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Abstract—Body Sensor Networks (BSNs) have been used to
provide continuous remote health monitoring and analysis of
physiological parameter of patient. These devices can be attached
to different parts of the human body to capture and wirelessly
transmit health statistics in a wearable, non-invasive form factor.
However, the small physical size of the sensor node used in
BSNs can result in irregular transmission failures caused by body
shadowing. Body shadowing can disrupt the radio communication
due to body movement preventing the radio signal from passing
through. In this work, an innovative approach based on body
positioning prediction is applied to minimise the transmission
failures and lower the power consumption. By analysing the
impact of different leg positions and twiddling of the radio signal,
an algorithm to adapt the periodicity of the transmission period
for reliable transmission is proposed. The results from hardware
experiment have shown that the proposed solution can achieve
transmission success rate above 90% with reducing the energy
consumption by about 50%.

Keywords—Body Sensor Networks, Gait Analysis, Body Shad-
owing, MAC, Duty Cycle;

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have been applied to a
range of domains including environments monitoring, factory
automation and home monitoring system. Among them, Body
Sensor Network (BSN) provides a novel uses in health-care
especially in the health monitoring field. The abilities of BSN
to provide continuous remote health care monitoring have
resulted in various medical applications. A BSN consists of
multiple wireless sensor nodes placed on or implanted into
the human body. These nodes contain a wireless transceiver,
memory storage, battery and one or more physio-sensors that
measure biometrical properties such as heart rate and ECG.
The nodes can be placed at the different parts of the body
and can work individually or cooperate with each other in
providing sensing, processing, and communication capabilities.
Through the wireless transmission, the biometrical properties
are gathered by an aggregator node, such as a smart phone,
which acts as a sink. Once the data are collected, the sink
will send the information to the global base station for proper
health checking.

To reduce disruption to the patient daily activities, the size
of the BSN node needs to be minimised [1]. As a result,
the small physical size can lead to the shortage of energy
storage [1]. In BSN, the energy is utilised in three domains
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namely data sensing, data communication and data processing.
The power used for data communication is usually more
than data communication as specified in Chipcon datasheet
[2]. According to [3], energy consumption during the Clear
Channel Access (CCA) (Ecca) is 0.18mJ while data receiving
(Erec) and sending (Egepny) are both 0.12mJ for 1 Byte of
data. This number is significantly higher than the processing
of 1 instruction (0.2 nJ). Furthermore, communication failure
is more common in BSN than traditional wireless. The energy
consumption during interference is usually higher due to
retransmission [4]. If communication failures can be predicted,
a node can delay or adapt its transmission.

Many researchers have engaged in various adaptive tech-
niques to control its Medium Access Control (MAC) or routing
protocol [4]. The objective of this paper is to reduce the
transmission failures caused by the movement of the human
body that can restrict the radio transmission and interfere with
the data transmission. An Optimistic Medium Access Control
Algorithm (OMAC) is proposed by predicting and determining
the body position for the best fit for wireless transmission. The
motivation behind this paper is that the human body is moving
all the time. By locating the non-obstructive body position
for transmission and adapting the radio signal strength in the
MAC can improve the rate of a successfully transmission and
reduce the energy consumption. The movement pattern can be
predicted using gait kinematics especially when someone is
walking at a constant pace [5]. We believe this field has not
been successfully being implemented in real hardware and a
promising result has been shown in this paper for the first time.

This paper begins by highlighting works related to reduce
the energy consumption in BSN in Section II. The design
of the OMAC is presented in Section III. An analysis of
radio signal strength to determine the minimum transmission
power and legs position for reliable transmission is presented
in Section IV. The relationship between different leg positions
and the accelerator value is studied in Section V. The OMAC
is tested and evaluated experimentally using Telosb motes in
Section VI. The results are discussed in Section VII before we
conclude the paper in Section VIII.

II. RELATED WORKS

The sensor placements are restricted to the subject’s body
parts and usually attached on the wrist and ankle. In order
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to achieve maximum receiving rate, the attachment location
of these sensor node is critical. The most common locations
are waist, wrist, thigh, ankle and head. Some studies have
evaluated the effectiveness of different attaching locations.
Bourke et al. [6] have used the accelerometer sensors mounted
on the trunk and thigh to detect fall and suggested that the trunk
was the optimum location for a fall sensor. Kangas et al. [7]
have shown that the best sensor location were the waist and
head where the head level had the highest accuracy. However,
it can be inconvenient and impractical for the users to wear the
sensor on their head all the time. As a result, an accelerometer
sensor node worn on the waist might be the best choice.

In [8], Qi et al. analyzed the impact of different sensor po-
sitions and body movements on the radio signal by measuring
the Received Signal Strength Indication (RSSI) and the packet
delivery rate (PDR). They have shown that the radio signal
can be affected by the hand and leg movement and the RSSI
deviation varied depending on the placement of the sensors.
Hence, there is a need to determine the highest radio signal
for transmission

Ye et al. [9] attempts to reduce energy consumption by
duty-cycling the radio’s sleep pattern of the nodes inside a
cluster. The proposed MAC protocol reduces channel con-
tention between nodes but does not prevent communication
failure due to interference or obstruction. There is a need to
predict the body movement and adapt the sleep pattern in MAC
accordingly to reduce failure rate.

