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Abstract—Excessive power consumption and high tempera-
tures are some of the key factors limiting battery charge life and
performance of current mobile devices or smartphones. Existing
power management solutions do not account for user-experience,
which can impact user satisfaction. In this paper we propose
a joint power and thermal management solution, which takes
a proactive approach in reducing energy consumption while
providing expected user-experience. The proposed technique
modulates the operating conditions based on users application
preferences and exploits the “change blindness” effect to reduce
display power consumption. Another important aspect of our
implementation is that it does not require any restructuring of
the underlying operating system. A novel thermal model of the
entire smartphone was built with the purpose of monitoring
and controlling the operating conditions to keep the device
temperatures within safe operating ranges. Our ready-to-use
management technique has been implemented on Google Nexus 5
and has been demonstrated to achieve a 46% application-specific
savings on power consumption and up to 35% savings in power
consumption at the device level. The mean temperature estimation
error is 1.17◦C.

I. INTRODUCTION

Modern smartphones and tablets are composed of many
heterogeneous subsystems (CPU, GPU, Display, Modem, 4G,
WiFi, etc.), which are specialized to execute a wide variety of
applications from multimedia (YouTube, camera), gaming (An-
grybirds, Temple Run), social media (Hangouts, Whattsapp),
to browsing (Chrome). Many of these subsystems are power
hungry and drain a lot of battery energy in executing the apps
causing inconvenience to users in forcing them to charge their
batteries more than once a day. Apart from limited battery
charge time, tight form factors of the phone coupled with
the absence of any active cooling mechanisms (such as fans)
makes the thermal management crucial [1] to (i) maintain the
circuit integrity, (ii) avoid inconvenience to user.

CPU, GPU and display [2], [3] are still the primary con-
tributors to both power consumption and temperature. Indeed,
CPU and GPU are the device core computational elements,
thus they have high switching activities. When operated at
high frequencies and voltages, they exacerbate higher dynamic
power consumption. Moreover, it is well known that tem-
perature depends on on-chip power density [4]. Display has
a significant contribution to power consumption due to its
relative large dimension.

The focus of mobiles designers and developers is shifting
from high performance to high user experience [5]. The quality

of user experience is a broad concept which depends on a large
number of variables, from personal tastes and preferences,
to device operating conditions, to the applications currently
running. Even though user experience is hard to measure, we
can easily define it as the situation in which device behavior
meets user expectations. Given this definition, it is easy to
notice that expectation, thus experience, changes depending
on which application is executing in foreground on the mobile
device. For example, the level of expectation of a user playing
games is much higher than that of a user browsing through
websites. As a consequence, the level of performance that the
device should provide to meet user expectation is different
in the above two scenarios (higher for gaming, lower for
browsing). This means that in this example we can obtain a
power reduction by simply operating the device at a lower
performance when browsing and at a standard performance
when gaming, without impacting user experience. Potential
for power savings also comes from change blindness. Change
blindness is defined as the inability of users to notice small
changes in brightness of displays over large time intervals.
Therefore, even if starting from a standard brightness at the
beginning of a session, brightness can be slowly reduced to
save power [2], [6].

Power management techniques which have been recently
proposed in literature do address user experience, but they have
few major limitations that make them impractical, e.g. (i) the
techniques are very specific to certain applications [7], [8]; (ii)
some are not feasible to implement or they are not compatible
with the existing standard approaches, thus they would require
expensive OS restructuring [9], [10]. For such reasons, the
actual power management of mobile devices has not changed
much over the years.

Thermal management is a very actively researched area,
spanning from high performance multi-clusters to mobile
devices [1], [11], [12]. Thermal management can be broadly
classified into reactive, if decisions are based on current or past
temperature, or proactive, if decisions are based on predicted
future temperature. Proactive thermal management requires a
thermal model for predicting future temperatures. Most of
the thermal modeling techniques proposed in the literature,
however, use power measurements to predict temperature.
Unfortunately, in mobile devices such power measurements are
not available, as they do not have power sensors. An alternative
involves deriving power through power models, which depend
on the device performance metrics. However, the power models
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suffer from inaccuracies and could be too computationally
expensive for runtime management.

