Performance of energy expenditure assessment
using a chest-worn wireless patch sensor
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Abstract— Traditional systems for energy expenditure (EE)
assessment are impractical for continuous monitoring in free-
living conditions. The study presents the performance of a
chest-worn wireless HealthPatch® sensor for the continuous
estimation of EE rate and total energy expenditure (TEE)
based on the heart rate and acceleration signals of upper
torso. Volunteers (n=32) were attached with patch sensors
at three locations on chest, a portable metabolic analyzer,
three commercial devices: BodyMediaFIT, Nike+FuelBand and
FitBitForce for comparative analysis. Participants carried out a
protocol consisted of resting, mild, moderate and intense level
of exercises that lasted for 90 min. Analyses of correlation,
performance errors and agreement were carried out for the
EE rate and TEE values of the patch sensor compared to
the metabolic analyzer. The correlation coefficient and mean
absolute error of patch sensor’s EE rate were 0.94+0.04 and
0.6740.24 (Kcal/min), respectively for the collective three patch
locations. The patch sensor offered the most accurate estimates
of TEE with least mean absolute percentage error of <15%,
least bias (0.8 Kcal) and narrowest 95% limits of agreement (-79
— 81 Kcal) than the other consumer based wearable sensors.

Index Terms— Energy expenditure, Heart rate, Actigraphy,
Wearable sensors, Performance Analysis.

I. INTRODUCTION

Obesity is a growing health crisis in United States and
around the world. Among adults aged 20 years or older in
US, more than 1 in 3 are found to be obese, and more than
2 in 3 are overweight and obese combined in 2009-2010
[1]. Obesity/overweight is one of the leading risk factors for
major health problems. Poor dietary choices, sedentary life
style, and lack of physical activity/exercises primarily disrupt
the energy balance, the ratio of energy expended (or burnt)
to the energy intake, and cause obesity. Development of tools
using wearable sensors to continuously quantify the energy
expenditure (EE) rate would allow individuals to accurately
track the calories intake and expended.

The energy expenditure is measured in humans using
various techniques including whole-body direct calorimetry
that quantifies the rate of heat loss in an insulated chamber;
non-calorimetry such as doubly labeled water method that
estimates the carbon dioxide (CO2) production by measur-
ing the concentration of non-radioactive isotope tracers of
oxygen (02) and hydrogen in the body water; and indirect
calorimetry that captures the O2 consumption and exhaled
CO2 production. These commonly used techniques for en-
ergy expenditure measurement have their unique challenges
and limitations including expensiveness, complex, bulky, un-
comfortable and calibration requirements. Most importantly
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these systems are impractical for continuous monitoring of
EE in free-living conditions.

There are few wearable devices that are shown to provide
EE rates with some degree of accuracy during activities based
on human movements measured by accelerometer sensors
[2]. Smart phone based applications have also emerged to
provide EE estimates utilizing the smart phone’s accelerom-
eter. But human body acceleration signals obtained from
extremities/pockets of clothing could be highly inadequate to
track EE estimates particularly during free-living conditions.
Further, the acceleration signals alone may not be able to dis-
tinguish resting and isometric/static exercises. On the other
hand, the combination of changes in heart rate (HR) and
body movements has great potential for accurate prediction
of EE rate during static/dynamic exercises and free living
conditions [3]. However, monitoring continuous and reliable
HR estimates over 24 hours in free-living conditions has been
a great challenge.

HealthPatch® sensor is a novel, unobtrusive, wireless
patch sensor developed by Vital Connect Inc (VCI) that
measures not only the human acceleration signals but also
the electrocardiogram, HR and heart rate variability. The
patch sensor allows continuous and remote monitoring of HR
and human movements, and provides continuous assessment
of EE rate and total daily energy expenditure (TEE). The
current study investigates the accuracy of energy expenditure
assessment using patch sensors.

