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Abstract—This paper analyzes the effects of quantization on 

Compressed Sensing (CS) measurements applied to 

Electrocardiogram (ECG) signals. Two methods of quantization 

are proposed in this paper: uniform and non-uniform. 

Reconstruction is performed using a dictionary based on the 

Mexican Hat wavelet. A distortion-based performance metric 

Percent Root-mean-squared Difference (PRD) will be monitored 

at various Compression Ratios (CR) to quantify the impact of 

quantization. The energy cost of transmission is also evaluated 

for different levels of quantization and compared, at certain PRD 

levels. The results demonstrate that non-uniform quantization 

outperforms the uniform approach and that employing non-

uniform quantization improves implementation efficiency for 

applications with acceptable PRDs above 6.75%. Results show 

that utilizing non-uniform quantization can increase the CR from 

9.8 to 14.1 for a PRD of 30%. Furthermore, this amounts to a 

28.91% reduction in wireless transmission per frame from 37.7 

µJ to 26.8 µJ considering Bluetooth Low Energy (BLE) as a 

target wireless communication protocol.  

  
Keywords- ambulatory monitoring; biomedical signal 

compression; compressed sensing (CS); electrocardiogram (ECG); 
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I.  INTRODUCTION  

The deployment of wireless Body Area Networks (BAN) 
are transforming modern healthcare services [1]. A BAN 
typically consists of a biological sensor equipped to capture 
real-time bioelectric data from a patient. This data is then 
usually transmitted wirelessly to a smartphone, or computer 
platform, before transmission to a healthcare provider. These 
architectures present numerous benefits such as constant 
patient monitoring, lower healthcare costs and increased patient 
mobility. The suitability of a BAN hinges on the prerequisite 
that it can provide an energy efficient implementation. The 
most significant challenge associated with sustaining a low 
power implementation is the wireless transmission of the data 
to the back-end server system accessed by clinicians [2]. 
Strategies that attempt to minimize the amount of data 
generated are generally utilized.  

This research will focus on the use of a recently introduced 
lossy compression technique known as Compressed Sensing 
(CS) [3, 4]. CS provides a low complexity signal acquisition 
paradigm by simultaneously sampling and compressing.  While 
signal acquisition is highly energy efficient with CS, the 

reconstruction of the signal is computationally intensive. In the 
context of a BAN, reconstruction can be performed outside the 
wireless environment hence resulting in no significant power 
implications for the body worn components. In fact, studies 
have shown CS to be a competitive alternative to state-of-the-
art wavelet compression algorithms in terms of overall energy 
efficiency in a BAN [2]. This is based on the ability of CS to 
provide a relatively simple acquisition process and the removal 
of the need for digital compression of the raw sampled signal. 
Despite this efficiency, CS does not generally provide 
comparable results to these algorithms in terms of signal 
reconstruction quality [5].  

The power efficiency of CS acquisition is due to the fact 
that CS acquires fewer measurements than Nyquist rate 
compression methods. However, to date there has been no 
investigation of the effects of quantizing these measurements in 
electrocardiogram (ECG) signal applications. This paper 
focuses on maximizing the compression gain which can be 
realized from such quantization. An energy-based distortion 
metric, namely Percent Root-mean-squared Difference (PRD), 
has been used to objectively quantify the degradation in signal 
quality in terms of overall compression gain. This paper 
additionally exploits the Gaussian distribution nature of CS 
measurements by implementing a form of non-uniform 
quantization to increase the Compression Ratio (CR). 

II. ECG COMPRESSION 

A. Database 

The ECG database used in this paper is the MIT-BIH 
Arrhythmia Database [6]. The database consists of 48 thirty-
minute patient records sampled at 360 Hz. The recordings were 
sampled with 11-bit resolution. For the purposes of this 
research the records labeled as 100, 107, 115 and 117, which 
were used in [7], were used and each record was divided into 
frames of 1024 non-overlapping samples.  

B. Performance Metrics 

1) Percent Root-mean-squared Difference (PRD): PRD is a 

measure of the distortion between the original and 

reconstructed signals. 
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where X is the original signal, X' is the 
reconstructed signal and    is the mean of the signal. 

 

2) Compression Ratio (CR): CR quantifies the reduction in 

bits required to represent the the original signal divided by the 

bits needed for the compressed measurements. 
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where N is the frame size of the original signals (1024), B is 

the bit resolution of the sampled signal (11 bits with the MIT-
BIH Arrhythmia Database), M is the number of measurements 
sampled and q is the bit resolution of the measurements, post 
quantization. 

3) Energy Transmission per Frame (ETF): Higgins et al.  

[8] reported that a BLE transmitter dissipates approximately 

33 nJ per transmitted bit over a BLE radio link. This value will 

be used to quantify the energy implications of quantization in 

terms of wireless transmission. 

