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Abstract—For a rapid identification of viral epidemics a T I DY aa
mobile virus detection is needed, which can process samples Sample => SRR S AR =
without a laboratory. The application of medical biosensors, at
key positions with a high passenger volume (e.g. airports) became
increasingly important as epidemic early warning systems. As
mobile biosensors have to fulfill various demands, like a rapid
analysis and a long battery lifetime, in this study we present a
multi-objective computation offloading for mobile sensors. The
decision whether it is beneficial to offload work to a server,
using the Long Term Evolution (LTE) wireless network, can be
made automatically and dynamically on the basis of conflicting
objectives and several constraints.

Keywords—Biosensor; Energy efficiency; Design space explo-
ration; LTE

I. INTRODUCTION Fig. 1. PAMONO biosensor. A sample with viruses is inserted i flow
cell. A laser illuminates a gold layer with antibodies on tapdaa camera
In the face of diseases spreading fast all over the worldecords the reflected light. The viruses individually #itae the antibodies,
from airport to airport, a rapid mobile virus detection ieded  and the attached viruses are counted automatically.
for a successful containment of epidemi¢s [1]. A medical
biosensor which can detect viruses, is the PAMONO (Plasmon- The computation to count the viruses can either be done

Assisted Microscopy of Nano-Objects) sensf [2]. It is 4on the mobile device with a mobile Graphics Processing Unit

modified SPR (Surface Plasmon Resonance) sensor, which (éPU) : .
A\ . N . or offloaded by using the Long Term Evolution (LTE)
able to detect individual viruses within less than threeutgs. wireless network to transfer all sensor images or partisits

As is shown in Figuréll, viruses are detected while a liquid of f the local computation to a server. The server executes the

air sample is passed through a flow cell and the viruses atta maining calculation and transfers the final result bacthé
to the antibodies on the sensor surface, resuilting in a small, 0 device. The decision, whether and at what point the
increase in brightness on the processed camera images. A, ation should be offloaded, is based on a multi-objecti
ﬁgt\zrmu:gg.detectlon softwarkl[3] is used to count the numbefiptimization. Within the optimization, two different sirtaaﬂxor_s
are used to calculate the energy consumption and run time of

These sensors can be used in different places, like airportthe GPU and the energy consumption and transfer time of the
railway stations or in areas far away from urban areas for &TE device.
rapid virus test. The mobile application of the sensor agsum
an even distribution of resources between the devices and a I[I. RELATED WORK
central server, as can be seen in Fidgure 2. The distributed se

sors form a network, where single devices can cooperate W';Bevices exist. Kumar and LU |[6] have shown that cloud

other devices in the network to provide a reliable and rapi : .
detection of viruses. With this new paradigm of cooperativecompu“ng can save energy on handheld devices, but not all

o . . : applications lend themselves saving energy using the cloud
(virus-) detection, the concept of offloadlng becomes irtgrur Li et al. [7] have shown how computation offloading can be
for energy consumption and to improve the performance

retaining a constant quality of the detectian [4]) [5]. Ireth used on handhel_d devices whlch are co_nnected via WLAN to a
) S . server. An adaptive computation offloading for battery pesle

context of offloading, processing time is important, patfcly . i< has been shown by Xian et al. [8]. Toma and Chen

the adherence of strict time limits, if several samples have EJ have shown computation offloading for real-time tasks.

Several approaches for computation offloading on mobile

e e evaon ot oot evncon ifoseaficenko et 31110 descrbe a fiamework to auomatcaly
igrate tasks to a server to receive the results.

resources (e.g. energy, time) for a sustainable, cooperati
use of biosensors. Therefore a novel approach for an energy In contrast to the existing approaches, here a multi-
efficient offloading for mobile biosensors is presented. objective design-space exploration is conducted, whiah ca
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be used for different hardware and software configurations.

Multiple and possibly conflicting objectives can be chosen,

such as energy consumption, power consumption, number -
of core cycles, run time or the energy delay product. The /
presented optimization is done in a hardware/software co- /
design to identify the hardware and software configurations
which meet the constraints.

local area C
(e.g. railway station)

The structure of the paper is as follows: Secfioh Il present
the automatic offloading method. In Sectloqd IV the resuld an
discussion of the multi-objective evaluation are givemaly,
the Sectiorl Y provides the conclusion and future work.

