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Abstract— In this paper, the classification of epileptic and non-

epileptic events from multi-channel EEG data is investigated 

using a large number of time and frequency domain features. In 

contrast to most of the evaluations found in the literature, in this 

paper the non-epileptic class  consists of two types of paroxysmal 

episodes of loss of consciousness namely the psychogenic non 

epileptic seizure (PNES) and the vasovagal syncope (VVS). For 

the classification, several classification algorithms were explored. 

The classification models were evaluated on EEG epochs from 11 

subjects in an inter-subject cross-validation setting and the best 

among them achieved classification accuracies of 86% (Bayesian 

Network), 83% (Random Committee) and 74% (Random Forest). 
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I.  INTRODUCTION 

One of the most common and challenging medical cases in 
everyday clinical practice is that of patients reporting one or 
more episodes of paroxysmal loss of consciousness or altered 
awareness. The management of these medical cases may be 
proven to be demanding, time consuming and expensive and 
finally, in spite of the extensive and exhaustive investigation, 
the underlying diagnosis may remain elusive [12]. The 
differential diagnosis that a clinician usually faces is mainly 
that of an epileptic seizure, a possible psychogenic non 
epileptic seizure (PNES) and a probable vasovagal syncope 
(VVS). 

Epileptic seizures are brief episodes of abnormal excessive 
or synchronous neuronal activity in the brain of patients 
suffering from epilepsy [17]. During an epileptic seizure there 
are several specific changes recorded in the 
electroencephalogram (EEG) which is a sensitive and 
important test used to evaluate patients with suspected 
epilepsy. There are certain characteristic ictal 
neurophysiological patterns that support the identification and 
detection of epileptic events and postictal and/or interictal 
abnormalities that can provide supplementary information. 
Pshychogenic non-epileptic seizures (PNES) are sudden 
paroxysmal changes in behavior or consciousness, that 
resemble epilepsy but are not accompanied by the 

electrophysiological changes that characterize an epileptic 
seizure [24]. Although the clinical history can help differentiate 
these episodes, it is not unlikely to have inconclusive and 
insufficient event description by the patient and witnesses, not 
being able to confidently exclude and underlying epileptic 
disorder. In these cases the diagnosis of PNES can be 
supported by video-EEG monitoring, especially if a 
psychogenic event is captured, since in the case of PNES there 
are no specific EEG changes. Vasovagal or vasodepressor 
syncope is a common type of syncope and various mechanisms 
have been postulated for explaining the characteristic 
association of hypotension and bradycardia. The term 
"vasovagal" was introduced by Lewis [11] to indicate that both 
blood vessels and heart were implicated and since atropine 
reversed the bradycardia but not the hypotension he considered 
vasodilatation as the primary responsible factor. During a 
vasovagal syncopal attack there may be some  characteristic 
EEG changes starting with progressive generalized theta 
slowing of background rhythms, followed by sometimes 
hypersynchronous delta activity of high voltage (beta / alpha → 
theta → delta) and appearance of progressively lower voltage 
rhythms until isoelectric suppression [2, 13]. This pattern is 
progressively reversed after the patient’s fall, during his/her 
recovery. These changes do not include any ictal activity.  

Several methods have been proposed for  the classification 
of EEG captured events into epileptic or normal [8, 14, 22, 23, 
25]. However, only a few studies deal with the differentiation 
between epileptic and other paroxysmal episodes of loss of 
consciousness such as PNES and vasovagal syncope. It is 
worth to note that the discrimination between different types of 
non-epileptic events is considerably more useful in diagnostic 
procedure given the semiological resemblance between the 
aforementioned paroxysmal attacks. Furthermore, according to 
[24] the one third of PNES patients may have clinical 
convincing GrandMal like seizures. This makes discrimination 
between  PNES and epileptic seizures a challenging task, 
especially in an online monitoring system for automatic 
detection of epileptic events, such as [3], where false alarms 
caused by events similar to epilepsy are undesired. 
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Figure 1.  Architecture for classification of epileptic and non-epileptic events from EEG  

To the best of  our knowledge, only a few studies have been 
proposed in the literature for automated classification between 
epileptic and non-epileptic pathological events from EEG. 
Poulos et al. [21] proposed an algorithm which estimates a 
number of  auto-correlated coefficients extracted from an 
appropriately selected epileptic EEG segment and examines 
whether these coefficients are correlated with the coefficients 
of the unknown EEG segments in order to classify the latest 
into epileptic or non-epileptic. Their algorithm obtained a 
sensitivity of 83% for 90% specificity. Papavlasopoulos et al. 
[19] trained a LVQ1 neural network on an appropriately 
extracted set of auto-correlation coefficients (codebook) and 
used the resulting model to classify the corresponding feature 
vectors of the unknown EEG segments. The LVQ1 network 
achieved 86% accuracy. The feature extraction methods of the 
aforementioned classification frameworks, as well as the 
achieved results, can be found in [18]. Statistical analysis of the 
results based on chi-square test showed that the LVQ neural 
network method is superior than the cross-correlation one [18].  

