
Constraint-Driven Dynamic Adaptation of
Mobile Applications for Quality of Service

Young-Woo Kwon
Department of Computer Science

Utah State University
young.kwon@usu.edu

Eli Tilevich
Department of Computer Science

Virginia Tech
tilevich@cs.vt.edu

Abstract—Modern mobile applications are executed in a vari-
ety of execution environments by users with different preferences
for energy savings, performance efficiency, reliability, and pri-
vacy. Offloading a mobile application’s functionality to execute
at a remote server has become an important energy and per-
formance optimization technique. Mobile applications, however,
executed over networks with divergent latency/bandwidth char-
acteristics, access cloud-based servers that offer different levels
of performance, availability, and privacy. An effective offloading
mechanism must consider all these factors when determining
which functionality should be offloaded to which server. In this
paper, we present a novel approach to configurable, adaptive
offloading for mobile applications that is driven by constraint
solving. The programmer annotates energy intensive functionality
at the method boundary. The end user, via a configuration menu,
specifies how to prioritize energy savings, performance efficiency,
server availability, and privacy. The specified priorities are then
automatically translated into constraints used at runtime to drive
an adaptive offloading runtime system. Applying our approach to
third-party applications enhanced them with adaptive offloading
capabilities, thereby optimizing their respective energy and per-
formance efficiencies. These results indicate that our approach
presents a promising direction in improving the quality of service
of mobile applications.

I. INTRODUCTION

Mobile computing is characterized by a high heterogeneity
of the hardware/software stack and network environments.
That is, the same mobile application can be executed on
mobile devices with different hardware configurations, varying
in terms of their respective CPU, memory, and communi-
cation characteristics [1]. Another source of heterogeneity
are mobile operating systems, whose implementation policies
can affect the performance/energy profiles of the executed
applications [2]. Finally, mobile devices use a great variety of
network types with divergent characteristics, including latency,
bandwidth, congestion, packet loss, and interference. Another
prominent trend of mobile computing is the applications’ en-
ergy demands outpacing the devices’ battery capacities. Rapid
growth in application functionality requires ever greater energy
budgets, thus subsuming any advances in battery capacities.

A common energy optimization technique for mobile ap-
plications is cloud offloading—placing energy-intensive func-
tionality to run at a remote, cloud-based server. Executing
this functionality at a remote server saves the mobile device’s
battery power. The superior computational power of offloading

servers also typically increases the performance efficiency of
the offloaded functionality. As a result, cloud offloading has
become a versatile optimization tool; programmers can use it
to minimize energy consumption, maximize performance, or
maximize some given energy-performance ratio.

By taking advantage of distributed execution, cloud of-
floaded applications can become subject to partial failure
and privacy vulnerabilities. In particular, mobile networks are
prone to volatility, with fluctuations in latency, bandwidth, and
congestion. Depending on their location and administrative
procedures, offloading servers may offer different levels of
trust. Thus, while providing energy optimization advantages,
cloud offloading also incurs problems traditionally associated
with distributed execution.

These realities of mobile execution give rise to two fun-
damental problems of engineering effective cloud offloading
optimizations: (1) how can the application programmer express
the desired optimization priorities? (2) how can the system
programmer create a runtime adaptation mechanism to drive
offloading optimizations that takes into account both the
expressed optimization priorities and the runtime environment
in place? Solving these problems requires overcoming the high
level of complexity imposed by the need to consider mul-
tiple parameters, both static and dynamic. These parameters
need to be efficiently obtained and evaluated. Furthermore,
the considered parameters may change depending on users,
devices, and deployments. In the end, the goal of adaptive
cloud offloading is to decide which portion of the mobile
application’s functionality to offload to which server.

In this paper, we present a novel dynamic adaptation ap-
proach for cloud offloading that leverages constraints satisfac-
tion. We express the optimization priorities of cloud offloading
as a constraint satisfaction problem (CSP). Informally, a CSP
computes the values that a set of variables must take in order
to satisfy a set of conditions imposed on the variables. Our
system architecture maps variables to offloading optimization
criteria (e.g., energy savings, performance efficiency, server
availability, server trustworthiness, etc.); values to the actual
runtime parameters of the criteria (e.g., the amount energy
consumed by a method, the time taken to execute a method,
the average failure rate for an offload server, and the user-
specified degree of trust for a server); conditions to the end
user’s specified optimization priorities (e.g., minimize energy

MobiCASE 2014, November 06-07, Austin, United States
Copyright © 2014 ICST
DOI 10.4108/icst.mobicase.2014.257806

consumption, minimize execution time, maximize a given
energy/performance ratio, prefer offload servers with higher
trust levels).

This paper makes the following technical contributions:

• A software model for constraint-solving driven adap-
tive cloud offloading—we show how adaptive cloud of-
floading optimizations can be expressed and implemented
as a CSP; our model effectively manages the complexity
of implementing an adaptive runtime system that must
consider multiple runtime parameters.

• A reference implementation of adaptive runtime sys-
tem based on our model—we describe our novel system
architecture that realizes the constraints-based adaptive
cloud offloading model above.

• Empirical evaluation—we critically evaluate the prac-
ticality of our approach through a series of micro-
benchmarks and case studies of optimizing the energy
efficiency of third-party mobile applications.

The rest of this paper is structured as follows. Section II
presents a real world scenario applying our approach and
introduces the concepts and technologies used in this work.
Section III details our technical approach. Section IV presents
the results of evaluating our approach. Section V discusses
the advantages and limitations of our approach. Section VI
compares our approach to the related state of the art, and
Section VII presents concluding remarks.

II. REAL WORLD SCENARIO AND
TECHNICAL BACKGROUND

In this section, we first present a real world scenario that
motivates our approach. Then, we introduce the main technical
concepts used in this work.