Server

local area A
(e.g. airport)

IIl. METHODS

In order to decide whether a computation should be eXel_:|g. 2. Scenario of a network with several biosensors iredifit locations.

cuted locally on the mobile device or offloaded to a server,

the expected energy consumption of the mobile device has . . .
to be determined. This includes the energy costs for a local The model is based on the assumption that an end device

computation, as well as the energy costs for transferring da enters ditierent power states while transferring data dobise

to the server and back to the device. The presented framewo Sag\cl)g;awgh'gwe;cgoﬁtsal};’ ttri]c?nd\?v\ﬂﬁ:i gaes éir;fge(r)(re]n; \ﬁfr?%ser of
consists of three main parts: The computation of the energ g€ p ption, P

consumption and run time of the GPU, the energy consumptio ystgmfparameters (lj'keh the spbecmcf dﬁwc_e (I:haracteritlg:, K
and transfer time of the LTE device, and optionally, a geneti Cﬁmei &egu?r?c% and t _(Ie_hnum terlod P .ys'c"; reS(t)ur_ggwoc
algorithm to explore larger design spaces, for which extiis s ocadet ot ed %wce.t € actual device ctarac en
sampling would require prohibitive computational effort. een determined by extensive measurements.

These power states can be used in a Markovian model,

with the mobile biosensor, is in this setup a laptop equippe here each power state is mapped to a corresponding stat
with a mobile GPU and a LTE modem. Later on this setup. ithin the Markov chain. The probability that the LTE device

, . .- Is within a specific state, as well as the transition proliids
will be replaced by a small handheld device, e.g. a tablét wit : :
an embedded GPU and an embedded LTE modem. between different states, depend on various context paeasne

like current radio channel conditions and traffic charasties
of the applications running on the device.

The mobile processing device, that is used in conjunction

A. Determining Energy Consumption of the GPU Therefore the Markovian model can be configured with

To calculate energy consumption and run time of the GPUgontext and system parameters. System parameters are fc

a modified version of GPUSImPow [11] is used, which is basedxample the number of physical resource blocks used forea dat
on the (well known) simulator GPGPU-Sim_[12] and gives transmission, as well as the assigned carrier frequencytend

accurate results for the energy consumption and run time. used modulation and coding scheme. The context parameter:

describe the cell environment, the file size of the data which

_ The simulator can be configured with various parametersss 1o be transmitted and the arrival rate of the data packets
like number of streaming processors (SPs), core clock rate,

DRAM type, number of raster operation processors (ROPs), As result the average power Consumptia__ﬁig, t_he average
different task schedulers and different mixing networks, t energy consumptiore and the transmission tin&re can
model the configuration of the desired architecture. be determined for the LTE device.

Any given GPU program, like the automatic virus detec- . . ,
tion, can be simulated in a cycle accurate manner. This gives: Automatic Design Space Exploration

accurate results of the actual utilization of the differpatts By combining the results from the different energy models
of the GPU and the average power consumpifapu. As the o gverall energy consumption, run time and battery lifetim

number of simulated cycles and the core clock rate of the GP\ap, pe calculated. The overall energy consumpfida defined
are known, the run timégpy can be calculated. The energy 5¢

consumptionEgpy can then be calculated by multiplying the
average power consumptioRgpy, that was consumed for
processing, with the run time. where Pgpy, Pcpu and Pre are the average power consump-

tions of the GPU, CPU (Central Processing Unit) and the LTE
communication. The run time of the GPU and CPU and the
communication time of the LTE device are given &gpy,

To model the energy that is consumed for transferring thécpy and 7. te. The energy consumption of the server is not
full sensor data or partial results of the calculation vietAE  part of this model, as the objective is an energy efficient
network to the server the Context-Aware Power Consumptiomobile device and not an energy efficient overall system. The
Model (CoPoMo) [[13] is used. CoPoMo is a highly accurateenergy consumption of the mobile CPU is also not part of
Markovian energy consumption model for LTE devices. this optimization, as the processing is either done on the GP

E = Popy- Tepu+ Pepu- Tcpu+ Pt - Tite 1)

B. Determining the Energy Consumption of the LTE Device



. . TABLE I. EVALUATED MOBILE GPUs.
or on the server, hence this has no major effect on energy

consumption. GPU  #SPs Coreclock DRAM  DRAM clock #ROPs
The overall run timel’ is defined as

520M 48 740 MHz  GDDR-3 800 MHz 4

T =Tcpu+ Tcpu+ Tite + Tserver— Tparallel (2) 540M 96 670 MHz  GDDR-3 900 MHz 8

. . 560M 192 760 MHz ~ GDDR-5 1250 MHz 16

whereTgpy, Tcpy andTite is the run time of the GPU and the S50M 384 620 MMz  GDDRS 1500 MHz 2

CPU and the transfer time of the LTE device. The t@fisRaliel

is the time that can be saved by transferring data in parallel
In contrast to Equatiof]1, the run time of the calculation 1’ S ————
on the serverlsener is included, as the objective is the run 1 Geforce 540M
time until the final result is calculated. The time to recdnd t —/A— Geforce 560M
images (approximately two minutes) is not included, beeaus W Geforce 580M
no energy and run time can be saved on this task.

