenges encountered.

Motivation. BANs have become a leading approach for
several promising applications in the medical and healthcare
fields. But despite the rich availability of research works, there
are only few fully functional applications that can be actually
deployed in real scenarios. In particular, limited resources in
energy and in radio communications make real-world deploy-
ment difficult.

Contributions. This article is based on a preliminary work
[1] investigating the performances of the proposed architecture
in terms of accuracy and efficiently, based on three different
thresholds. The filter proposed in [1] is based on similarity of
two consecutive packets. The similarity filter has shown to be
efficient in reducing traffic of movement signals but remains
inoperative for ECG signals due to their dynamic nature. In this
article, we propose to investigate a more complex filter using
auto-regressive moving average (ARMA) models in order to
limit the number of packet sent by the ECG sensor.

Novelty. WBANs have recently been the subject of in-
tense research by many researchers worldwide and interesting
research results have been already produced in that topic
and especially in the areas of physical and network layer
mechanisms. However, there are only few studies related to
the development of practical, efficient and low-energy WBANs
system. ARMA models have been used in several domains
such as financial analysis, meteorology or urban Traffic. How-
ever, only few studies exist to predict ECG. For instance, in
[2], the authors base their prediction on simulated ECG signals.
In this paper, ARMA model is used and evaluated in terms of
AIC and RMSE. The proposed evaluation is based on more
than 900000 real measurements obtained using Shimmer 4-
leads ECG sensors [3]. In order to use ARMA model for ECG
forecasting, appropriate model parameters have to be selected.
ARMA models provide a description of a stochastic process in
terms of two polynomials, one for the auto-regression and the
second for the moving average. The ARMA(p, q) takes two
parameters: p is the order of the auto-regressive part and q is
the order of the moving average part. To select the appropriate
order p and q and quantify the goodness of fit on the ECG
measures, the Akaike Information Criteria (AIC) [4] is used.
AIC measures of the relative quality of a statistical model for
a given set of data.

II. MODELS

A. Auto-Regressive Moving Average Models

The process {xt} is an auto-regressive moving average
process of order p, q if there exist constants a1, ..., ap, b1, ..., bq
such that:

xt =

p∑
j=1

ajxt−j +

q∑
j=1

bjεt−j + εt (1)
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Fig. 1: Flowchart of the BAN architecture

where {εt} is zero-mean white noise, and εt is uncorrelated
with xt−1, xt−2, .... The ARMA(p, q) process exists and is
weakly stationary if and only if all the roots of the polynomial
P (z) = 1 − az − ... − apzp are outside the unit circle. The
process is said to be invertible if all the roots of the polynomial
Q(z) = 1 + b1z + ... + bqz

q lie outside the unit circle. A
time series is invertible if and only if it has an infinite-order
autoregressive AR(∞) representation of the form:

xt =

∞∑
j=1

πjxt−j + εt (2)

where πj are constants with
∑
π2
j <∞.

In the linear prediction problem, we want to forecast xt+h

based on a linear combination of xt, xt1, ..., where h > 0 is
the lead time. It can be shown that the best linear forecast,
i.e. the one which makes the mean squared error of prediction
as small as possible, denoted by x̂t+h , is determined by two
characteristics: (1) x̂t+h can be expressed as a linear combi-
nation of xt, xt1, ... and (2) the prediction error xt+hx̂t+h is
uncorrelated with all linear combinations of xt, xt1, ....

B. Akaike Information Criterion

In WBANs, where devices are strongly constrained in terms
of computational power, it is important to limit the complexity
of the model. The Akaike information criterion (AIC) measures
the relative quality of a statistical model for a given set of data.

AIC = 2k − 2 ln(L) (3)

where k is the number of parameters in the model, and L is the
maximized value of the likelihood function for the model (i.e.
how likely a particular population is to produce an observed
sample). In short, AIC deals with the trade-off between the
accuracy of the model and its complexity.

III. OVERVIEW OF THE PROPOSED PLATFORM

This section describes the wearable BAN platform which
was designed, implemented and evaluated to enable the remote
monitoring of workers in harsh environments. The target
application scenario is first described below, followed by
an overview of the hardware, software and communication
components.

Fig. 2: Overview of the BAN Architecture

A. Application Scenario, communication architecture and ma-
terials

In this study, we focus on the remote monitoring of workers
in harsh environment. With the expansion and emergence
of large mega construction projects, the safety and health
of workers is becoming a serious concern worldwide. For
instance, the number of deaths due to work-related accidents
or diseases, remains unacceptably high at around 2.3 million
per year [5].