A. Real World Scenario

Consider traveling to a foreign country whose language you
cannot read. Not being able to read public signs in an unfa-
miliar language (e.g., Chinese for an English-speaking visitor)
is likely to hinder one’s traveling experiences. Mezzofanti is
an Android application that solves this problem; it translates
signs taken as a picture with the mobile device’s camera. The
taken pictures parameterize an optical character recognition
(OCR) algorithm that extracts the text contained in the picture.
The application then translates and presents the extracted text
using automatic language translation. Because of the energy-
intensive OCR functionality, using the Mezzofanti application
heavily can quickly drain the device’s battery.

Camera Image

Extracted Text

OCR

Fig. 1. Optimizing the Mezzofanti app. with cloud offloading.

As consuming an inordinate amount of energy, the OCR
functionality makes a promising candidate for cloud offloading
as shown in Figure 1. That is, instead of running the OCR
algorithm on the mobile device, text images can be transferred
across the network to the cloud server, so that the OCR
functionality would be executed remotely, without draining
the device’s battery power. The extracted text can then be
transferred back to the device to be automatically translated.
Because the server processing capacities (i.e., CPU speed,
memory size, cache architecture, etc.) are more powerful than
those on the device, the offloaded OCR functionality is also
bound to improve its performance efficiency.

Nevertheless, one must ask whether the OCR functionality
should be offloaded once and for all. For example, when a
mobile device is disconnected, offloading optimizations render
applications unusable. When the network connection is poor,
the energy savings afforded by the offloading optimization
will quickly disappear, as retransmitting lost packets over a
volatile cellular network can tap deeply into the application’s
energy budget. By contrast, in the presence of a stable net-
work connection, an offloading optimization can be used to
reduce energy consumption, to maximize performance, or to
pursue an optimization strategy that correlates both of these
objectives.

Consider the following three scenarios of using Mezzofanti
that would prioritize the offloading of the OCR functionality
in different ways:

1) When using the application within a close proximity to
the hotel, the user may want to maximize both energy
savings and performance efficiency. Running out of
battery power would not be catastrophic, as the user can
come back to the hotel and recharge the device.

2) When riding a city bus and using the application to
make sense of public service announcements, the user
may want to maximize performance efficiency. If an
announcement, for example, conveys the intent to alter
the original service route, the user needs to learn this
information as soon as possible to have enough time to
get off at the very next stop if necessary.

3) When exploring the areas far away from the hotel, the
user may want to maximize energy savings. The user
needs to keep the device operational for as long as it
takes to get back to the hotel.

Our work addresses the need for scenario-specific con-
figurability for adaptive cloud offloading optimizations as
demonstrated by the scenarios above.

B. Technical Background

The major technologies used in this work are cloud offload-
ing and constraints satisfaction. We describe them in turn next.

1) Cloud Offloading: Cloud offloading has become a popu-
lar optimization technique for mobile applications. It leverages
the resources of cloud-based remote servers to execute portions
of a mobile application’s functionality. By executing some
of the application’s functionality in the cloud, offloading
reduces the amount of energy consumed by the mobile device,

thus saving its battery power. An additional benefit of cloud
offloading is improved performance efficiency, as cloud servers
have hardware resource more powerful that those available on
mobile devices. Application-level cloud offloading optimiza-
tions are typically implemented by partitioning the application
into the client and server parts communicating across the
network.

In our prior work in cloud offloading, we introduced a
novel partitioning mechanism that leverages static program
analysis and program transformation techniques to optimize
a transferred program state [3]. In addition, we introduced
an adaptive offloading mechanism, in which the local/remote
application parts are determined at runtime, as driven by the
execution environment in place [4].

2) Constraint Satisfaction Problem: Constraint satisfaction
problem (CSP) is a mathematical model that describes opti-
mization scenarios involving objects and their states; various
constraints are imposed on the states, and the solution must
satisfy all the constraints. Formally, a CSP involves finite sets
of domains, variables, and constraints. A domain defines a
finite set of values or value ranges. Each variable is assigned
to a domain. A constraint is a predicate expressed in first-
order logic. A constraint expresses the condition of assigning
a domain to variables. To solve a CSP is to find an assignment
that satisfies all the specified constraints. A common variant
of CSP is the boolean satisfiability problem (SAT), which uses
a boolean formula to solve a CSP.

As a specific example, consider a domain D = {1, 2, 3},
assigned to variables X and Y (i.e., X ∈ D and Y ∈ D). We
want to satisfy the following two constraints: C1 : X 6= Y
and C2 : X < Y . The first solution for this CSP is X = 1
and Y = 2. To find the second solution (i.e., X = 2 and
Y = 3), we would have to add another constraint C3 : (X 6=
1)∧(Y 6= 2). In terms of its time complexity, a general CSP is
NP-complete. However, practical heuristics have been created
to solve CSPs in a reasonable time.

III. CONSTRAINTS-DRIVEN ADAPTIVE
CLOUD OFFLOADING

In this section, we present constraints-driven adaptive cloud
offloading, a new approach to enhancing mobile applications
with adaptive energy optimization capabilities. Section IV
presents the empirical results of applying our approach to
third-party mobile applications. Section V describes the ap-
proach’s advantages and limitations.

A. Approach Overview

Our approach enhances third-party applications with the
ability to optimize their execution via user-configured adaptive
cloud offloading. Figure 3 outlines the design space for this
work, whose key objective is to flexibly adapt offloading
optimizations for the inherent variabilities of distributed mo-
bile execution. Specifically, cloud offloading environments
are characterized by the presence of heterogeneous mobile
devices, offloading servers, mobile/cellular networks, and user
privacy preferences.

