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Abstract—This paper presents a novel architecture for a
patient-specific epileptic seizure onset detector using scalp elec-
troencephalography. The proposed architecture exploits the bene-
fits of both channel selection and feature enhancement to improve
the detector performance. The novel architecture results in higher
energy difference between the pre-seizure and seizure states and
hence performs better in terms of detection sensitivity and false
alarm rate compared to benchmark detectors available in the
literature. In detail, the proposed architecture achieves a 7%
increase in sensitivity and a reduction of 9 false alarms per hour
compared to the benchmark detector.

Index Terms—epilepsy, EEG, seizure onset

I. INTRODUCTION

Epilepsy is a brain disorder that is characterized by inter-
mittent abnormal firing of neurons, called seizures. Neurons
normally generate electrochemical impulses that act on other
neurons, glands, and muscles to produce human thoughts,
feelings, and actions. However, in epilepsy, the normal rhythm
of neural firing is disturbed, causing the epileptic patient to
experience strange sensations, emotions, and behaviors, or
sometimes convulsions, muscle spasms, and loss of conscious-
ness [1]. Epilepsy affects approximately 1% of the population
in the United States. Around 80% of those patients can control
their seizures with modern medicines and surgical techniques.
However, nearly 25 to 30 percent of patients are diagnosed
with intractable epilepsy, where they cannot control seizures
even with the best available treatment [2].

The confusion, loss of consciousness, and lack of muscle
control that accompany certain types of seizures can lead to
serious injuries that include fractures, head injuries, and burns.
These injuries account for a significant component of the risk
associated with epilepsy [3]. The risk of injury associated
with epilepsy can be mitigated by using a device that can
reliably detect or predict the onset of seizure episodes. Because
the clinical behavior of an epileptic seizure is preceded by
and then accompanied by electroencephalographic alterations,
electroencephalography (EEG) can be used to measure these
alterations [4].

The scalp EEG is a non-invasive, multi-electrode recording
of time-varying potentials generated by the neurons located
on the cerebral cortex. The electrodes are distributed sym-
metrically around the scalp to provide a temporal and spatial
summary of the brain’s electrical activity. The EEG activity of
clinical relevance is limited to the frequency band 0.5−50 Hz,
and that of seizure activity is further limited to the frequency
band 0.5− 25 Hz [5].

Extensive research has been dedicated to the detection of
the earliest signs of electrographic changes associated with a
seizure using either scalp or inter-cranial EEG. A device that
has the ability to detect the electrographic onset of a seizure
will enable epileptic patients to lead a more normal and secure
life, and will help them to avoid injuries due to the sudden
nature of the seizure. In [7], one of the earliest automated
systems for the detection of epileptic activity in long-term
EEG recordings is designed and implemented by applying
empirically determined thresholds on time-domain features.
A seizure onset detection algorithm that processes a sin-
gle, manually-selected channel of an invasive-EEG recording
(ECoG) is implemented in [8] by using a maximum-likelihood
classifier with Gaussian mixture model conditional densities to
differentiate between a patient’s normal and abnormal ECoG.
In [5], a patient-specific method for the detection of epileptic
seizure onset from scalp-EEG is designed using wavelet de-
composition, feature extraction, and a support vector machine
(SVM) classification algorithm. In [9], automatic detection of
epileptic seizure event and onset is proposed using wavelet
based features and certain statistical features without wavelet
decomposition.

In [10], different methods are employed for EEG chan-
nel selection preceding automatic seizure detection. Channel
selection based on the highest variance method has demon-
strated an improved performance compared to a no channel
selection scheme. EEG channel selection reduces the detector
computational complexity and avoids using channels with
no relevant information that may deteriorate the detector’s
performance. In [11], it has been shown that EEG signal
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differentiation can be used as a feature enhancement technique
for better seizure onset detection. A seizure is characterized
by abnormal synchronization in neuron firing, and thus sharp
spiking activities in quick succession are observed. The use
of EEG differentiation accentuates the spiking activity while
suppressing the background, thus aiding in the detection of
seizure onset.