II. MATERIALS AND METHODS
A. HealthPatch Sensor

The VCI patch sensor is a disposable adhesive patch
sensor worn on the chest that incorporates two surface
electrodes with hydrogel on the bottom of the patch, a battery
and an electronic module with the embedded processor,
tri-axial accelerometer, and Bluetooth Low Energy (BLE)
transceiver. The patch sensor facilitates continuous monitor-
ing of single-lead bipolar ECG and human body acceleration
signals. The device automatically performs calibration of
the triaxial accelerometer to obtain vertical, antero-posterior,
and left-right lateral directions during an initial period of
standing upright or walking. The firmware algorithms on the
electronic module process the raw signals and transmit a
stream of physiological measures as encrypted data including
heart rate, heart rate variability, respiration rate, skin tem-
perature, posture, step, and fall detection via an encrypted
BLE wireless protocol to a relay such as a smartphone,
where the live streams of data can be viewed and stored. The
physiological monitoring capabilities of patch sensor and its
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clinical validation have been reported elsewhere [4]. This
article presents the patch sensor’s functionality of providing
continuous assessment of EE rate and TEE.

B. Algorithm

The HR based EE prediction algorithms generally require
a calibration procedure that is involved with data collection
for sufficient time periods of resting and performing at least
moderate level of intense exercises in each individual. The
data collected is used to determine an empirical flex point of
HR termed as “HRFlex” computed as the average value of
the highest HR during rest period and the lowest HR value
during exercises. Above the HRflex value, the relationship
between HR and EE rate is found to be linear [3].

The major limitations of the widely reported HRflex
approach are as follows: The calibration of HRflex requires a
test that should be sufficiently long enough to obtain reliable
HRflex point in each individual; the reliability of HRflex
point using a single calibration test is very limited, since
the test needs to be repeated many instances of a day to
account for the 24 hour HR variability; the test needs to
be performed periodically to take the changes in endurance
levels of an individual over time into account; The HRflex
is time varying that depends on various factors including,
basal heart rate, time of the day, activities involved and
demographics; Inaccurate prediction of HRflex point may
force to follow the wrong choice of EE prediction models
that may lead to significant errors in EE rate; Requirement of
lengthy and periodic calibration tests weaken the usability;
Resting EE rate estimation as a constant (independent of
HR) below HRflex point might also cause significant error in
total daily expended energy estimates during the continuous
assessment of cumulative EE.

The patch sensor utilizes a machine learning based al-
gorithm that combines the continuous HR and acceleration
signals of upper torso for accurate prediction of energy
expenditure, does not necessitate any separate calibration
procedures, and overcomes the above limitations.

C. Study Group and Design

The study recruited 32 volunteers with age of 21—72
years, body mass index (BMI) of 19.6—37.9 and female/male
of 17/15. The exclusion criteria included severe skin reaction
to adhesives, current pregnancy, uncontrolled hypertension,
heart diseases, surgically treated cardiovascular issues, and
life threatening arrhythmias. Each participant provided writ-
ten informed consent and demographic information.

D. Experimental set-up

The patch sensors were attached at three recommended
locations as shown in Fig. 1 to evaluate the performance of
EE assessment at each location independently. The skin sites
on chest were ensured hair free, and prepared with alcohol
preparation pads before the sensors attached. The subjects
were attached to the Oxycon Mobile (CareFusion, Germany),
a wireless portable indirect calorimetry system that measures
oxygen uptake (VO3) and carbon dioxide production (VCOs)
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Fig. 1: The disposable HealthPatch® sensor is illustrated
with its recommended locations and orientations.

on a breath-to-breath basis, as a reference for performance
analysis. Separate calibration procedures were carried out for
calibrating the flow-volume control and gas analyzer of the
Oxycon according to the manufacturer’s guidelines before
the test protocol initiated.

Three commercially available consumer based devices:
BodyMedia FIT armband (BMF), Nike+Fuelband (NFB),
and FitBit Force (FBF) were also attached to the subjects
per the manufacturer’s recommendations. The BMF armband
also known as Sense Wear estimates EE based on the triaxial
accelerometer, skin temperature, heat flux, and galvanic skin
response of the left upper arm. On the other hand, FBF and
NFB devices attached to the wrist estimates EE based on the
body movement, incremented steps and distance. The patch
sensors and the consumer devices were wirelessly linked to
smartphones and the data were collected.