Multiple Offloading Servers (public or private cloud)

User 1
Priorities: energy savings
& performance efficiency

User 3
Priorities: energy savings

& server availability

4G WiFi3G

70 % 95 % 100 %
Average

Availability

User 2
Priorities:

performance efficiency

Fig. 2. Heterogeneity of cloud offloading optimizations.

Figure 3 shows our approach’s main workflow. The runtime
adaptivity of the offloading behavior is parameterized by both
application programmers and end users. The application pro-
grammer’s responsibility is to identify the methods that impose
a high energy overhead and would make promising offloading
candidates. How the programmers identify these methods
is orthogonal to our approach—they can take advantage of
existing energy profiling tools [5], [6]. The identified methods
are marked by annotation @OffloadingCandidate. Based on
their application knowledge, programmers provide additional
configuration parameters using the Selection annotation, which
defines the criteria of EnergySavings—minimize the amount
of energy consumed, PerformanceEfficiency—minimize the
execution time, Availability—favor the offloading servers that
are more likely to be available, Privacy—favor the servers
deemed as more trustworthy.

Adaptive Middleware

Annotation

Validation
State

Selection

Program
Transformation Deployment

Environment
Monitor

Offloading
Manager

Constraints
SolverPreferences

Optimization Priorities

Settings

Application
Programmer

End User

Fig. 3. Overall procedure for the proposed approach.

public class OCR {
@OffloadingCandidate
@Selection(criteria={Selection.EnergySavings|
Selection.PerformanceEfficiency|Selection.Availability})

public void ImgOCRAndFilter(...) { ... } }

Fig. 4. Annotating the Mezzofanti application.

Figure 4 presents an example of annotating method
ImcOCRAndFilter. The programmer identified this method as an
energy hotspot suitable for a cloud offloading optimization.
The programmer also specified that the offloading should be
parameterized with the optimization criteria of energy savings,
performance efficiency, and server availability. These criteria
are then made available to end users, who determine the actual

runtime behavior of the identified offloading optimization. Fig-
ure 5 shows the settings dialog box that will be automatically
added to the application based on the annotations in Figure 4.

Fig. 5. Automatically provided preference setting menu.

The annotated application is then analyzed and transformed
by going through the following steps. The programmer spec-
ified annotations are first verified to make sure that the
identified candidate methods can be safely offloaded (i.e., they
do not rely on device-specific resources such as sensors). Then
a static program analysis determines the program state that
must be transferred to the server and back. Based on the
analysis’ results, a bytecode enhancer modifies the compiled
application to generate the necessary checkpoints1.

Based on the offloading criteria specified by the @Selection
annotation, a new settings menu is added to the optimized
application as shown in Figure 5. Once the end user selects the
optimization criteria, a generator, also added to the application,
synthesizes a set of constraint declarations for each specified
criteria. The details of generating the constraint declarations
appear in Section III-B.

The enhanced application is installed on the mobile device
and on each available offloading server. A simple configuration
file installed on the mobile device lists the URLs of the
available offloading servers, their respective trustworthiness
rankings (in percents), and the availability threshold (i.e.,
the availability rate bellow which the server should not
be considered). This file should be provided by a person
knowledgeable about the application’s execution environment,
such as a system system administrator or a sophisticated end
user. In addition to the enhanced application, our approach
also distributes a small runtime system parameterized with
the synthesized constraint specifications. The runtime system
includes an environment monitor to keep track of the execution
environment, a constraint solver to determine offloading strate-
gies at runtime, and an offloading manager to handle network
communication and state synchronization. The details of the
runtime system appear in Section III-C.

B. Generating and Evaluating CSP Constraint

Recall that CSP constraints are boolean predicates that can
be efficiently evaluated by a constraint solver. Our approach
uses constraints to express commonly accepted invariants
of the cloud offloading optimization. For example, to save
energy by offloading a method to the cloud, the amount of

1We employed the same static program analysis and program transformation
mechanisms developed through our prior work [3], [4].

energy consumed by the network transfer must be lower than
the amount of energy consumed by executing the method
locally. Similarly, to increase performance by offloading a
method to the cloud, the time taken by the network transfer
must be less than the time taken by executing the method
locally. With respect to server availability, the server with the
highest observed availability rate should be selected. With
respect to server privacy, the server with the highest level
of trustworthiness, as specified by the system administrator,
should be selected. The reference implementation of our ap-
proach provides the invariants for energy savings, performance
efficiency, availability, and privacy.

The constraint definitions are generated at configuration
time, once the end user has selected the optimization cri-
teria. These constraint definitions parameterize a third-party
constraint solver, whose role is to efficiently determine the
offloading strategy that meets the user’s preferences for a given
distributed execution environment. Therefore, the constraints
adhere to the common CSP format, which is accepted by
many third-party constraint solvers. Even though the reference
implementation uses the Sugar constraint solver [7], this
system component is plug-in replaceable.

The user interface for expressing the optimization criteria
enables the end user to specify an ordered set of either single
criteria or correlations of criteria. The items appearing earlier
in the set have higher priority. Consider the following two
examples of user-specified optimization settings:
Example #1: The end user selects “Energy Savings” as the
first criterion and ”Performance Efficiency” as the second
criterion. This selection forms an ordered set of two items
and is interpreted as follows: (1) select offloading servers,
executing a method on which would consume less energy
than executing the method on the mobile device (i.e., by
considering the network communication costs), (2) select
offloading servers, executing a method on which would take
less time than executing the method on the mobile device, (3)
compute the intersection of the results from steps (1) and (2)
(i.e., satisfying both criteria), and (4) select the highest ranking
member of the intersection by favoring the first criterion over
the second one.
Example #2: The end user selects “Energy Savings & Per-
formance Efficiency” as the first criterion and “Availability”
as the second criterion. This selection forms an ordered set of
two items and is interpreted as follows: (1) select offloading
servers, executing a method on which would yield higher
energy/performance ratio than executing the method on the
mobile device, (2) select offloading servers whose observed
availability rates are higher than the system administrator-
specified availability threshold, (3) compute the intersection
of the results from steps (1) and (2), and (4) select the
highest ranking member of the intersection by favoring the
first criterion over the second one.
Example #3: The end user selects “Performance Efficiency”
as the first criterion, “Energy Savings” as the second criterion,
and “Availability” as the third criterion. This selection forms
an ordered set of three items and is interpreted as follows: (1)