From [7] - [9], the seizure onset detector is tradition-
ally composed of two stages, namely, feature extraction and
classification stages. The channel selection and feature en-
hancement stages have been investigated separately in [10]
and [11], respectively. Both stages, separately, have improved
the performance of the detector. In this paper, we aim to
exploit the benefits of both channel selection and feature
enhancement to improve the detector performance. Hence, we
propose a detector architecture that is composed of five stages,
namely, EEG channel selection, feature enhancement, spatial
averaging, feature extraction, and classification. Experimental
results have demonstrated an improved performance for the
proposed architecture as compared to a benchmark system
based on [11].

The rest of this paper is organized as follows. Section II
presents the proposed detector architecture. Clinical data and
performance measures are presented in Section III. The results
are described in Section IV. Finally, conclusions and future
research are drawn in Section V.

II. THE DETECTOR ARCHITECTURE

This section presents the proposed detector architecture,
as shown in Fig. 1, based on the following stages: channel
selection, feature enhancement, spatial averaging, feature ex-
traction, and classification.

Fig. 1. The proposed detector architecture

A. Channel Selection

The task of the channel selection stage is to automatically
choose the EEG channels that contain the most valuable
electrographic seizure information. This in turn reduces the
detector computational burden and omits invaluable channels

that may deteriorate the detector’s performance. Hence, given
a total of M EEG channels, the channel selection stage selects
the N < M channels with the most valuable information.

The channel selection method used in this paper is based on
the variance of the EEG signal amplitude for the duration of
the seizure [10]. The rationale is that during seizure a higher
signal energy is expected as compared to the normal case,
which can be measured through variance. The variance of
channel c, V (c), is expressed by,

V (c) =
1

k

k∑
i=1

(xc(i)− µc)2 , (1)

where xc is the EEG data for channel c, µc is the mean of
the EEG data for channel c, and k is the number of samples
in the EEG data (equal to the sampling frequency multiplied
by the duration, in seconds, of the EEG data). Let M and
N denote the set of available and selected EEG channels,
respectively. The N selected channels are chosen as the ones
with the highest variance values, and are given by

N = argmaxV (c), (2)

where c ∈M.

B. Feature Enhancement

The role of the feature enhancement stage is to emphasize
the seizure zone in the EEG data with respect to the back-
ground, which is suppressed simultaneously. In this regard, a
differentiation and exponentiation approach is adopted [11],
which is expressed as

Xc(t) = exp

((
1

w

) ∣∣∣∣dxc(t)dt

∣∣∣∣) , (3)

where w is a normalization constant (w = 100, 000 in [11]),
and Xc(t) is the EEG signal with enhanced feature for channel
c. The reasoning behind how (3) enhances the seizure onset
with respect to the background is simple. Assuming t1, t2,
and t3 are successive time points and a spike occurs at t2,
then statistically xc(t2)−xc(t1) and xc(t3)−xc(t2) will have
high numerical values. In the event that all three points belong
to the normal, background signal, then xc(t2) − xc(t1) and
xc(t3)−xc(t2) will have small values. As a result, dxc(t)

dt will
enhance the spikes in x while suppressing its background [11].

C. Spatial Averaging

Following the channel selection and feature enhancement
stages, the next stage in the proposed detector is the spatial
averaging (SA). In the SA stage, the N selected channels
with enhanced features are averaged so that a single EEG
vector, Y , is obtained. SA reduces the number of features fed
into the classification stage and thus reduces the detector’s
computational burden. For instance, if H is the number of
features extracted from each EEG channel, the detector must



process N × H features. However, through SA, the detector
now processes only H instead of N ×H features.

D. Feature Extraction

The onset of a seizure is often associated with rhythmic
activity that is composed of multiple frequency components.
As a result, different features are extracted from several EEG
sub-bands for improved detection accuracy. Furthermore, since
EEG is a highly non-stationary signal, features should be
extracted from reasonably small time epochs. As a result, a
sliding window of length L = 2 seconds (i.e., a 2 second
epoch) is passed along the EEG signal, and each epoch is fed
into the feature extraction unit.