=)
T

The corresponding expected battery lifetinie can be
determined as
Chatt

> ®)

whereasg, is the capacity of the battery arélthe combined
average power consumption of all parts of the device.

B =

Run time in seconds

o
©

To show the generality of the method, four different
mobile GPUs were simulated, which cover a wide range of
performance levels. The evaluated GPUs are shown in Thble I. ‘ ‘ ‘ ‘ ‘ ‘ ‘
The Geforce 520M GPU is the slowest of the four. It has 48 *° o 10 20 0 40 50 60 70
streaming processors (SPs), a core clock rate of 740 MHz and Eneray consumption n Joule
a GDDR-3 memory. The Geforce 580M GPU is the fastestrig 3. Results of the multi-objective evaluation. Energnsumption versus
It has 384 streaming processors and a GDDR-5 memory, bufie run time for four different GPUs, plotted as Pareto froffise overall
has the slowest core clock rate with 620 MHz. For reasong®areto front is plotted as a dotted line.
of simplicity, the LTE network was configured to use a fixed
bandwidth and a fixed environment. If needed, the values for
the LTE network can be modified easily, such that the design IV. RESULTS

space exploration also takes into account a varying bartiwid  The results for the multi-objective evaluation are presént

or the environment. in Figure[3 and TablgJll. The figure shows four Pareto fronts
The streaming algorithni[3], which automatically detectsfor the evaluated GPUs and the table shows the corresponding

and counts viruses that appear in the sensor images w&st off points and values for energy consumption and run time

in the pipeline. For example noise reduction and backgrounéigure and by an italic font in the table.

elimination is done on the local device. Then the enhanced The points of the overall Pareto front are the point where

images, which can be compressed to a smaller size than thg mobile GPU is used with.5 Joule and a run time df7.8
unmodified sensor images, are transferred to the server wetgonds, the three points of the Geforce 560M with an energy
the actual detection of the viruses is done. consumption 0f9.5 Joule and24.6 seconds,15.2 Joule and

A second possible scenario is the local device conducting-87 seconds and5.7 Joule and).51 seconds, and the point
the major part of the calculations until a text file with virus of the Geforce 580M with an energy consumptior2®f2 Joule
candidates and features is calculated. Only this text file i&nd a run time 0f0.85 seconds. Accuracy of the simulators
transferred to the server where the classification of thasvir has already been shown in [11] and[[13] and is therefore not
candidates is done. Afterward the result is transferredk bac ~ Within the scope of this paper.

the device. Offloading all the processing and not using the mobile GPU
For each of the possible cut off points, the correspondings part of all Pareto fronts and is shown as the top left points
energy consumption and run time is calculated on all then Figure[3 and the last line in Taldlg Il. This configuratiorsha
considered GPUs. As a result, for each GPU a Pareto frorihe lowest energy consumption but also the highest run time.
with the trade-offs is received, which is used to decide Wwaet Doing all the calculation on the mobile GPU and not using the
and at which cut off point the calculation should be offloaded server, was part of the Pareto fronts for the 560M and 580M
The decision can be based on the current demands for run tinfit not for the 520M and 540M. These configurations result in
and energy consumption on each individual mobile device. a low run time, but also a high energy consumption as shown

in the first two lines in Tabl€ll and the two bottom points in
To explore larger parameter spaces than the presenteE e figure

ones, an extensively modified version of ECJ (A Java-base
Evolutionary Computation Research System) [14] can be used Intermediate cut off points were identified for all GPUs
to optimize the parameters with an evolutionary algoritfitme  as well. These correspond to the configurations where partia
multi-objective evaluation is done with SPEA2 [15], which i results are calculated locally, and the server is used tulzdé
included in ECJ. Details of this approach can be found_in.[16]the final result. The intermediate cut off points are of gaitar




TABLE II. ENERGY CONSUMPTION AND RUN TIME FOR DIFFERENT
CUT OFF POINTS AND DIFFERENTGPUS. THE OVERALL PARETO FRONT IS
HIGHLIGHTED IN ITALIC FONT.
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ploration can be used to identify different efficient hard-
ware/software configurations for the selected objectilrethe Y
evaluated biosensor setup with energy consumption as the ma
objective,90% energy could be saved compared to the fastest
calculation. With overall time as the main objective, a shge  [g]
of 55 could be achieved compared to the most energy efficient
configuration.

In other offloading approaches| [6]./ [7].! [8].![9], offloading [9]
tasks is only a binary decision. The task is either offloaded o
not. Here multiple cut off points were inspected and it could
be shown that it can be beneficial to offload only parts of th?m}
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process data. If one device has low battery power, insufficie
computing capacity or the server is currently unavailable,
the work can be offloaded to another mobile device, which
has more battery power and sufficient computing capacitieqml
Finally, different data rates and location scenarios ferthE
communication will be evaluated, such that the offloading
automatically adapts to the environment.
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