select offloading servers, executing a method on which would
take less time than executing the method on the mobile device,
(2) select offloading servers, executing a method on which
would consume less energy than executing the method on the
mobile device, (3) select offloading servers whose observed
availability rates are higher than the system administrator-
specified availability threshold, (4) compute the intersection
of the results from steps (1), (2) and (3) (i.e., satisfying all
three criteria), and (5) select the intersection’s highest ranking
member favoring the first criterion over the second one, and
the second over third.

To see how this selection process works with specific
runtime parameters, consider applying the following runtime
environment to the two examples above. Table I presents three
runtime parameters: energy consumption, execution time, and
availability rate for Local execution on the mobile device, and
on three offloading servers, S1, S2, S3. The parameters are
dynamically estimated by our adaptive runtime system, whose
design is detailed in Section III-C.

TABLE I
EXAMPLE RUNTIME ENVIRONMENT.

Local S1 S2 S3
Energy Consumption (Joule) 20 15 17 22
Execution Time (ms) 250 200 125 100
Availability Rate (%) 100 90 85 98
Energy/Performance Ratio 30 50 88 54

In Example #1: (1) The energy savings constraint will
select servers S1 and S2, whose respective energy consumption
numbers of 15 and 17 are smaller than that of Local (i.e.,
to be executed on the mobile device). (2) The performance
efficiency constraint will select servers S1, S2, and S3, whose
estimated execution time is shorter than that of Local. (3) The
intersection between these results is S1 and S2. (4) Select S1,
as its energy consumption is lower than that of S2.

In Example #2: (1) The energy and performance constraint
will select servers S1, S2 and S3, whose respective ener-
gy/performance ratios are higher than that of Local. (2) The
availability constraint will select servers S1 and S3, whose
observed availability rates are higher than the 90% user-
specified threshold. (3) The intersection between these results
is S1 and S3. (4) Select S3 over S1 as having a higher
energy/performance ratio.

In Example #3: (1) The performance efficiency constraint
will select servers S1, S2, and S3, whose estimated execution
time is shorter than that of Local. (2) The energy savings
constraint will select servers S1 and S2, whose respective
energy consumption numbers are smaller than that of Local.
(3) The availability constraint will select server S3, whose
availability rate is higher than the specified threshold of 95%.
(4) The intersection between these results is empty. (5) Execute
locally (however, if the availability rate of S2 were to increase
to above 95%, it would be selected).

Even though constraint solving is known to be an NP-
Complete problem, the limited number of constraints used in a
typical cloud offloading scenario makes the approach not just

feasible but quite efficient. Running the constraint solver incurs
energy and performance overheads not surpassing more than a
couple of percentage points of the overall energy/performance
budgets. We detail our assessment of the constraint solving
overheads in Section IV.

Generating constraint definitions, a one-time expense in-
curred at the configuration time, is linear in complexity, in
which a predefined template is just filled in with application-
specific parameters. Figure 6 shows a specific example of
generating a constraint definition from a template.

; BEGIN #name
; nbDomains=#num
#domains
; nbVariables=#num
#variables
; nbPredicates=#num
#predicates
; nbConstraints=#num
#constraints
; END #name

(a) CSP template.

; BEGIN EnergyAndPerformance
; nbDomains=2
(domain D1 (#energy))
(domain D2 (#performance))
; nbVariables=2
(int V1 D1)
(int V2 D2)
; nbPredicates=2
(predicate (P1 X) (le X #e_local))
(predicate (P2 X) (le X #p_local))
; nbConstraints=2
(P1 V1) ; C1
(P2 V2) ; C2
; END EnergyAndPerformance

(b) Automatically generated CSP constraint.

Fig. 6. CSP template and constraint files.

C. Adaptive Runtime System

Our approach hinges on the ability to adaptively offloading
functionality at runtime based on the current environmental
conditions. This ability is provided by an adaptive runtime
system that we describe next. The runtime system runs on the
devices and provides monitoring, estimation, and offloading
services. It monitors network delay, network connection type,
CPU frequency, CPU time, and voltage. It estimates the
expected energy consumption and execution time of running
the offloaded method on each offloading server. It offloads
methods, transferring and synchronizing the required program
state. Running on the mobile device, the runtime system must
exhibit low energy and performance overheads to be practical.

Adaptive Cloud Offloading Middleware

Execution
History Module

Constraint Solving Module
Monitoring

Module

System Monitoring

Estimator

State Management
Module

State
Synchronization

Network Module

Network Channel
Factory

Sync.
Channel

Async.
Channel

Constraint Solving
Workflow Generator

Energy Data

Performance
Data

CSP Solver

Fig. 7. Adaptive runtime system.

1) Major Components: Figure 7 shows a component dia-
gram of the runtime system. The functionality is encapsulated
within five major modules: monitoring, constraint solving,
state management, network, and execution history.

The monitoring module is responsible for monitoring the
execution environment, both of the mobile device and of the
network. The system monitoring unit taps into the platform
diagnostics API to periodically obtain the values of network
connection type and current voltage. The CPU usage time
and frequency are retrieved from proc\[pid]\stat. The current
network delay as well as the execution and idle times of net-
work communication are measured by sending probe packets
to remote servers.

