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Abstract—Integrated care of patients with COPD and 

comorbidities requires the ability to regard patient status as a 

complex system. It can benefit from technologies that extract 

multiparametric information and detect changes in status along 

different axes.  This raises the need for generation of systems that 

can unobtrusively monitor, compute, and combine multiorgan 

information. In this paper, the concept and ongoing work for 

such an approach is presented as regards the multiple types of 

data recorded, features extracted, and examples of how they are 

combined in the EU-funded project WELCOME (Wearable 

Sensing and Smart Cloud Computing for Integrated Care to 

COPD Patients with Comorbidities) [1], for the integrated 

management of COPD and comorbidities.  
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I.  INTRODUCTION 

According to WHO [2], “Integrated care is a concept 
bringing together inputs, delivery, management and 
organization of services related to diagnosis, treatment, care, 
rehabilitation and health promotion. Integration is a means to 
improve services in relation to access, quality, user satisfaction 
and efficiency”. This implies integration across disciplines and 
aspects of health to address patient status as a whole, especially 

in the elder multimorbid chronic patients, and integration along 
services provided from home to hospital. 

The focus in this work is Chronic Obstructive Pulmonary 
Disease (COPD) and its common comorbidities (heart failure, 
diabetes and depression), as studied in the project WELCOME. 
This is due to the prevalence of these multimorbid chronic 
conditions among the increasing elder population, and therefore 
the expected impact of such integrated care approaches, as well 
as due to its paradigmatic nature with a series of intertwined 
physiological conditions that need management. The challenge 
is to employ as much as possible ubiquitous monitoring of 
patient’s condition, and present the health professionals with 
valuable but not overwhelming information, as regards the 
overall patient’s status and trends. This includes information on 
cardiac and lung function, patient’s mobility and depression 
status, as well as correct use of medication. These pieces of 
information would then be combined in order to detect 
deteriorations, and additionally to trace the causes of 
deterioration, which is extremely important for the timely and 
efficient treatment and management of multimorbid patients. 
For example, a combination of deteriorating / stable signs and 
signals should suggest the probable causative factors and the 
required course of action. 
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A number of enabling  ICT technologies need to be put in-
place, in order to address these needs for acquisition, 
transmission, storage, analysis, decision support, user 
interaction. A core component will be the sensors deployed on 
wearable technologies (vest) for recording and streaming 
biodata to the mobile patient hub (e.g. a tablet), along with a 
pick mix of standard Bluetooth-enabled sensors for periodic 
measurements (e.g. weight) also connected to the patient-hub. 
The WELCOME smart cloud platform is the heart of the 
system where all the medical records and the monitoring data 
are managed and processed. The WELCOME cloud platform 
consists of several modules (storage server, feature extraction 
module, decision support system and external applications 
connector) and the orchestrator. This paper gives an overview 
of the cloud-based processing of the data streams towards 
detecting changes in patient status and supporting decisions 
within an integrated care context.  

II. METHODS 

 

 

Figure 1.  Overview of the Home Monitored data in WELCOME 

An overview of the parameters monitored is depicted on 
Figure 1, focusing on the patient monitored data, rather than 
data acquired during usual clinical procedures. These home-
based monitoring data consist of streaming biosignals, single 
bioparameters acquired per day, and patient-reported answers. 

A. User Input and Example Scenarios 

A series of scenarios have been elaborated by clinical 
partners to illustrate the features that need to be calculated, the 
types of rules that need to fire, and the foreseen clinical benefit 
of the system, in handling COPD and comorbidities. 

Example scenario 1. For patient X, in the last 5-7 days the 
data from the vest have changed. Mean heart rate (HR) is 85-
100/min especially late at night, and mean respiratory rate (RR) 
is 17-19/min. ECG shows sinus tachycardia. SpO2 is 97%. 
There is no change in lung sounds. Temperature is normal. 
Actigraphy shows no reduction of activity. Electrical 
Impedance tomography (EIT) shows no changes. Patient is 
advised for continuous monitoring through the vest. In the next 
2 days, the vital signs are the same with no changes in lung 
sounds, EIT, or SpO2. Sinus tachycardia remains especially 
during late at night without any other ECG changes, with RR 
18-20/min most time of the day. Dyspnoea (MRC 
breathlessness scale) increases to 1. Actigraphy shows 
reduction of activity. The system informs the informal carer, 

the psychiatrist and the pulmonologist about the changes. The 
patient is advised to visit the psychiatrist. 