In this context, it is expected that WBAN technology
will enhance the safety and health of workers, for example,
by enabling the remote monitoring of workers in unhealthy
environments [6]–[9]. As a result, there is a need to mon-
itor physiological signs (e.g. body temperature, pulse rate,
respiration rate, blood pressure, etc.). With wearable sensors
and BANs, workers can be monitored remotely and quick
assistance can be given if anomalies on the vital signs are
detected. To be practical in such context, a BAN should be
able to send data continuously to a remote server for storage
and analysis, while being energy efficient and accurate. In that
purpose, low-power technologies, compression techniques and
filtering are targeted. Moreover, the monitoring of the body
movements (e.g. acceleration, orientation, etc.) can be useful in
implementing safety related algorithms, such as fall detection
or activity recognition, and thus ensuring the safety of the
workers.

In this paper, wearable sensors communicate using the
IEEE 802.15.4 standard, which covers the PHY and the MAC
layers. Due to its good performance in terms of energy con-
sumption, such a standard is a good candidate for constrained
devices such as battery-powered wearable sensors and it is
the basis for numerous specifications such as ZigBee [10],
WirelessHART [11], or ISA100.11a [12]. In the proposed
platform, a BAN coordinator aggregates the traffic coming
from the sensor nodes and forwards it to an access point. IEEE
802.15.4 is used for the on-body communications between the
sensors and the BAN coordinator, and IEEE 802.11 / WiFi
is used for the communication between the BAN coordinator
and external access points, as shown in Figure 2. In IEEE
802.15.4, the CSMA/CA MAC protocol is generally used by



sensors to send data and they can theoretically transmit up
to 250 kbs at 2.4 GHz which is a sufficient data rate for
typical wireless sensor applications. However, this MAC layer
implements a collision avoidance mechanism based on random
backoff which is not efficient for periodic and real-time traffic
and creates latency and collisions. As a result, we propose a
new MAC layer described in detail in the following section.

In order to enable efficient on-body communications in
terms of latency, delivery ratio and energy consumption, we
designed and implemented two specific algorithms: a filtering
algorithm running on the WBAN sensor device, and a data
compression algorithm running on the coordinator.

The system used for the testing and validation of our
solutions consists of three components:

Sensor Nodes consists of five Shimmer nodes [3]. The
Shimmer node is a small sensor platform well suited for wear-
able applications. It has low-power communication capabilities
enabling long-term data acquisition and real-time monitoring.
In this work, four nodes integrate 3-axis accelerometer and 3-
axis gyroscope and one node is dedicated to heart monitoring
and integrates a 3-lead ECG. Each node runs on TinyOS [13].
The characteristics of Shimmer nodes are summarized in Table
I.

Coordinator Node consists of: (i) a Beagleboard XM [14],
(ii) a BeagleTouch Screen (iii) an 802.11 module for Wi-Fi
connection and (iv) an 802.15.4 module for Zigbee connection.
The Ubuntu 11.10 OS is used to run the coordinator. A
lightweight server is implemented on the platform to perform
the forwarding and the polynomial data compression (LSPF).
The coordinator characteristics are summarized in Table I.

Access Point which carries the proper storage, database
and application software. It is intended to be constantly avail-
able (i.e. 24/7) and scalable to enable the monitoring of a
large number of patients. The server runs real-time analysis of
sensor’s data, provides user access to the database at various
levels (e.g. patients, relatives, physicians, etc.) and generates
alarm in case of emergencies.

The signal is first captured, amplified and digitized by
Shimmer nodes. It is then quantized at the selected sampling
frequency ranging from 1Hz to 1kHz. Next, the shimmer
node transmits the data (i.e. 7 samples per packet) to the
coordinator which forwards the packet to the access point.