To predict the amount of energy to be consumed during
an offloading, the estimator correlates previously measured
energy consumption values and the currently measured value:

Eprtd = {Eavg
cpu + (C

act
net × T

est act
net) + (C

idle
net × T

est idle
net)} × V

where Eprtd is the estimated future energy consumption, Eavg
cpu

is the average energy consumption value of the offloading
operation, T est act

net is the estimated communication time, and
T est idle
net is the estimated idle time, respectively. V is the

voltage reported by platform-specific battery APIs (e.g., the
BatteryStat class on Android). Finally, the estimator computes
the expected execution time by averaging the prior execution
time and predicting the communication time.

Having completed an offloading operation, the system mon-
itoring unit measures the amount of energy consumed:

E = {Σ(Cact
cpu@f × T (u+s)

cpu) + (Cact
net × Tact

net) + (Cidle
net × T idle

net)} × V

where Cact
cpu@f is the electric current of the CPU at a given

CPU clock speed. Tu
cpu and T s

cpu are the user and system times
of an application process, respectively. Cact

net and Cidle
net are the

electric current of the network processor needed during the
active and idle phases, respectively. T act

net and T idle
net are the

measured active and idle times during the offloading opera-
tion, respectively. The energy consumption and performance
numbers are continuously measured and cached for use in
subsequent estimations, thus improving the accuracy of the
estimation process.

The constraint solving module is responsible for running
the constraint-solving workflow, which computes solutions that
satisfy the current constraints. The constraint workflow gener-
ator unit parameterizes the generated constraint definition files
with the actual runtime values obtained from the monitoring
module, so that the CSP solver unit always works with the
most up-to-date runtime information.

The state management module is responsible for synchro-
nizing the program state. The program state is synchronized
by using copy-restore, a parameter passing semantics for
remote methods that is applicable to complex linked data struc-
tures [8]. This semantics first copies the reachable program
state to the server, and then efficiently synchronizes the client’s
state with the server modified data, while preserving all the
client-side aliases.

The network module is responsible for managing con-
nections between the client and the offloading servers. The

network channel factory creates multiple network channels for
each server. A network channel reports the measured network
delay, sends/receives messages, and computes the time of each
communication phase (i.e., sending, idle, and receiving time).

The execution history module is responsible for manag-
ing the offloading history data. It maintains the energy and
performance caches, which are consulted by the estimator
unit when computing the expected energy consumption and
execution time numbers. The pseudo code in Figure 8 shows
the runtime execution logic and the interactions between the
modules described above.

IV. EVALUATION

This section describes the micro benchmarks and case
studies that evaluate the effectiveness of our approach.

The experimental setup includes a Motorola Droid
(600MHz CPU, 256MB RAM, 802.11g) (a low-end mobile
device), Samsung Galaxy III (1.5GHz dual-core CPU, 2GB
RAM, 802.11n) (a high-end mobile device), and Dell PC
(3.0GHz quad-core CPU, 8GB RAM) (the offload server).
Table II shows the device-specific values that parameterize the
runtime systems of the mobile devices under test. To measure
energy consumption, we used our energy model described in
Section III-C.

A. Micro Benchmarks

1) Benchmark I: Runtime System Overheads: In this bench-
mark, we executed empty remote methods passing to them
three different payloads (100kB, 1MB, and 5MB) over the
network (20ms latency and 50Mbps bandwidth), with and

delays← checkDelays(URLs);
FOREACH Sn ∈ ∀S DO
Durl ← delays.getDelay(url)
Eprtd ← computeEnergyConsumption(Durl, Sn)
Tprtd ← computeExecutionTime(Durl, Sn)
updateConstraints(url, Eprtc, Tptrd)
END FOREACH

/∗∗ Determine a server and an offloading candidate ∗/
offloadingServer,method←− solveConstraints(...)

/∗∗ Once the remote server and offloading method are determined
the runtime system waits until the current program flow
meets the selected offloading method ∗/

toServer ← checkpointCurrentState()

/∗∗ Send toServer state to the selected remote server ∗/
sendToServer(offloadingServer, toServer)

/∗∗ Receive fromServer state or exception and
notify of it all relevant parties ∗/

CASE Succeed
fromServer ← offloadingCompleted(...)
Ecnsmd, Texec ←− endMeasurement()
update(offloadingServer, toServer, fromServer,

delays, Ecnsmd, Texec);
synchronize(fromServer, toServer)
CASE Fail
exception← offloadingFailed(...)
update(url, toServer, exception);

Fig. 8. Adaptive cloud offloading operation.

TABLE II
MANUFACTURER PROVIDED ENERGY PROFILES.

High-end Device Low-end Device

CPU

577 mA @ 1512.0 MHz 280 mA @ 800.0 MHz
408mA @ 1209.6MHz 236mA @ 685.7MHz
249mA @ 907.2MHz 207mA @ 571.4MHz
148mA @ 604.8MHz 165mA @ 342.8MHz
55mA @ 302.4MHz 87mA @ 228.5MHz

WiFi active: 96mA active: 130mA
idle: 0.3mA idle: 4mA

Mobile active: 250mA active: 300mA
idle: 3.4mA idle: 3mA

without the adaptive runtime functionality enabled, thus isolat-
ing the runtime system’s performance and energy overheads 2.
Table III shows the results for each device. As expected, both
the performance and energy overheads of the runtime system
are proportional to the offloaded methods’ payload (i.e., the
size of the program state transferred). Since the average
size of the program state transferred during an offloading
is 2-3 MB, the corresponding energy/performance overheads
of ˜100mJ/˜300ms indicate one could use adaptive runtime
system to drive offloading in practical settings.

TABLE III
PERFORMANCE AND ENERGY CONSUMPTION OVERHEAD.