Considering this background, we can identify some limita-
tions in the standard power and thermal management schemes
present in mobile devices today. Assuming the Android OS as
a reference, power management at the Linux kernel level is
actuated by frequency governors, which switch voltages and
frequencies at a high rate to match workload requirements and
meet the set goals, such as high performance or low power
consumption. Today, the standard governor, called Ondemand,
scales frequency according to CPU utilization [13]. On the
other hand, thermal management is handled at the Userspace
level. In Qualcomm-based devices such as the Google Nexus
5, temperature is controlled by a daemon called Thermal
Engine (TE), interfaced with temperature sensors. If a certain
temperature threshold is exceeded, the TE reacts by applying
a set of actions defined in its configuration file, such as
limiting the frequency range or shutting down the device.
This power and thermal management infrastructure has the
following limitations:

1) Power and thermal management are not coordinated.
2) Thermal management is purely reactive.
3) Power management is agnostic of which applications

are currently running and treats all of them in the
same way.

4) Power management does not account for user-
experience.

In this work we propose a novel user-centric proactive joint
power and thermal management, designed for mobile devices,
with the following contributions:

1) We formulate the management problem to account
for user-experience.

2) We design management to be proactive and imple-
ment temperature prediction on the device itself.

3) We develop a general procedure to derive a simple yet
accurate thermal model of the entire phone, based on
observable quantities like CPU and GPU frequencies,
and display brightness. Thus, it does not require
actual power measurements. Our thermal model has
a mean error of 1.17◦C.

4) We exploit change blindness in our comprehensive
power and thermal management.

5) We propose a lightweight and ready-to-use imple-
mentation for the manager, which is compatible with
the standard Android environment and requires no
operating system (OS) modifications.

We test our management techniques in comparison with the
standard available power and thermal management schemes
on a real Android device, the Google Nexus 5, with a set of
most commonly used applications. The results shows that our
solution can achieve up to 46% of application-specific power
saving and up to 35% of average power saving at the device
level.

The remaining of this paper is organized as follows:
Section II presents the related work, Section III discusses the
thermal model, Section IV describes the management formula-
tion and implementation, Section V presents the experimental
results and Section VI concludes this paper.

II. RELATED WORK

The attention of both industry and research on user expe-
rience in addition to performance has grown consistently in
the last decade, and many publications aim at achieving both
high user experience and energy efficiency for mobiles. Various
papers aim at measuring and modeling user experience [2], [5],
[14] by collecting user feedback and correlating with users’
personal profile. The message that emerges from this area of
research is twofold: (i) it is extremely challenging to measure
and model user experience and (ii) since the primary focus
in mobile phones is to ensure quality user experience, power
management should account for it.

For this reason some proposed techniques adopt a practical
strategy and allow users to configure power management based
on personal preferences. The authors of [10] proposes a novel
task allocation infrastructure, which accounts for user experi-
ence as the user can assign a level of priority to applications.
Similarly, authors of [15] propose a way to identify and select
different priority levels for applications and suggest how this
can be used to optimize power management.

Another class of approaches, instead of providing con-
figuration interface to the user, model user experience de-
pending on perceived delays and alternation of activity and
idle periods. Reference [16] proposes an event-driven power
management framework which increases CPU frequency in
response to interactive events, in order to minimize users
perceived delay. Work in [17] presents a power management
strategy which uses hardware timers to capture idle and activity
time intervals. A model for typical user session activity is
proposed in Reference [2]. The authors then use the pro-
posed model to compare various power management strategies.
Also, the above work exploits change blindness to reduce
display power consumption. The technique described in [18]
employs a novel scheduling algorithm called energy-based
fair queuing (EFQ), which achieves energy proportionality in
battery-constrained systems while improving user experience.
Another power efficient scheduling approach is presented in
Reference [9]. The approach takes advantage of heterogeneous
platforms to allocate tasks with different energy impact. While
they achieve better energy efficiency, these approaches require
an event-detection and timing infrastructure which involves
modifications at the OS level. This makes the implementation
challenging and can affect the portability of the framework
between different devices. This is even exacerbated when the
power management policy involves task allocation. In fact,
the scheduler is one of the most critical sections in an OS.
Modifying it is risky and time expensive [19].