In order to extract relevant sub-band signals from the
EEG epoch, a multi-resolution wavelet decomposition is used,
where the low and high pass filters are chosen to be associated
with the fourth member of the Daubechies wavelet family,
which exhibit a maximally flat response in their pass-bands
and minimum spectral leakage in their stop-bands [12]. Only
the sub-band signals that collectively represent the activity at
time-scales corresponding to the frequencies from 0.5 to 25

Hz are computed since this frequency range captures various
seizure onset electrographic manifestations [13]. These sub-
bands correspond to the δ, θ, α, and β EEG frequency bands,
where δ < 4 Hz, θ ∈ [4, 7] Hz, α ∈ [8, 15] Hz, and β ∈ [16, 31]

Hz.
The extracted sub-band epoch signals are not used directly

as the feature vector since the direct representation of the EEG
waveform is too sensitive to noise. Instead, the energy in the
two second epoch sub-bands are computed, resulting in the
extraction of four energy features from a single EEG epoch,
which is given by 

Eβ
Eα
Eθ
Eδ

 =


∑

(Y 2
β )∑

(Y 2
α )∑

(Y 2
θ )∑

(Y 2
δ )

 , (4)

where the summation is over the sample points in the epoch
and Yβ , Yα, Yθ, and Yδ are the spatially averaged signals from
the β, α, θ, and δ bands, respectively.

E. Classification and Detection

In the classification stage of the detector, each EEG epoch
is assigned to a seizure or non-seizure class using an SVM
that is trained on feature vectors representing both seizure
and non-seizure epochs. Generally, seizure and non-seizure
classes are not linearly separable, thus SVM must use non-
linear decision boundaries. In the proposed detector, SVM uses
a Gaussian radial basis function (RBF) kernel and a fixed set
of hyperparameters (defaults in the MatLab SVM software).

The output of the SVM will declare the current epoch as
seizure or non-seizure. However, in an attempt to decrease the
number of false seizure detections, a timing constraint, T , is

adopted where the detector does not declare a seizure event
until SVM has detected T = 3 consecutive seizure epochs [5].

III. DATA AND EXPERIMENTATION

A. Clinical Data

The data used to evaluate the proposed detector is from
a publicly available database consisting of EEG recordings
from pediatric subjects with intractable seizures, collected at
the Children’s Hospital Boston [14]. The subjects have been
monitored for up to several days following withdrawal of anti-
seizure medication in order to characterize their seizures and
assess their candidacy for surgical intervention. All signals are
sampled at 256 samples per second with 16-bit resolution. The
International 10 − 20 system of EEG electrode positions and
nomenclature is used for these recordings. All recordings used
have 23 EEG channels.

For each clinical seizure, an expert has indicated the earliest
EEG change associated with the seizure. The data is segmented
into one hour long records. Records that do not contain a
seizure are referred to as non-seizure records and those that
contain one or more seizures are referred to as seizure records.

B. Testing

To test the proposed detector, a leave-one-out cross-
validation testing scheme is adopted for each subject. In the
leave-one-out cross-validation testing scheme, the SVM is
given a training set that includes the seizure and non-seizure
epochs from all but one of the subject’s recordings. The
detector then attempts to detect the seizure epochs from the
excluded record using the learned knowledge from the training
set. This is repeated until each recording from the subject is
excluded once.

The performance of the detector is analyzed using the
following measures:

• Detection latency: It is the delay between the electro-
graphic seizure onset marked by the electroencephalo-
grapher and algorithmic seizure event declared by the
detector.

• Number of false alarms (FA) per hour: It is the number
of false positives per hour

• Sensitivity: It is the percentage of seizure epochs that are
detected correctly

It is important to note that the performance of the detector
is evaluated by looking at the classification of all epochs.
No refractory period is adopted [10]. The proposed detector
performance is compared to a benchmark detector based on
[11], which involves a feature enhancement stage but no
channel selection or spatial averaging stages.