Payload High-end device Low-end device
Plain Adaptation Plain Adaptation

100kB Energy 16mJ 22mJ 41mJ 46mJ
Time 160 ms 167ms 227ms 264ms

1MB Energy 236mJ 214mJ 362mJ 407mJ
Time 1132ms 1156ms 1355ms 1278ms

5MB Energy 1643mJ 1828mJ 3012mJ 3287mJ
Time 3371ms 3904ms 5192ms 5673ms

2) Benchmark II: Performance and Energy Consumption of
Solving Constraints: In this benchmark, we assessed the scal-
ability of the constraint solver w.r.t. the number of constraints.
Figure 9 shows that the solver’s performance time and energy
consumption grow linearly with the number of constraints.
Since the number of constraints is not expected to exceed five
in a typical application, the solver does not appear to be either
an energy or performance bottleneck.

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19

So
lv

in
g

 T
im

e
 (

m
s)

The number of constraints

High-end Device
Low-end Device

(a) Execution time.

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (
m

J)

The number of constraints

High-end Device
Low-end Device

(b) Energy consumption.

Fig. 9. Performance and energy consumption of the constraint solver.

3) Benchmark III: Multi-Server Environment: In this
benchmark, we executed empty remote methods passing to
them the 1MB payload over two types of networks with the
following round trip time (RTT)/bandwidth ratios (Network
I: 20ms/50Mbps; Network II: 50ms/3Mbps). While executing
these methods, the runtime system ran its estimation algorithm

2To emulate network conditions, we used Network Emulator for Windows
Toolkit (NEWT) version 2.1.

taking into account an increasing number of offloading servers.
As it turned out, the number of offloading servers does not
significantly affect their respective runtime/energy efficiency.
This is because the estimation uses asynchronous network
messages, known not to increase latency.

TABLE IV
PERFORMANCE COMPARISON WHEN CONNECTING MULTIPLE SERVERS.

Server # 1 2 3 4 5
Network I 904ms 1064ms 978ms 1036ms 1154ms
Network II 1967ms 1960ms 1952ms 1991ms 2111ms

B. Case Study

To determine if our approach can improve the energy
efficiency of real-world mobile applications, we experimented
with open source projects as our experimental subjects. Mez-
zofanti3, described in Section II, extracts and translates text
from images; we marked its method ImcOCRAndFilter in class
OCR as @OffloadingCandidate with the @Selection criteria set
to both EnergySavings and PerformanceEfficiency. JJIL4 recog-
nizes faces from images; we marked its method push in class
DetectHaarParam as @OffloadingCandidate with the @Selection
criteria set to both EnergySavings and PerformanceEfficiency.
A separate, preceding profiling procedure determined the
annotated methods as energy and computation intensive.

TABLE V
EMULATED EXECUTION ENVIRONMENT SETTINGS.

S1 S2 S3
Avg. latency(ms)/bandwidth(Mbps) 5/50 5/50 20/3
Additional exec. time (ms) 0 1000 0

Figure 10 shows how our approach has reduced the amount
of energy consumed by the subjects. The amount of energy
consumed and the execution time were measured. For each
subject, we present four graphs showing the amount of the
energy consumed by their canonical use cases. Specifically, the
OCR application examines one text image file containing about
200 characters. The face recognition application examines one
image file for the presence of human faces. The experiment
assumes that the end user has configured the OCR application
for energy+performance and the face recognition applica-
tion for energy savings. Table V summarizes the emulated
experimental environments for each of the three offloading
servers.

In this case study, we assessed whether our adaptive offload-
ing mechanism would select the most appropriate offloading
server to satisfy the specified user preferences. To that end,
we modified the runtime systems’ implementation to always
offload the annotated to all the available servers. This way,
we could measure the actual energy consumption and exe-
cution time for each offloading scenario. We also recorded
which offloading server was selected by the constraint solving

3https://code.google.com/p/mezzofanti
4http://code.google.com/p/jjil/

24.8

4.6 4.5

10.4

0

5

10

15

20

25

30
En

er
gy

 C
o

n
su

m
p

ti
o

n

(J
o

u
le

)
High-end Device

Selected
 Server

15.4

5.9 6.3

20.2

0

5

10

15

20

25

Ex
ec

u
ti

o
n

 T
im

e
(S

ec
.)

 High-end Device

Selected
 Server

35.7

6.7 6.8

13.6

0

10

20

30

40

En
er

gy
 C

o
n

su
m

p
ti

o
n

(J

o
u

le
)

Low-end Device

Selected
 Server

43.6

13.3 14.1

25.4

0

10

20

30

40

50

Ex
ec

u
ti

o
n

 T
im

e
(S

e
c.

) Low-end Device

Selected
 Server

(a) Energy consumption and execution time of the OCR app on the high-and low-end devices.

7.48

5.6 5.5

8.2

0

2

4

6

8

10

En
er

gy
 C

o
n

su
m

p
ti

o
n

(J

o
u

le
)

High-end Device

Selected Servers

3.2
4.5 5.4

14.2

0

5

10

15

Ex
ec

u
ti

o
n

 T
im

e
(S

ec
.)

 High-end Device

Selected Servers

17.3

10.6 10.7

17.1

0

5

10

15

20

En
er

gy
 C

o
n

su
m

p
ti

o
n

(J

o
u

le
)

Low-end Device

Selected Servers
16.6

12.4 13.2

24.1

0

5

10

15

20

25

30

Ex
ec

u
ti

o
n

 T
im

e
(S

e
c.

) Low-end Device

Selected Servers

(b) Energy consumption and execution time of the face recognition app on the high-and low-end devices.