Some recent publications address power management in
mobile phones for specific applications. Reference [8] presents
a unified dynamic voltage scaling (DVS) algorithm for CPU
and GPU, which takes advantage of the execution profiles of
3D games to improve energy efficiency. Power management
techniques presented in [20], [21] also reduces power con-
sumption for gaming by adapting to current and predicted
program state. Work in [22] optimizes power consumption
for YouTube by intelligently scheduling download activities.
The technique in [7] adopts tone mapping technique to adapt
brightness and reduce LCD backlight level for mobile games,
without compromising user experience. Even though these
techniques successfully target power reduction and user expe-



rience, they are developed specifically for a target application,
thus they cannot be generalized.

Thermal management is a broad and well investigated
area of research, especially in the field of high performance
multiprocessors [1], [12]. However, few publications target
thermal management for mobile devices. In Reference [11]
the authors presents a thermal model of a mobile system and
use it to develop a thermal management strategy. The thermal
model presented in [23] focuses on the thermal interaction
with the battery subsystem. None of the above works present
a coordinated power and temperature management solutions.
To the best of our knowledge, our proposed work is the
first protype of a ready-to-use implementation of a user-aware
proactive joint power and thermal management technique.

III. THERMAL MODELING METHODOLOGY

Most smartphones consists of heterogeneous computing el-
ements equipped with many temperature sensors. Such smart-
phones have a set of operating conditions F that can be
controlled at runtime and have significant influence on device
power consumption and temperatures at various locations of
the phone. Examples of these operating conditions are CPU
core frequencies, GPU frequency, and display brightness.

For this paper, we control only the CPU frequencies,
GPU frequency, and display brightness as CPU cores, GPU
and display are the major contributers to the power con-
sumption, devices temperature and user-experience [2]. The
above set of operating conditions are denoted by F =
[fc0, fc1, fc2, fc3, fGPU , β], where fci is the frequency of CPU
core i, fGPU is the GPU frequency, and β ∈ {0, 1, . . . , 255} is
the display brightness. Indeed, most smartphones today have
embedded multi-core processors with per-core voltage and
frequency control capability [24]. Note that all vectors and
matrices are denoted in bold.

The reference device used in this paper is Google Nexus 5.
This device has a quad-core Qualcomm’s Krait processor with
Adreno 330 GPU. The smartphone has 11 temperature sensors,
referred to as thermal zones, whose values are exposed through
sysfs interface of Linux kernel. The set of temperatures are
denoted by vector T = [T0, . . . , T10].

The thermal modeling for a processor is well de-
scribed by the compact thermal modeling techniques such as
HotSpot [25], which uses electro-thermal analogy to describe
heat spreading and storing phenomena. The simplified state
space representation [1], [12] is shown below:

dT(t)

dt
= A′T(t) + B′P(t), (1)

where A′ and B′ are constant matrices. They are related to
the thermal conductance (G) and capacitance (C) matrices
as follows: B′ = C−1; A′ = −B′G. Power consumption is
represented by P. Note that it is not necessary to have same
dimensions for both T and P. Discretizing the above equation
for a constant sampling interval of ∆t, and we get

Tk −Tk−1

∆t
= A′Tk−1 + B′Pk, (2)

Tk = ((A′ − I)Tk−1 + B′Pk)∆t. (3)
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Fig. 1. Top figure: Cooling transient temperature trace; Bottom figure: matrix
A

Here k indicates the kth time instant, and I denotes identity
matrix of the same size as A′.