Example Scenario 2. Patient Y is diagnosed with COPD/ 
CHF stage III according to GOLD/ NYHA. She wears the Vest 
6h during day and 8h at sleep. On Day 1, vital signs gradually 
deteriorate during the last 8 hours: RR= 18 to 21/min, HR= 85 
to 101/min, SpO2= 95% (baseline=96%), Temperature= 
37,3°C. ECG shows sinus tachycardia. Lung sounds show a 
slight prolongation of exhalation time. Cough events are 
detected. EIT shows no difference from baseline. Patient is 
advised to take rescue inhaler therapy (extra puffs) and to 
continue wearing the monitoring vest. Patient is prompted for 
input on dyspnea/sputum description but patient ignores it. 
Informal carer is informed of potential onset of acute 
exacerbation. On Day 2, vital signs deteriorate, reaching on 
average: RR= 25/min, HR= 103/min, SpO2= 90% 
(baseline=96%), Temperature= 37,8°C, BP=155/94mmHg. 
ECG shows sinus tachycardia. Chest sounds show slight 
prolongation of exhalation time, cough, and crackles in the 
basal parts of lungs unilaterally. EIT shows prolonged 
expiration and increased ventilation heterogeneity (possible 
pleural effusion). Patient Y reports increased dyspnea, body 
weight= 2 Kg more than 2 days ago, increased and yellow 
sputum production. System informs pulmonologist and 
cardiologist about the progress of the symptoms. MDs 
acknowledge a new acute exacerbation and decide to activate 
the prompt for visit to the hospital, and via the system, prompt 
patient and informal carer to increase diuretics dosage. 

TABLE I.  CHARACTERISTIC SIGNALS AND FEATURES 

Signal/Source Feature Usage 

Lung Sounds 

Daily Number of cough 

events, crackle events, 
wheezing events 

COPD 

ECG 
Heart Rate, AF events, 

tachy/bradycardia 
Arrhythmias  

Actigraphy 
Daily nonsleeping/sitting 

activity  

Depression, 
COPD or HF 

worsening 

EIT 
Regional airflow metrics 
(FEV1/FVC) 

COPD 
exacerbation 

Inhaler usage Daily use, erroneous use COPD  

Depression scale Periodically  Depression 

Dyspnoea scale 
Periodically and upon 

demand 
COPD 

Lifestyle pick and 

mix questions 
Periodically  

Diabetes and 

overall lifestyle 

Weight, Glucose, 

BP, Temperature 
Daily value 

Diabetes, 
Inflammation, HF 

worsening 

 

B. System Overview: Flow of Data and Features 

The data depicted in Figure 1 are initially stored on the 
cloud storage server, with the procedure depicted in Fig 2a. 
These are later employed in a feature extraction process, in 
order to detect clinically meaningful parameters, with respect 
to the clinical scenarios, as described above. Fig 2b depicts the 
scenario where the analysis of the acquired biosignals by the 
Feature Extraction Engine and the results are stored back in the 
storage server in order to be available to the system’s users, 
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takes place. An overview of characteristic features and their 
context is presented in Table 1, while more details on the 
features are presented in the next subsections. It is worth noting 
that feature analysis includes calculations at different scales, 
i.e. single events (detection of cough), features in a timeframe 
(HR), events per day, mean values per day, trends, and 
differences from absolute or previous days baseline.  

 

(a) 

 

(b) 

Figure 2.  (a) The transmission of data from the patient based sensors to the 

storage server.(Actor=Patient), (b) The bio signal processing and feature 

extraction procedure.(Actor=Orchestrator module) 

Then, the generated features are employed in the Decision 
Support System (DSS) module, in an information flow 
analogous to the one described for the feature extraction 
engine. The firing of rules will require the coordinated use of 
the feature extraction engine and the DSS, and the orchestrator 
module plays this role. Of note, the communication among the 
components of the WELCOME system is performed via 
RESTful Web services over HTTPS (and VPN). 