E. Study Design

The experimental protocol consisted of various tests in-
cluding resting, activities of daily living, and performing
moderate and intense level of exercise that lasted about 90
min collectively. Resting (~30 min) included sitting relaxed
on a chair, lying down on supine and performing breathing
exercises while seated. Simple activities of daily living (~15
min) included standing, wiping, sweeping, typewriting and
handwriting. Moderate level of exercises (~20 min) included
walking normally on floor, moving and lifting weights, and
performing squats. Intense activities (~20 min) included
walking/running on treadmill at speeds varied from 1.7 mph
5 mph with 0% - 18% inclinations. Treadmill exercises were
terminated for any of these reasons: (i) the subject exceeded
85% of maximal heart rate, (ii) the subject experienced
dizziness, chest pain or injury and (iii) the subject activated
emergency stop button of the treadmill. After the treadmill
tests, the subject was allowed to recover on a sitting posture
(~5 min). Thus, the protocol was designed to capture a wide
range of heart rates, activity and exertion levels to mimic the
wide spectrum of energy expenditure rates.

F. Data Analysis

The EE rate estimates of each patch sensor were com-
pared to that of respective reference EE rates of portable
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Fig. 2: Comparison of energy expenditure rate estimates of
VCI sensor vs the Oxycon, the reference metabolic analyzer,
for a sample subject.
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Fig. 3: The box plots of correlation coefficient (R) quantified
using the EE rates of reference and VCI sensor in 32 subjects.

metabolic analyzer, and the following performance analyses
were carried out for each patch locations. The strength of
the linear relationship between predicted EE rates of VCI
sensor and true EE rates from Oxycon metabolic analyzer
was quantified using the Pearson correlation coefficient (R).
Mean absolute error (MAE) and root mean square error
(RMSE) were quantified to assess the accuracy of EE rate
estimates of the patch sensor. The statistical significance of
MAE and RMSE values over the 3 patch locations in 32
subjects was assessed using one-way analysis of variance
test. The degree of agreement between the predicted and true
EE rates was quantified by the bias, lower and upper limits
of agreement with 95% confidence intervals using Bland-
Atman plot technique. The above performance measures
were also quantified for the collective EE rates from all the
3 patch locations. Further, the accuracies of total expended
energy over the 90 min protocol obtained from patch sensors
and commercial devices were assessed by calculating the
mean absolute percentage error (MAPE), linear correlation
and limits of agreement with respect to the TEE values of
portable metabolic analyzer. All the sample values are given
as mean =+ standard deviation.

TABLE I: Comparison of performance metrics (n=32) for
the assessment of energy expenditure rate.

Metric Location Location Location Locations
1 2 3 All
MAE 0.67 £0.24 | 0.65 + 0.18 | 0.67 £ 0.17 | 0.66 + 0.20
RMSE | 0.97 £ 0.38 | 0.96 + 0.34 | 0.97 £ 0.30 | 0.96 4+ 0.33
Lower -1.94 -2.02 -1.96 -1.98
Bias 0.06 -0.05 0.03 0.01
Upper 2.06 1.92 2.01 2.00

MAE, mean absolute error; RMSE, root mean square error; Lower
and Upper are the 95% limits of agreement; The units are in
Kcal/min.

III. RESULTS

The predicted energy expenditure rate data of VCI’s patch
sensor of a sample subject is plotted against the reference
EE rate values of Oxycon metabolic analyzer in Fig. 2.
The predicted EE rates showed great correspondence to that
of reference through distinct phases of protocol including
resting, simple, moderate, and intense activities followed by a
recover period. Analysis of data in 32 subjects found a strong
correlation between the predicted and reference EE rates as
0.9440.04, 0.95+0.03, 0.94+0.04 for the 3 patch locations,
respectively (as shown in Fig. 3). The overall correlation
was 0.944-0.04 for all the patch locations, collectively. Table
1 illustrates the error and agreement analyses of predicted
EE rates among each and the collective patch locations. No
significant differences (P>0.05) were noticed in performance
measures (R, MAE and RMSE) among the 3 patch locations.
The overall MAE and RMSE were 0.66£0.20 Kcal/min and
0.96+0.33 Kcal/min, respectively considering the 3 patch
locations collectively. The Bland-Atlman agreement analysis
showed a negligible bias of 0.01 Kcal/min and an excellent
95% limits of agreement (-1.98—2.00 Kcal/min) for the
prediction of EE rate using the collective locations.