In this paper,  we evaluate a large set of time and frequency 
domain features which have been widely used for the analysis 
of EEG signals in the literature. In addition to the reported 
evaluations found in the literature, we extend the non-epileptic 
class to both PNES and VVS events. The diagnosis of epilepsy 
is more challenging compared to the detection of seizure onset  
due to the semiological resemblance between epileptic and 
non-epileptic events, especially when video-EEG monitoring is 
not incorporated [4]. Also the classification of abnormal 
episodes into different types requires a broad knowledge of 
EEG patterns across patients, while seizure detection can rely 
on patient-specific models which are easier to learn, especially 
for generalized seizures [16].  

 The rest of this paper is organized as follows. In Section II 
the classification methodology is presented. Section III 
provides details about the evaluation data and the experimental 
protocol followed and Section IV presents the achieved results. 
Finally in Section V we conclude this work. 

II. METHODOLOGY FOR CLASSIFICATION OF EPILEPTIC 

AND NON-EPILEPTIC EVENTS 

The presented architecture for classification between 
epileptic and non-epileptic EEG events is part of an end-to-end 
system for monitoring and analysis of brain disorders, which is 
part of the EC FP7 research and development ARMOR project 
[3]. Within the ARMOR framework patients suffering from 
seizures are monitored through sensors and the multi-
parametric data are processed automatically (real-time by 

software tools) or semi-manually (offline with the support of 
software tools and visualizations) by neurology experts [15, 
16].  

The block diagram of the classification methodology is 
illustrated in Figure 1. Short time analysis is performed in the 
multidimensional EEG data (one dimension per electrode) and 
models for binary classification between epileptic or non-
epileptic (PNES or VVS) events are built. 

During the training phase a bootstrap set of training data 
including EEG recordings with manual time annotations for the 
onsets and offsets of the events of interest, i.e. the epileptic and 
the non-epileptic intervals, are used to build the binary 
classification models. Specifically, the multidimensional EEG 
data are initially preprocessed and subsequently parameterized 
as shown in Figure 1. Preprocessing consists of notch filtering, 
baseline correction, re-sampling (in order to obtain a common 
resolution level for all data) and frame blocking of the 
incoming EEG streams to epochs of constant length w with 
constant time-shift and without time-overlap between 
successive epochs. The epoch length was selected equal to 1 
second to match other relevant studies [14, 15, 16]. Thus each 
data sample is represented by a N × w matrix, where N is the 
number of selected EEG electrodes. After preprocessing, time 
and frequency domain features are extracted from each epoch 
for each one of the N electrodes. The extracted time domain 
and frequency domain features are afterwards concatenated to a 
single feature vector as a representative signature for each 
epoch. More details on the extracted features are provided in 
section III. The feature vectors of the training data (with 
assigned class labels known from the manual annotations) are 
used to train binary models for epileptic and non-epileptic 
events (the epileptic class includes generalized spike wave 
discharges whereas the non-epileptic class includes PNES or 
VVS). 

During the test phase the unknown multidimensional EEG 
signal is preprocessed and parameterized with the same setup 
as in the training phase. Each produced feature vector is 
compared against the epileptic and non-epileptic models, as 
shown in Figure 1, and a class label is assigned to each feature 
vector, i.e. each corresponding epoch. Further post-processing 
of per epoch decisions can be applied by using rules for 
minimum duration of the events. 

III. EXPERIMENTAL SETUP 

The previously described classification methodology was 
evaluated on multi-parametric recordings performed within the 



ARMOR project, aiming to differentiate between epileptic and 
non epileptic events. Specifically, the recordings were 
performed in the Department of Clinical Neurophysiology and 
Epilepsies in St Thomas’ Hospital in London and data from 11 
patients in total were investigated. All participants had at least 
one of their typical epileptic or non epileptic events captured 
during the recording procedure. The epileptic group, consisted 
of patients with known diagnosis of Idiopathic Generalized 
Epilepsy (IGE), manifested clinically with absence seizures and 
they had at least one clinical episode captured during the 
recording, associated with Generalized Spike Wave Discharges 
(GSWD) on the EEG. The non epileptic group included 
patients that had sustained a vasovagal syncope (2 participants) 
or a psychogenic non epileptic attack (PNES) (5 participants) 
during their monitoring. The selected EEG channels were Fp2, 
F8, F4, T4, C4, A2, P4, T6, O2, Fp1, F7, F3, A1, C3, T3, P3, 
T5, O1, Fz, Cz, Pz. The recordings were manually annotated by 
neurological experts of the King College London (the co-
authors V.T and M.K). Only epochs during the seizure duration 
were considered for training and for testing. All data were 
stored in EDF formatted files. 