C. Biosignals and Feature Extraction 

Lung Sounds. The analysis of respiratory sounds and 
respiratory manoeuvres, such as cough, is a valuable diagnostic 

tool for the detection and follow-up of respiratory diseases such 
as chronic obstructive pulmonary disease (COPD). Respiratory 
sounds can be classified as breath sounds, abnormal breath 
sounds and adventitious sounds [3]. Adventitious sounds refer 
to additional respiratory sounds superimposed on breath 
sounds. These sounds include wheezes (continuous sounds), 
stridors, squawks and crackles (discontinuous sounds).  

In this work, we describe our preliminary attempts towards 
automatic crackle and cough detection. In both tasks we 
propose to attain three main goals: i) to create a sizeable and 
meaningful dataset for algorithm evaluation; ii) to identify and 
propose robust audio features for each of the problems; iii) and 
to take advantage of a multi-sensor setup, where blind source 
separation techniques will be explored to separate the multiple 
information sources provided in the auscultation signals. In 
fact, sounds such as crackles are easily masked by other 
respiratory and background sounds (e.g. deep breaths). Thus, 
we believe this separation process will allow for an accurate 
detection and characterization of different respiratory sounds.  

Regarding crackles, these are short explosive sounds that 
seem to result from an abrupt opening or closing of the airways 
[4]. Crackles can usually be classified based on their total 
duration (2CD) as fine (<10 ms) or coarse (>10 ms) [5]. So far, 
we employed two datasets available on-line [6] (first channel of 
the repository “Crackle (a)” and the repository “Crackle (c)”) 
of respiratory sounds containing crackles. Features extracted 
from the Teager energy operator [7], the wavelet packed 
stationary transform – no stationary transform (WPST–NST) 
[8], complexity measurement by the fractal dimension [9], the 
sum of Intrinsic Mode Functions [10], Information Entropy 
[11] and the Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) Process [12], were evaluated, 
namely, statistical features such as the maximum, minimum 
and quartiles from each of the previous processes. 

As for cough, this is a respiratory reflex characterized by 
sudden expulsion of air at a high velocity accompanied by a 
transient sound of varying pitch and intensity [5]. Cough is a 
common and important symptom in many respiratory diseases. 
As before, we evaluated a number of audio features, namely, 
Mel Frequency Cepstral Coefficients (MFCC), sound pitch, 
spectral rolloff and spectral inharmonicity [13].  

Electrical Impedance Tomography. One of the most 
innovative and novel features implemented in WELCOME is 
monitoring the patient’s regional lung ventilation through a 
medical imaging modality, known as electrical impedance 
tomography (EIT). EIT is a non-invasive, radiation-free 
medical imaging technique that will become wireless and 
wearable through the WELCOME project.  

In lung EIT, a set of electrodes is placed around the 
patient’s thorax and used for injecting electrical currents and 
measuring the resulting potentials through well-defined 
stimulation patterns [14, 15]. These potentials are used for the 
computation of images showing the distribution of electrical 
resistivity changes in the studied chest cross-section. These 
images constitute a regularized inverse solution of the 
generalized Laplace equation [16], a highly nonlinear ill-posed 
problem [17].   
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Figure 3.  Functional EIT image showing the distribution of tidal ventilation 

in a seated, spontaneously breathing man. 

Assessment of regional lung ventilation is one of the most 
promising applications of EIT because large volumes of air are 
moved in and out of the lungs during breathing, resulting in 
measurable changes in lung tissue resistivity. An example of a 
functional EIT image showing the distribution of ventilation in 
a healthy subject is depicted in Figure 3. Well ventilated lung 
regions exhibit high resistivity variation (red) and, inversely, 
regions with absent ventilation are depicted as areas of low 
variation (blue). In spite of the low spatial resolution of EIT 
images, several clinical studies have shown that useful 
quantitative information about, e.g., lung ventilation or 
respiratory system mechanics, can be extracted [18,19]. This is 
justified, in part, by the high temporal resolution of the current 
EIT systems (ranging from 13 to 50 frames per second). 