The VCI patch sensor provides the time series of cu-
mulative increase in TEE based on the predicted EE rates.
The incremental changes in the predicted TEE followed the
reference TEE estimates over time very closely through out
the protocol in this subject as shown in Fig. 4. (the same
sample data shown in Fig. 2). On the other hand, the NFB
and FBF devices provide under estimation of TEE during
resting/no activities and overestimation during moderate-
to-intense activities (Fig. 4). The incremental changes in
TEE showed a correlation of 0.998+0.002, 0.991+0.006,
0.97040.018, and 0.986+0.019 for VCI, BMF, NFB, FBF
sensors, respectively. The performance metrics of correlation,
MAPE (Fig. 5) and agreement for the final estimates of TEE
after performing the protocol are given in Table 2 for the
VCI and consumer devices. The results showed that the VCI
sensor offered the least measurement error of <15%, while
the Nike+Fuelband sensor offered the most MAPE of ~90%.
The correlation of the predicted total expended energy was
highest in VCI sensor (0.69) and lowest (0.28) in FitBit
Force sensor. HealthPatch offered the least bias (0.8 Kcal)
and narrowest limits of agreement with 95% confidence (-
79—81 Kcal). On the other hand, BodyMediaFit under esti-
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Fig. 4: The comparison of incremental change in TEE over
time obtained for the same subject of Fig. 1 using Oxycon
(REF), VCI sensor, and three consumer devices.
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Fig. 5: The box plots of mean absolute percentage errors
(MAPE) obtained from the final TEE estimates of VCI
and three consumer devices compared to the reference TEE
estimates of Oxycon system in 32 subjects.

mates TEE with bias of -58 Kcal, where as Nike+FuelBand
overestimates TEE with a bias of whopping 221 Kcal and
FitBit Force sensor offers very broad limits of agreement as
shown in Table 2.

IV. DISCUSSION

The current study investigated the performance of chest-
worn wireless HealthPatch® sensor for the continuous as-
sessment of EE rate and TEE. The results showed excellent
accuracy and agreement for the prediction of EE rates and
TEE in a group of 32 individuals that represented balanced
gender, and wide range of age and BMI.

A recent study compared the accuracy of few activity
based wearable devices for the estimation of EE that ranged
from 75% to 90% during a 69 min experimental protocol
involved with various activities [2]. The EE prediction of
[2] and few other previous studies could be too optimistic
due to the reasons including: (i) the resting/no activity time
period was very low compared to the total time duration of
the protocol, (ii) the experimental protocols did not include

TABLE II: Comparison of performance metrics (n=32) for
the assessment of final TEE at the end of the protocol.

Mewic |  VCI | BMF__| NFB__ | FBF

R 0.69 0.58 035 0.8
MAPE | 1454100 | 247 + 11.7 | 89.7 + 53.1 | 213 + 127
Lower 792 1415 293 1195
Bias 038 -58.4 220.9 42
Upper 80.8 24.7 471.1 127.9

R, correlation coefficient; MAPE, mean absolute percentage error
in %, Lower and Upper are the 95% limits of agreement in Kcal.

a recovery phase after performing intense activities, and
(iii) demographics of the study group were not diverse in
age and BMI from their investigations. Including a recovery
phase in the experimental protocol could be very important,
since it may represent the time durations with lower/no
body movements and higher heart rates that might mimic
isometric/static exercises, physical stress or psychological
stress. The free-living conditions usually include different
EE dynamics and durations of resting, stress, and recovery
after activities.

The current study design has included significant time
period of resting (>30%), a recovery phase after intense
activities and a diverse study group. HealthPatch sensor is
shown to predict the EE rate very accurately for different
dynamics including recovery phase (as shown in Fig. 2)
due to the sensor fusion of HR with human movements.
On the other hand, the performance of the commercial
activity sensors are found to be relatively poor in the current
study than reported elsewhere [2]. Thus, activity only based
sensors could be inaccurate for isometric exercises and for
the prediction of overall total daily energy expenditure. The
sports activities such as driving/biking might cause even
more significant errors in activity based devices.

In conclusion, the current results show that the VCI Patch
sensor provides the most accurate measurement of EE rate as
well as total energy expenditure compared to the other major
consumer devices on the market. Such wearable technology
might help to provide more awareness about individual’s
energy restrictions and lead to healthy living.
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