III. THE OPTIMISTIC MEDIUM ACCESS CONTROL
ALGORITHM

In this section, we present the OMAC, an algorithm that
uses the accelerator reading to determine the best leg position
for successful communication. Using accelerator data to deter-
mine different position and trajectory, an algorithm to adjust
the duty cycle of the node is designed. The OMAC consists
of three main hardware as shown in Figure 1 namely: the
aggregation node attached on the waist for the best receiving
position [7], a movement sensing node attached to ankle of
the user’s body which is the critical location for activity
recognition [10] and a base station that will connected to a
laptop through the USB interface.

A. Algorithm Design

In order to ensure that data to be delivered in a reliable
way, it is necessary to determine the best time for transmission
when non-obstructive communication is available. This can be
achieved using the on-board accelerator. Previous studies have
shown that it is possible to use the reading of the accelerator
to determine the body position [6], [8]. The flow diagram for
the OMAC is shown in Figure 2.

Gait analysis is performed using the accelerator reading
taken from the sensor node [11]. When the system starts, the
timer is initialised. A counter (C) is used to capture the number
of sensor reading stored in the node for every 50ms. It should
be noted that the sensing data will not be deleted until it has
been successfully delivered. Each TelosB node can only store
up to 5000 sensor readings due to the limited memory size
(10kB). To ensure the memory buffer does not overflow, a
maximum value of 1000 readings is assigned in the algorithm

Fig. 1. The placement of the transmitter (Leg) and the receiver (waist).
| Timer starts; Counter =0 |
Read & save
acceleration (a);
Counter++
a < Threshold &8&
Counter >= 10
| Turn on the radio | | Set highest power |
Send data via radio; Send data via radio;
Counter =0 Counter=0
| Turn off the radio | | Turn off the radio |
Fig. 2. The radio is turned off when the counter is less than 1000 or when

accelerator reading is less than threshold a. The radio is only turn on and the
packets are transmitted when the accelerator reading ge a.

for this experiment. When 1000 readings are collected, all
the packets stored in the buffer will be transmitted using the
maximum transmission power (-25dB).

In our work, we set the minimum value of C,,;,, = 10
and Cq, = 1000. When C < 1000 and the leg is not in
the best position to transmit the packet with minimum power,



the radio transceiver will be switched off to conserve energy.
The radio transceiver is only turned on when the gait analysis
algorithm has detected the reading on the accelerator is above
the threshold (a). C,,;. is set to 10 to ensure that the radio is
only turned on when there are sufficient numbers of readings
in the buffer to reduce low data transmission. An analysis has
shown that it takes 1 sec for human to finish a gait cycle.
During a gait cycle, the sensor will capture 20 readings. If the
two conditions are both satisfied, the radio transceiver is turned
on for transmission. If not, the system will wait for next cycle.
There two values can futher be optimised in future work.

IV. ANALYSING THE DIFFERENT BODY POSITION TO
DETERMINE THE TRANSMISSION POWER

In order for the algorithm to function, it is necessary to
analyze how the wireless radio signal strength changes with
different leg positions. This can be achieved by computing the
number of packets received by a node attached on the waist of
the person walking naturally. It is also necessary to determine
the minimum power signal required to transmit the packet from
a node attached to the ankle. The results from experiments will
determine the minimum power setting and the threshold value
of a.

A. Experimental Setup

The radio node used in this experiment is Telosb mote
module with CC2420 Radio Frequency (RF) transceiver using
the configuration shown in Table I [12]. To obtain valuable
results, one radio node is placed on the ankle and one receiver
node is placed on front waist with the antenna as displayed in
Figure 1.

TABLE 1. TINYOS CONFIGURATIONS
Parameters Values
Tx interval: 250ms
Tx Channel: 26
MAC: 802.15.4 (CSMA/CA)

In each experiment, 500 packets are transmitted using 8
transmission power levels (T'x,,): -25dBm, -15dBm, -10dBm,
-7dBm, -5dBm, -3dBm, -1dBm, and OdBm. The receiver
records the RSSI, the Radio Signal Strength Indication, of
received packets and computes the number of packets received.
The RSSI from three leg positions: (1) backward; (2) mid-
swing; (3) forward are recorded from three different persons,
two males and one female.

B. Results

Figure 3 shows the RSSI values for the three different leg
positions. From the chart, it can be seen that there is a strong
correlation between the leg position and RSSI. The RSSI value
in the forward position is the highest, which is followed by
the value in the backward position. The RSSI value is the
lowest when the leg is in the mid swing position. In the
mid-swing position, the transmission path is heavily blocked.
Therefore, the attenuation is the largest among the three
positions. Likewise, in the backward position, the blocking
extent is lower than the mid-swing position thus the attenuation
is smaller.