 

                   (3) 

where ETF is the energy transmitted per frame, M is the 
number of measurements sampled and q is the bit resolution of 
the measurements. 

C. Compressed Sensing 

1) Method: 

a) Aquisition: The acquisition stage of CS is central to 

its low power operation. Studies have shown that hardware 

designed to implement CS acquisition can consume less power 

than an Analog-to-Digital converter (ADC) sampling at the 

Nyquist rate [9]. The acquisition comprises a relatively simple 

linear matrix multiplication. The input signal X of N samples 

is multiplied by a sensing matrix Φ of random entries. Thus 

the M compressed measurements (Y) are computed as follows. 

 
                       (4) 

b) Reconstruction: Successful reconstruction in CS is 

based on two fundamental concepts; sparsity and incoherence. 

For typical real-world signals, a sparse vector α exists, which 

has a small number of non-zero entries (sparse) when 

represented in the dictionary Ψ. Secondly, the sensing matrix 

Φ and the dictionary Ψ must be incoherent. Equation (5) 

describes how X is expressed sparsely in a particular dictionary. 

Note the sparse dictionary is not necessarily a square matrix 

and can contain P columns instead of N to create an 

overcomplete dictionary. The reconstruction process aims to 

solve for α using convex optimization techniques. 

 

                           (5) 

 

Solving for α is performed using L1-norm minimization 
and the Basis Pursuit algorithm [10] is used for this task.  
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The reconstructed signal X' can then be recovered by 
multiplying α and Ψ. The dictionary chosen to offer sparse 
representations of the ECG signals is based on the Mexican Hat 
wavelet. This wavelet was selected due to the reported 
performance in [5]. 

III. QUANTIZATION 

Quantization is a simple compression operation that maps a 
sequence of numbers Y(N) to a smaller set of quantized values 
YQ(N). Quantization occurs as signals are digitized and 
provides an estimate of the signal by mapping each sample to a 
codeword based on its voltage. The decoder then reconstructs 
the signal Y(N) based on this quantized value. This process 
introduces an error into the signal as the original sample can 
only be estimated and is not guaranteed to be correctly 
reconstructed. Generally, the accuracy of this decoding 
depends on the bit resolution being used. 

In terms of CS, quantization of the compressed 
measurements will be the focus of this study in order to reduce 
the number of bits being transmitted wirelessly in an 
ambulatory monitoring architecture. Fig. 1 shows a plot of the 
Probability Density Function (PDF) curve for the measurement 
values for patient record 100 resulting from 1000 sensing 
matrices. In order to try and leverage the Gaussian distribution 
nature of the measurement values, non-uniform quantization 
has been used, applying higher resolution in the regions where 
the measured values occur more commonly. The performance 
of standard uniform quantization has also been analyzed. 

 

Figure 1.  PDF curve of the measurement values for measurement size of 

M=512. In total, the results are averaged from 634,000 (634 frames in record 

x 1000 iterations) measurement matrices for Record 100. 

A. Non-Uniform Quantization 

Non-uniform quantization aims to exploit the Gaussian 
distribution of the PDF curves (Fig. 1). For the purposes of 
these experiments, two regions have defined: the high 
resolution region and a low resolution region. Different step 



sizes have been applied in the different resolution regions. A 
limit value will define the maximum values for the quantizer 
and to simplify implementation the same limit will be used for 
both positive and negative values. The boundary between the 
high and low resolution regions was set at half of this limit 
value.  

Preliminary testing on the percentage of codewords 
assigned in the high resolution region and suitable limiting 
values are shown in Table I. The limit values correspond to a 
particular percentage of area underneath the curve. For 
example a value of 99.99% corresponds to intervals at the point 
where 99.99% of the measurements have occurred (in Fig. 1, 
this interval would use [-47,47] as the limits). Table I analyzes 
the PRD between the measurement values with uniform 
quantization and when the compressed measurements have 
been quantized using different limit values and different 
resolutions in the high and low resolution regions. 

TABLE I AVERAGE PRD OF THE COMPRESSED MEASUREMENTS FOR UNIFORM 

AND NON-UNIFORM QUANTIZATION METHODS AT 6 BITS RESOLUTION 

High 

Resolution 

Percentage 

Limit Values 

99% 99.9% 99.99% 99.999% 

65% 4.59 2.95 3.41 4.21 

70% 4.63 2.91 3.25 3.95 

75% 4.95 2.99 3.13 3.72 

80% 8.41 3.77 3.17 3.56 

Uniform 

Quantization 
4.78 3.52 4.33 5.42 

 

The optimal quantization scenario from Table I in terms of 
PRD was then used in further testing. The limits coincided with 
99.9% of the area underneath each records’ PDF curve and the 
high resolution region has more concentrated intervals at a ratio 
of 7:3 (70%) to the low resolution region. As a result the non-
uniform step sizes for each region were defined as in (7) and 
(8). 
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where Δhr and Δlr are the high and low resolution step sizes 
respectively, L is the limit measurement value, q is the bit 
resolution, 0.7 and 0.3 are indicative of the ratio between the 
regions. Note these equations are presented as approximations 
as (2

q
)(0.7) and (2

q
)(0.3) are rounded to the nearest integer 

value if required. 