B. Filtering Algorithm

As illustrated in Figure 2, sensor nodes gather sensor
information and communicate with the BAN coordinator.
With respect to their constraints in computational power, a
lightweight filtering algorithm is implemented. It is defined to
limit the amount of data sent by the sensor nodes. To form a
packet, each sensor aggregates 5 values of each signal (e.g.
acceleration and angular velocity for 6-axis sensors, lead I
and lead II for the ECG sensor). Then, it sends the packet
to the coordinator. The filtering algorithm proposed in this
study only considers ECG signal. It computes the prediction
xt+1, ..., xt+5 based on ARMA(p, q). Then, the predicted

Device Manufactor Shimmer Node Beagleboard-Xm
Microcontroller MSP430 AM37x 1GHz ARM Cortex-A8
Radio TI CC2420 (802.15.4)

[15] and RN Bluetooth
module

TI CC2420 (802.15.4) and
Ralink RT2571WT (802.11.b/g)

TX Power 0dBm 802.15.4: 0dBm, Wifi: 13dBm
Radio sensitivity -95dBm 802.15.4: -95dBm, Wifi:

-70dBm
TX/RX
consumption

17.4mA/18.8mA 802.15.4: 17.4mA/18.8mA,
Wifi: 390mA/270mA

Battery 280mAh, 3.7v 8400mAh, 5V
Sensing capabilities 3-axis Accelerometer,

3-axis Gyroscope,
ECG

None

OS TinyOS Ubuntu 11.10
MAC protocol CSMA/CA and Dy-

namic TDMA
CSMA/CA (WiFi and 802.15.4)
and Dynamic TDMA (802.15.4)

Protocol thresholds Quadratic distance
threshold 2%

RMSE Threshold: 1%, Maxi-
mum polynom order: 10

TABLE I: Summary of the platform characteristics.

values are compared to the measured values. The sensor
defines the similarity by computing the Root Mean Square
Error (RMSE) between them. Let two vectors v and w in
Rn be as follow: v = (v1, v2, ..., vn), w = (w1, w2, ..., wn).

The RMSE is: RMSE(v, w) =
√

1
N

∑N
i=1(vi − wi)2. If the

RMSE is higher than a given threshold, the measured packet is
sent to the BAN coordinator. At the BAN coordinator level, the
prediction is computed based on the previous received packets.
If a new packet is received the predicted values are replaced
by the measured ones.

IV. EXPERIMENTAL RESULTS

A. Methodology

The results have been obtained by mathematical computa-
tion using Matlab software and based on real-world data. The
data which have been obtained with an ECG Shimmer sensor
contains more than 900000 samples (i.e. 90000 packets). The
orders p and q varied between 10 (i.e. 2 packets) and 50 (i.e.
10 packets).

B. ARMA performance

AIC. Fig.3 illustrates the Akaike Information Criterion
(AIC) according to the orders of auto-regressive p and moving
average q. The higher AIC values (i.e. the worst trade-offs)
are represented in red, while the lowest AIC values (i.e. the
best trade-offs) are represented in blue. Practically, p and q
represent the number of packets that should be stored in the
node in order to compute the model. As a result, p and q
represent the overhead in terms of computational power (model
complexity) and memory usage (as previous packets should be
stored). The best accuracy-complexity trade-offs is obtained
with p = 40 and q = 35 (i.e. 8 and 7 packets respectively) as
shown on Fig.3. Note that the gain obtained in terms of AIC
is significant for the orders under p = 15 et q = 15; however,
beyond these values the gain decreases.

Mean Error. Now, we illustrate the evolution of the mean
error in detail according to the orders p and q to determine their
optimal values. To do so, we compute the difference between



Fig. 3: Akaike Information Criterion according to
Auto-Regressive and Moving Average orders

Fig. 4: Average Error of prediction according to
Auto-Regressive and Moving Average orders

the values obtained through model ARMA(p, q) and those
obtained experimentally. As shown in Fig. 4, the mean error
is between 0 and 1 for the values p > 5 and q > 15; however,
beyond these values the gain is small.

Due to the constraint capabilities of the network devices,
the model complexity should be minimized in order to decrease
the memory and computational power usage. Here, the model
ARMA(2,3) seems appropriate both in terms of performance
and complexity.

V. CONCLUSION AND FUTURE WORK

In this paper, a study was conducted on ECG signal pre-
diction based on ARMA model. We established orders p and q
to reach a tradeoff between model complexity and accuracy by
computing AIC and the average prediction error given based
on more than 900000 ECG measures. The relatively low orders
found leads us to think that an implementation in a constrained
embedded systems is feasible.

Future works. The current study does not investigate im-
plementation of ARMA-based prediction on Shimmer nodes.

It certainly would be interesting to propose such algorithm
dealing with constraints in terms if computational power and
memory space. In addition, the efficiency of the prediction to
reduce the number of transmitted packets should be evaluated
regarding its cost in terms of energy consumption.
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