IV. RESULTS AND DISCUSSION

Tables I - III show the average energy difference in dB
between the pre-seizure and seizure states for seizure records
03, 04, 15, 16, 8 and 21 of patient CHB 01. The energy



differences are calculated on the four extracted sub-bands.
Table I shows the results when the detector only uses SA.
Using only SA is somehow similar to the traditional detec-
tors in the literature (i.e., no channel selection or feature
enhancement). Table II shows the results when the detector
implements the feature enhancement stage without any form of
channel selection. From Tables I and II, the energy difference
when feature enhancement is used is higher than when no
feature enhancement is used. The energy difference is further
enhanced for the case when the detector implements both
feature enhancement and channel selection, as shown in Table
III. It is advantageous for the energy difference between the
seizure and pre-seizure states to be large since it leads to an
improved detection performance, based on SVM. The ability
of a SVM to discriminate between two classes is influenced
by their separability. Therefore, as the difference between the
seizure class and non-seizure class increases, the classifier will
distinguish between the two classes more effectively, and thus
the detector performs better.

The performance of the proposed detector as compared to
a benchmark based on [11] is shown in Table IV. The bench-
mark assumes the same structure as the proposed detector but
does not perform any type of channel selection. In Table IV,
the results of the proposed detector are shown for 6 channels
(the best detection performance is obtained by selecting 4 -
6 channels [10]). Comparing the two detection architectures,
the proposed architecture performs better in terms of the
number of false alarms detected within an hour and in terms
of sensitivity. Both detectors have a very close performance
in terms of detection latency, with an increase of 0.4 seconds
in latency for the proposed detector.

TABLE I
AVERAGE ENERGY DIFFERENCE BETWEEN PRE-SEIZURE AND SEIZURE

USING ONLY SA

Rec. 03 Rec. 04 Rec. 15 Rec. 16 Rec. 18 Rec. 21
β 3.84 3.05 3.59 1.77 3.52 5.51
α 11.61 8.04 5.49 3.25 7.46 9.19
θ 12.30 12.15 7.51 5.27 9.24 12.08
δ 11.24 9.32 2.69 4.62 9.46 8.99

TABLE II
AVERAGE ENERGY DIFFERENCE BETWEEN PRE-SEIZURE AND SEIZURE

USING FEATURE ENHANCEMENT WITHOUT CHANNEL SELECTION

Rec. 03 Rec. 04 Rec. 15 Rec. 16 Rec. 18 Rec. 21
β 10.66 11.47 3.14 9.90 5.18 6.25
α 13.69 13.22 4.89 12.44 10.84 12.16
θ 13.83 13.49 13.49 13.25 11.15 12.59
δ 13.42 15.17 5.83 15.02 12.19 12.24

V. FINAL REMARKS AND FURTHER DISCUSSIONS

This paper proposes a novel architecture for an epileptic
seizure onset detector. The combination of the channel selec-
tion and feature enhancement stages has led to an improved

TABLE III
AVERAGE ENERGY DIFFERENCE BETWEEN PRE-SEIZURE AND SEIZURE

USING FEATURE ENHANCEMENT AND CHANNEL SELECTION

Rec. 03 Rec. 04 Rec. 15 Rec. 16 Rec. 18 Rec. 21
β 12.54 16.44 5.33 12.56 11.45 10.94
α 13.61 18.97 7.13 13.79 12.39 12.38
θ 14.51 18.43 8.05 15.29 13.05 13.33
δ 14.89 21.66 7.92 17.58 14.03 12.61

TABLE IV
PERFORMANCE OF THE PROPOSED DETECTOR AS COMPARED TO A

BENCHMARK BASED ON [11]

No Ch. Selection With Channel Selection
Detection Latency 3.6 sec 4 sec

FAs per hour 137.8 128
Sensitivity 80.6% 87.5%

detection performance. An increase in the energy difference
between seizure and pre-seizure states is observed when the
proposed detection is implemented, versus implementing the
detection system without any form of channel selection. The
proposed system also performed better in terms of false alarm
rate and sensitivity.
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