B. Uniform Quantization 

Uniform quantization operates by having an equal step size 
for all intervals inside the defined limits. The step size Δ, is 
dependent on the bit resolution and the record specific limiting 
value. The step size is calculated by (9). 
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where Δ is the step size, L is the limit measurement value 
for a patient record and q is the bit resolution. 

IV. EXPERIMENTAL RESULTS 

A. PRD 

The complete records were compressed and reconstructed 
using 6, 7, 8 and 9 bit quantization for the non-uniform 
approach described previously. The same records were also 
tested without quantization and with 7 bit quantization for the 
uniform method.   

 

Figure 2.  Absolute error shown for two examples of measurements for non-

uniform (red) and uniform (black) (a) 6 bit (b) 7 bit quantization. 

 

Figure 3.  The average PRDs from each record at varying quantization rates. 
Results using 6,7,8 and 9 bit quantization and with no quantization are shown. 

Fig. 2 shows single frame examples of the absolute error 
with uniform and non-uniform quantization approaches and 
highlights the benefits of non-uniform quantization. The non-
uniform approach has a smaller error for the majority of entries 
due to the implementation of the high resolution region. The 
occasional error peak from the non-uniform approach is due to 



values falling outside the high resolution region where the 
uniform approach has a smaller step size. 

The PRD values are averaged over all the records in Fig. 3. 
Quantization shows improved compression gains particularly at 
higher PRD levels. At PRDs below 6.75% there is no benefit 
accrued for implementing quantization. However, quantization 
can maximize the compression as acceptable PRD values 
increase. For this test scenario, quantizing measurements with 7 
bits or fewer removes the capacity for achieving PRD values < 
9%, even at lower CRs. An increase in CR can be expected at 
all PRDs above 6.75%. At a PRD of 20%, CR can be increased 
from 8.3 to 11 and a PRD of 25% allows an extension in CR 
from 9.1 to 12.7. At a PRD of 30%, each quantization method 
tested outperforms the no quantization approach.  

 

Figure 4.  Two reconstructed frames of record 115 at the varying quantization 

rates. Original signal (red) and reconstructed signals (black) are shown for 
each plot. (a) 9 bits (CR = 12.2, PRD = 28.1%). (b) 8 bits (CR = 13.8, PRD = 

34.4%). (c) 7 bits (CR = 15.7, 39.8%). (d) 6 bits (CR = 18.3, PRD = 58.8%) 

Fig. 4 provides a visual evaluation of reconstruction using 
quantized measurements. An original signal and reconstructed 
signal using different quantization rates are shown. In general, 
the QRS complexes in the ECG are preserved even at the 
lowest quantization rates. The higher PRD values for these 
rates are due to added noise in the time periods between these 
complexes. It is clear from Fig. 4 that despite the PRD values 
reaching approximately 40%, applications requiring QRS 
feature extraction could expect good performance at these PRD 
levels, as the QRS complex is well preserved.  

B. Energy Consumption 

In order to analyze the advantages of implementing this 
quantization, the energy savings in terms of wireless 
transmission are explored.  The results in Table II are presented 
considering BLE as a target low-power wireless protocol and 
the ETF is estimated by assuming a continuous transmission 
link. The savings from quantization are significant for higher 
PRDs suggesting that applications requiring low power QRS 
detection would benefit most from the proposed quantization. 

 

TABLE II ENERGY TRANSMISSION PER FRAME FOR DIFFERENT PRD VALUES 

PRD 

Non-Uniform 

Quantization 

ETF (µJ) 

No Quantization 

ETF (µJ) 

Percentage 

Reduction 

10% 62.13 70.41 11.76% 

20% 33.82 45.25 25.26% 

30% 26.8 37.7 28.91% 

V. CONCLUSION 

This paper has proposed the use of quantization to 
maximize the CR in ECG CS applications. A form of non-
uniform quantization is compared to a uniform approach. The 
effects of quantization are shown in terms of PRD and from an 
energy point of view. The quantization proposed provides 
significant compression gains with CS for applications where 
PRD > 6.75% would be acceptable. For example in an 
application where a PRD of 30% is tolerable, 7 bit quantization 
can extend the CR from 9.8 to 14.1. From an energy 
perspective this amounts to a 28.91% reduction in ETF from 
37.7 µJ to 26.8 µJ. 
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