Each of the EEG channels was parameterized using the 
following features: (i) time-domain features: minimum value, 
maximum value, mean, variance, standard deviation, 
percentiles (25%, 50%-median and 75%), interquartile range, 
mean absolute deviation, range, skewness, kyrtosis, energy, 
Shannon's entropy, logarithmic energy entropy, number of 
positive and negative peaks, zero-crossing rate, and (ii) 
frequency-domain features: 6-th order autoregressive-filter 
(AR) coefficients, power spectral density, frequency with 
maximum and minimum amplitude, spectral entropy, delta-
theta-alpha-beta-gamma band energy, discrete wavelet 
transform coefficients with mother wavelet function 
Daubechies 16 and decomposition level equal to 8, thus 
resulting to a feature vector of dimensionality equal to 55 for 
each of the N=21 EEG channels, i.e. 1155 in total. 

The computed feature vectors, V, were used to train binary 
classification models. In order to evaluate the ability of the 
above features to discriminate between epileptic and non-
epileptic epochs we examined several classification algorithms 
implemented by WEKA machine learning toolkit software [8], 
including BayesNet [6,7], RandomCommittee, RandomForest 
[5], IBk [1] and SMO [10,20] with RBF kernel. 

During the test phase, the EEG recordings are pre-
processed and parameterized as in training. Each classification 
model is used to label each of the incoming EEG epochs as 
epileptic or non-epileptic (either PNES or vasovagal syncope). 
In the present evaluation no post-processing algorithm was 
applied on the estimated epoch-based results. 

Evaluation was performed in a leave-one-out cross-
validation setting. Specifically, each time one subject was left-
out for testing, while the rest of the subjects were used for 
training. For the left-out subject, all epochs between seizure 
onset and offset were used as testing samples. Table I shows 
the number of epochs (M) that were extracted for each subject 
during the seizure. 

 

TABLE I.  NUMBER OF EPOCHS PER SUBJECT 

Subject 

Class & Number of epochs per 

subject 

Class Number of Epochs 

1 GSW 59 

2 GSW 29 

3 GSW 16 

4 GSW 19 

5 PNES 1 

6 PNES 1 

7 PNES 1 

8 PNES 13 

9 PNES 3 

10 VVS 45 

11 VVS 18 

 

TABLE II.  CLASSIFICATION PERFORMANCE 

Classification Model 
Statistical Measures 

Accuracy Sensitivity Specificity 

BayesNet 86% 92% 78% 

RandomCommittee 83% 88% 77% 

RandomForest 74% 77% 70% 

IBk 69% 86% 43% 

SMO (RBF kernel) 68% 55% 87% 

 

IV. RESULTS 

The classification method presented in Section II was 
evaluated following the experimental setup described in 
Section III. Table II shows the classification performance  in 
terms of accuracy, sensitivity and specificity, defined as: 

 Accuracy = (TP+TN)/(TP+FP+TN+FN)   (1) 

 Sensitivity = TP / ( TP + FN )  (2) 

Specificity = TN / ( FP + TN )  (3) 

where true positives are denoted as TP, true negatives as TN, 
false positives as FP and false negatives as FN. Here we 
consider the epileptic class as the positive and the non-epileptic 
class (PNES or VVS) as the negative. 

As can be seen in Table II, the overall highest accuracy of  the 
proposed methodology for classification between epileptic and 
non-epileptic EEG events is 86% for BayesNet classification 
model. RandomCommittee and Random Forest classification 
models follow with 83% and 74% accuracy, respectively. For 
the classifier with the highest accuracy (BayesNet), the 
sensitivity (or recall), i.e. the fraction  of actual epileptic events 
which are correctly identified as such, is 92% and the 
specificity, i.e. the proportion of non-epileptic events (either 
PNES or VVS) which are correctly classified as such, is 78%. 
Although direct comparison with other studies is not possible 
due to the different characteristics of each dataset (e.g. different 
seizure types, lack of PNES or VVS examples or single 
channel data), the achieved epileptic recognition accuracy is 



comparable to the performance reported in the literature. In 
particular, the achieved accuracy in [19] is 86%, equal to the 
accuracy of BayesNet in our methodology. Furthermore, in 
[21] the reported sensitivity (83%) is lower than the sensitivity 
of the majority of the classification methods evaluated in our 
work, while the specificity is 90%, higher than the specificity 
achieved by our framework. 

V. CONCLUSION 

In this paper, we investigated the problem of classification 
between epileptic and non-epileptic events from multi-channel 
EEG data using a large scale feature vector of time-domain and 
frequency domain features. Examination of several 
classification algorithms showed that the best classification 
accuracy was achieved by BayesNet. The proposed 
methodology was evaluated in EEG data from 11 subjects and 
the achieved accuracy was up to 86%, comparable to the results 
reported in the literature. The method has been tested across 
subjects and showed that it can generalize satisfactorily 
providing the means for diagnosis support. Preliminary 
analysis showed that feature selection before classification  
further improves the overall performance of our methodology. 
Under this scope we aim to highlight in the future the most 
important features or electrodes for seizure classification and 
evaluate our framework on different datasets.  
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