Fig. 10. Experimental results of the subject applications.

module. Thus, we evaluated the effectiveness of our offloading
selection mechanism in the presence of complete knowledge
about the resulting energy/performance gains provided by each
server. For the OCR application (Figure 10 (a)), our constraint-
solving based offloading selection mechanism always chose
the server that maximized the optimization criteria in place.
For the face recognition application (Figure 10 (b)), our
selection mechanism chose either the best or the second best
offloading option. This variability stems from optimizing only
for energy savings, with the actual energy consumption levels
being quite close for the two top options (within 3%).

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

En
er

gy
 C

o
n

su
m

p
ti

o
n

(J

o
u

le
)

Adaptive Plain

Network I Network II

Local Execution

0

5

10

15

1 2 3 4 5 6 7 8 9 10

Ex
ec

u
ti

o
n

 T
im

e
(s

e
c.

)

Adaptive Plain

Network I Network II

Local Execution

Fig. 11. Experimental results of the face recognition application when
changing network conditions (i.e., 20ms/50Mbps → 50ms/3Mbps).

For the next experiment, we studied the impact of changes
in network conditions on the energy consumption and exe-
cution time improvements afforded by offloading optimiza-
tions. To that end, we compared the respective effectiveness
of the plain and adaptive offloading mechanisms. The user
preferences for the face recognition application were set to
energy+performance. The main application loop was exe-
cuted 10 times, divided equally into two phases. The network
conditions (delay/bandwidth) were emulated for the first phase
as 20ms/50Mbps and for the second one as 50ms/3Mbps. As

shown in Figure 11, during the first phase (favorable network
conditions), both plain and adaptive offloading schemes were
equally effective. However, during the second phase (poor
network conditions), the adaptive scheme turned more effec-
tive, particularly for the execution time metrics. Indeed, in
the presence of a poor network condition, executing locally,
without any offloading, turned to be the optimal strategy.

V. DISCUSSION

How one can dynamically adapt mobile applications for
execution environments and users is a hard problem, and
we do not claim that constraint solving is the solution. By
discussing our approach’s advantages and limitations, we strive
to highlight the complexity of the target domain and the
challenges that need to be overcome.

A. Advantages

As compared to the related state of the art on cloud
offloading, our adaptation approach offers a high degree
of configurability. The adaptive behavior is configured first
by the application programmer and then by the end user.
Furthermore, complex adaptivity requirements are expressed
via intuitive interfaces. Specifically, application programmers
annotate energy and performance intensive methods, while end
users use a GUI-based settings dialog automatically added to
the application based on the annotations.

The mechanism that translates these declarative specifi-
cations into sophisticated runtime behavior is our adaptive
runtime system. The use of a third-party constraint solver
streamlines the process of evaluating multiple complex condi-
tions, making it robust and efficient. The runtime system im-
plementation imposes a low energy and performance overhead
on the underlying application by relying on system-provided
facilities for querying the runtime information.

Our system architecture eases extensibility. To add a new
constraint to the reference implementation, a system program-
mer would have to add another option to the @Selection anno-
tation, implement the runtime system’s interface Constraint,
adding the implementation to the built-in constraints in the

solving module. The modular design of the runtime system
facilitates understanding and enhancement.

B. Limitations

By relying on CSP, our approach has limited scalability,
as CSP is an NP-Complete problem in general. When in
an experiment, we increased the number of constraints to
20, the solver’s performance remained practical only when
executed on a high-end mobile device. However, in our broader
evaluation, with the number of constraints not exceeding 4, the
solver’s performance was never an issue.

Another limitation stemming from our use of CSP is that
our approach cannot express degrees and ranges as con-
straints. Because we use an SAT-based constraint solver, all
our constraints are boolean predicates. However, using boolean
predicates turned to be quite suitable for mobile devices that
are known for their heterogeneous hardware and software
stacks. In that light, expressing specific number ranges as
constraints would likely turn counterproductive.

Because our runtime system estimates the energy consump-
tion and performance efficiency parameters at the software
level model, the resulting estimations turn to be inaccurate.
For example, the energy consumed by a method containing
significant file I/O or using sensors may turn inaccurate
because our energy model only takes CPU and network
information into account. However, by adopting this energy
measurement approach, we are trading potential inaccuracy
for practicality. Because we aim at deploying our technology
on standard consumer mobile devices, it would not be practical
to use specialized hardware to measure the exact amount of
consumed energy.

VI. RELATED WORK

Our approach is related to other complementary efforts that
optimize mobile applications via cloud offloading. In addition,
the server selection problem has been applied in other contexts
to improve the QoS of distributed systems. Because these
research areas are vast and extensive, we next compare and
contrast our work only with the most closely related examples
of prior work.

A. Optimizing Mobile Applications via Cloud Offloading

The cloud offloading optimization for mobile applications
has been heavily covered in the research literature, with the
following approaches sharing objectives or techniques with
this work. CloneCloud [9] leverages hardware-based dynamic
profiling to automatically partition a mobile application, en-
abling the server partition to migrate workloads at the thread
level by means of a customized VM. ThinkAir [10] offloads
energy intensive methods to the cloud, so that the resulting
cloud-based execution can be scaled up by running the of-
floaded methods in parallel on dynamically allocated VMs. In
addition to reducing energy consumption, offloading has also
been used to detect malware in mobile code using cloud-based
servers [11]. COMET [12] offloads computation at the thread

level by means of a distributed transaction memory and VM
synchronization techniques.

Our prior contributions to cloud offloading [3], [4] also
optimized energy consumption by reducing the amount of
transferred program state via program analysis and driving the
offloading via adaptive middleware. Here, we shift our focus
on using cloud offloading to achieve flexible optimization
objectives that consider multiple criteria configured by the end-
user. To the best of our knowledge, this work is the first to
leverage constraint solving to express the complex require-
ments of adaptive cloud offloading and efficiently evaluate
them at runtime.

B. Server Selection
The problem addressed in this work is related to replica

selection in distributed systems and service composition in
service-oriented applications. Next, we briefly cover each
research topic and explain how our approach differs from the
prior state of the art.