So far, lung EIT has mainly been used as a tool for the 
determination of the least injurious mechanical ventilator 
settings in intensive care units [20]. A recent clinical study on 
COPD patients has shown that EIT can detect the effects of 
regional airway obstruction during pulmonary function testing 
[21]. In WELCOME, in addition to spontaneous tidal breathing 
monitoring, standard ventilation manoeuvres performed are 
foreseen. Early results have shown that regional ratios of forced 
expiratory volume in 1 s (FEV1) and forced vital capacity 
(FVC) can be computed using the acquired EIT image 
sequences, while classical spirometry gives only one global 
FEV1/FVC value. New indices characterizing the spatial lung 
function heterogeneity in COPD may be further developed. As 
an example, we may consider the frequency distributions of 
pixel FEV1/FVC ratios which successfully depict the 
heterogeneity of lung disease in COPD compared with healthy 
subjects [21]. Active research aims to establish and standardize 
these new indices in order to be used as indicators of COPD 
progression and, also, as detectors of early stages of 
exacerbations. To this direction, EIT findings can be combined 
with other features (e.g. lung sounds and heart rate) for the 
design of more robust exacerbation detection rules. 

Inhaler Compliance Analysis: A monitoring device has 
been designed to record the audio of inhaler use. The audio 
recordings can be employed to monitor when the inhaler was 
used as well as evidence of flow rates achieved by the user. 
The INCA device is attached to a Diskus inhaler. It begins 
recording as soon as the inhaler is opened and stops recording 

when the inhaler is closed and saves the recording on a local 
memory. The resultant audio recording is saved with the time 
and date of the inhaler actuation. In addition, the audio can be 
processed to identify any technique errors that can occur and 
the flow rate achieved during inhalation. Common technique 
errors include poor inspiration effort, exhaling into the mouth 
piece after loading the drug and multiple respirations and these 
can all be identified from processing the audio signal. Attempts 
to use the inhaler are saved over the course of a month when 
the device is removed from the inhaler, audio recordings 
downloaded and processed [22]. The output of the processing 
is the traffic light graph in Figure 4, where each inhaler event is 
marked with a green or red dot, taken correctly or incorrectly 
respectively. This information is used as feedback for the users 
to educate them on potential technique errors and improving 
the temporal adherence to their medication regime.  

 

Figure 4.  Inhaler events (here two per day), colored coded according to the 

corrected or erronous inhaler use. 

III. RESULTS AND DISCUSSION 

The current work aims at presenting the basic rationale and 
research methods for cloud based multiparametric analysis and 
decision support in the management of complex multimorbid 
conditions. While the cloud feature extraction and the DSS 
system development is ongoing work, preliminary results on 
the WELCOME cloud computing development include: 

• Formulation of the concepts, constraints, and high level 
rules based on clinical input and clinical scenarios. An 
ontology of these concepts is ongoing work, towards 
semantic reasoning based on the high level calculated 
features at the required time scales. Specifically, this 
ontology will be used to define the data model, to 
validate the data against specific semantically enriched 
rules and enhance the DSS module with semantic 
reasoning capabilities. 

• Preliminary results for lung sound analysis. As regards 
Crackles, the Matthews correlation coefficient (MCC), 
measured after classifying the data using the Logistic 
Regression classifier, was used to evaluate the capacity 
of the different features (or combination of features) to 
detect segments with coarse crackles. Preliminary 
results show 0.8 correlation and suggest the third 
quartile of information entropy as the most descriptive 
feature. For cough detection, using a simple Nearest 



Neighbor classifier, with k = 11 neighbors, we attained 
97.4% recall and 85.4% precision scores. 

• Data Collection for lung algorithm validation. As for 
crackles data acquisition, we are presently collecting 
and annotating hospital data, acquired from the Centro 
Hospitalar e Universitário de Coimbra. This is work in 
progress. In parallel, data are collected for the cough 
detection validation. So far, 14 minutes of audio data 
from 16 volunteers (10 healthy, 5 with a cold and 1 
with bronchitis) were collected and annotated, 
amounting for 112 cough events. 

• EIT image reconstruction with existing datasets and 
calculation of basic volume features.  

• Effort to incorporate the standalone inhaler analysis in 
the integrated framework. 

A series of challenges pertain in creating a semantic model 
of all data features, constraints and rules [23], in completing the 
analysis and decision support tasks and integrating the 
algorithms in the cloud framework. Among the future steps 
will be the wider validation of algorithms, the robustness and 
performance analysis, as well as the implementation of the full 
DSS based on the calculated features.  
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