The experimental results also show the PRR in the mid-
swing position decreases at 1T'x,,=-7dbm and drops to 0 at
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Fig. 3. The forward position has the highest Packet Receive Rate and required
lower T'xpyw (-25dB) compared to backward and mid-swing position.

T'xy,=-15dbm. The PRR of the backward position goes down
slowly at T'x,,=-15dbm and reaches 0 at T'xy,,=-25dbm. The
forward position only requires 7'x,,,,=-25dBm power to ensure
packet delivery. Hence, in the next experiment, T'x),,=-25dBm
is configured to evaluate the algorithm.

V. USING GAIT ANALYSIS TO DETERMINE FORWARD LEG
POSITION THRESHOLD

In this section, an experiment to detect the forward leg
position using the sensor acceleration data is presented.

A. Experimental Setup

In this experiment, two-axis accelerometer (MTS-3000)
and Telosb mote module (CM3000) are used. The accelerom-
eter is placed on the subjects ankle to sense the acceleration
in two directions, x-axis and y-axis. It should be noted that
only x-axial (backward - forward) acceleration readings are
recorded as the main movement of the ankle is on the y-axis.
Three healthy subjects (two males, one female) are asked to
walk naturally along in the hallway, wearing their own flat
shoes and without receiving any special instruction. They walk
about 30m at their normal speed. Each experiment is repeated.
13 acceleration thresholds are selected based on the maximum
and minimum value of the accelerometer reading: 2600, 2610,
2620, 2630, 2640, 2650, 2660, 2670, 2680, 2690, 2700, 2710
and 2720.

B. Evaluation Metrics

To determine the accuracy of the accelerator threshold
to detect the forward position, the following metrics are
computed:

(True Positive)
(T'rue Positive + False Negative)

Sensitivity =

(True Negative)
(T'rue Negative + False Positive)

Speci ficity = 2)



C. Results

The graph of sensitivity against specificity is shown in
Figure 4. When the threshold is set to 2670, the sensitivity
is about 0.88 and the specificity is around 0.92, which means
about 88% true positive and 92% true negative have been
detected. Moreover, from the graph, it can be seen the area
under the curve is large area. This means the gait analysis can
be used to detect forward leg position.
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Fig. 4. The sensitivity and specificity of different acceleration threshold
where the 88% sensitivity can be achieved when a=2670.

VI. EVALUATION OF THE OPPORTUNISTIC MAC
ALGORITHM

To evaluate the effectiveness of the OMAC, one healthy
subject walks naturally along in the hallway, wearing a flat
shoe without receiving any special instruction. The sensor
node is placed on the healthy subject’s ankle to transmit
100 data packets, each with 20 Bytes of information to the
receiver every 1 sec. If the transmission fails, the packet will
be retransmitted until it is delivered successfully.

The experiments are conducted under 4 conditions:
1. OMAC, Tx = —25dBm.
2. Without OMAC, Tx = —25dBm.
3. Without OMAC, Tx = —15dBm.
4. Without OMAC, Tz = —7dBm.

To measure reliability, the PDR and the transmission time
are calculated using the approaches in [13]. Using the value
discussed in Section I, the theoretical energy consumption is
calculated using the equation [3]:

Eused = ECCA + Esent + Erec

VII. RESULTS AND DISCUSSIONS

Table II shows the results between transmission with and
without the OMAC in term of PDR rate and energy consump-
tion. With OMAC, the PDR is 92% when T'x},, = -25dBm,
and consumes less energy (289mJ) compared to transmission
without OMAC. The sensor nodes without OMAC have rel-
atively poorer performance. Although without OMAC at the
Txp,, = -7dBm can guarantee no packet lost, the energy is
consumed highest (583.4mJ). When the T'z,,, = -25dBm, the
PDR = 32% but consumed 522.4mJ energy and took 45.25s to
transmit the packets. With Tz, = -15dBm, the PDR = 69%
and consumes 407.1mJ energy for 18.13s. Based on the above,

TABLE II. RESULTS SHOWING THE SUCCESS RATE AND ENERGY

CONSUMPTION WITH AND WITHOUT OMAC

Algorithm PDR Time(s) Eysed
(%) (mJ)

OMAC 92 14 289

(Txpw = —25dBm)

Non-OMAC (T'xp., = —25dBm) 32 45.25 522.4

Non-OMAC (T'zpw = —15dBm) 69 18.13 407.1

Non-OMAC (T'xzp., = —7dBm) 100 12.5 583.4

it can be concluded the sensor node is more energy efficiently
using OMAC. However, the test data and result samples are
small. More experiments using a systematic approach such
as in [13] are required as future work to ensure the results
obtained are valid and of good quality.

VIIL

Using Gait analysis to determine position and the transmis-
sion trajectory, we have proposed the OMAC that adjusts the
transmission signal strength according to the body position.
Experimental results have shown that OMAC can achieve a
higher PDR with a lower energy consumption compare to
normal transmission without OMAC. However, further exper-
imens using a systematic approach is necessary to validate the
results and verify that the algorithms will work with different
body sizes and ages.

CONCLUSION
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