1) Replica Selection: In distributed systems, servers are
replicated to improve robustness, scalability, and performance.
Replica selection algorithms can be static or dynamic al-
gorithms [13]. Static algorithms for load balancing assign
replicas based on predefined rules (e.g., round robin, random
access, proportional access, etc). Dynamic algorithms are used
to improve the quality of service [14] as well as reduce
overheads, increase accuracy, and support scalability.

Our approach differs in two ways. First, it executes the client
code (at the method boundary) at a remote server rather than
accessing the server’s functionality. Second, it selects replicas
adaptively, as based both on the end user’s configuration and
the runtime environment in place.

2) Web Service Composition: Composing Web services is
often driven by users, with complex service scenarios. Based
on business processes, Web services are composed by using
configuration files [15] or domain-specific languages [16]
to express complex service requirements. The heterogeneous
Web environment imposes the QoS challenges on publishing,
locating, and invoking web services. Constraint solving has
also been used to compose Web services efficiently. A con-
straint driven Web service composition framework METEOR-
S [17] binds Web services and generates an executable process;
it dynamically selects the best service candidate given the
constraints of performance, cost, reliability, and availability.
General constraint-based optimizations, especially CSP, can
satisfy user preferences and QoS requirements in selecting
services [18], [19].

Our approach applies constraint satisfaction to a new do-
main. Rather than composing software services, our approach
selects a server to be used as a platform for executing portions
of functionality of mobile applications. Another major differ-
ence is focusing our constraints-driven adaptive optimization
on energy savings.

VII. CONCLUSION

This paper introduced a novel dynamic adaptation approach,
constraints-driven adaptive offloading, to optimizing mobile

applications for energy-efficiency, performance, availability
and privacy. The novelty of our approach lies in expressing
this optimization problem in terms of constraint solving and
providing an efficient runtime system that implements this
adaptive offloading mechanism. As configurability has become
an intrinsic requirement for modern software, our approach
provides an expressive and efficient solution to the problem of
adaptively leveraging cloud computing resources to optimize
mobile applications.

ACKNOWLEDGMENTS

This research is supported by the National Science Founda-
tion through the Grant CCF-1116565.

REFERENCES

[1] Y.-W. Kwon and E. Tilevich, “The impact of distributed programming
abstractions on application energy consumption,” Inf. and Software
Technology, vol. 55, no. 9, pp. 1602–1613, 2013.

[2] A. Vahdat, A. Lebeck, and C. S. Ellis, “Every joule is precious: The
case for revisiting operating system design for energy efficiency,” in
Proceedings of the 9th workshop on ACM SIGOPS European workshop:
beyond the PC: new challenges for the operating system. ACM, 2000,
pp. 31–36.

[3] Y.-W. Kwon and E. Tilevich, “Energy-efficient and fault-tolerant dis-
tributed mobile execution,” in Proceedings of the 32nd International
Conference on Distributed Computing Systems, 2012.

[4] ——, “Reducing the energy consumption of mobile applications behind
the scenes,” in Proceedings of the 29th IEEE International Conference
on Software Maintenance, 2013.

[5] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones,” in
Proceedings of the 8th IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, 2010.

[6] Y. Li, H. Chen, and W. Shi, “ACM HotMobile 2013 poster: Bugu:
An application level power profiler and analyzer for mobile devices,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 17, no. 3, pp. 27–28,
Nov. 2013.

[7] N. Tamura, T. Tanjo, and M. Banbara, “System description of a SAT-
based CSP solver sugar,” in Proceedings of the 3rd International CSP
Solver Competition, 2009, pp. 71–75.

[8] E. Tilevich and Y. Smaragdakis, “NRMI: Natural and efficient middle-
ware,” IEEE Transactions on Parallel and Distributed Systems, vol. 19,
no. 2, pp. 174–187, 2008.

[9] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
elastic execution between mobile device and cloud,” in Proceedings of
the 6th ACM European Conference on Computer Systems, 2011.

[10] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proceedings of the IEEE Annual Joint
Conference of the IEEE Computer and Communications Societies, 2012.

[11] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid
android: Versatile protection for smartphones,” in Proceedings of the
26th Annual Computer Security Applications Conference, 2010.

[12] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: code offload by migrating execution transparently,” in Pro-
ceedings of the 10th USENIX conference on Operating Systems Design
and Implementation, vol. 12, 2012, pp. 93–106.

[13] C. Tan and K. Mills, “Performance characterization of decentralized al-
gorithms for replica selection in distributed object systems,” in Proceed-
ings of the 5th International Workshop on Software and Performance,
2005.

[14] R. L. Carter and M. E. Crovella, “Server selection using dynamic path
characterization in wide-area networks,” in Proceedings of the IEEE
16th Annual Joint Conference of the IEEE Computer and Communica-
tions Societies, vol. 3. IEEE, 1997, pp. 1014–1021.

[15] P. Albert, L. Henocque, and M. Kleiner, “Configuration based workflow
composition,” in Proceedings of the 2005 IEEE International Conference
on Web Services, 2005.

[16] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-
raith, S. Narayanan, M. Paolucci et al., “OWL-S: Semantic markup for
Web services,” 2004.

[17] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, “Constraint driven
Web service composition in METEOR-S,” in Proceedings of the 2004
IEEE International Conference on Services Computing, 2004.

[18] A. Ben Hassine, S. Matsubara, and T. Ishida, “A constraint-based
approach to horizontal Web service composition,” in Proceedings of
the 5th International Conference on The Semantic Web, 2006.

[19] R. Thiagarajan and M. Stumptner, “Service composition with
consistency-based matchmaking: A CSP-based approach,” in Proceed-
ings of the 5th European Conference on Web Services, 2007.