Assuming that the operating conditions have linear depen-
dency with power without significant loss in accuracy, since
many commercial mobile devices do not have power sensors,
i.e. BFk = B′Pk∆t, and replacing A = (A′ − I)∆t results
in the following alternative thermal model equation:

Tk = ATk−1 + BFk. (4)

The advantage with the above modeling approach is that
the operating conditions are usually exposed to the application
layer and therefore the operating conditions can be modified
without the need for any operating system (OS) modification.

To extract the above thermal model for a real device,
such as Google Nexus 5, a simple profiling tool was devel-
oped which periodically samples temperatures and operating
conditions. The sampling rate was set to 1 second. This is
implemented as a bash script that runs on the phone and
can be launched with a terminal emulator or an application
manager. The tool reads the files related to the 11 temperature
sensors and those related to the 6 selected operating conditions
mentioned before, and then it writes values to a file. The
output file is then fed to a least-square solver implemented
in MATLAB to derive matrices A and B.

Extracting the model essentially consists in computing
matrices A and B. The procedure we propose involves solving
two least squares regression problems similar to [12]. The first
problem is obtained by imposing F = 0, which gives:

Tk = ATk−1 (5)

The solution of the above equation gives matrix A. This can
then be substituted in (4) and solved for B. The computing
of matrices A and B is only once for a given phone, as the
coefficients are dependent only on the geometry of the phone
and the material composition. Also note that the computation
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Fig. 2. Results showing the accuracy of the proposed thermal model

is done offline as the resources available on a mobile device
are limited.

Figure 1 shows a sample temperature trace used for deter-
mining matrix A (top figure), and the resultant matrix is shown
in the bottom figure. Note that in practice it is not possible to
set F = 0, as this would mean switching off the device. To
obviate this, we set F = Fmin, where Fmin is the set of
minimum operating conditions that guarantee functionality for
the profiling tool, e.g., Fmin = [fmin

c0 , 0, 0, 0, 0, 0]. As shown
in Figure 1, the temperature trace used to derive A should
capture the device cooling rate. On the other hand, the trace
recorded for deriving B should capture the real user activity.
Results for matrix B are analogous to that shown in Figure 1.

Figure 2 shows the case of a trace used to validate the
model and its accuracy, which is expressed in terms of root
mean square error (RMSE). The trace consists of temperatures
collected for 500 seconds of execution of AnTuTu benchmark
for 3 consecutive runs [26]. The top two plots show the real
temperature trace, while the middle two plots show the model-
predicted temperature and the predicted temperatures using the
immediate previous temperature, respectively.

The model-predicted temperature is derived thanks to the
thermal model described in Equation (4). Most reactive thermal
managmenet schemes predict temperatures using the immedi-
ate previous temperatures.

Finally, the bottom two plots show the maximum and the
mean prediction errors obtained in the above two cases. From
the plots, we can see that our model-based prediction has a
mean RMSE error of 1.17◦C, which is an improvement of
55% w.r.t. previous temperature-based prediction. Also, our
model achieves 80% reduction in peak error w.r.t. previous

Fig. 3. Block diagram of the proposed power-thermal manager

temperature-based prediction.

IV. MANAGEMENT FORMULATION AND
IMPLEMENTATION

In this section, we present a formulation of joint power-
thermal management problem, propose a novel solution, and
describe the power-thermal manager which implements the
solution. The joint power and thermal management problem
formulation is described below:

min
Fk+1

Freq
k+1 − Fk+1, (6)

s.t. Tk+1 ≤ Tthr. (7)

In the above formulation, Fk+1 represents the set of
operating conditions that will be applied at the next time
step and it is the output of the management problem. Freq

k+1
is the set of required operating conditions at the next time
step, and it is a function of the application executing in
foreground and of the level of user expectation. We assume
that if Fk+1 ≥ Freq

k+1, then the user experience is met. The
term Tk+1 represents the vector of system temperatures at the
next time step, which are predicted using the model presented
in Section III. The temperature threshold Tthr is also a function
of the foreground application and of the user expectation. In
this work we consider the threshold to be a single value, but
we can extend the idea by defining one threshold per each
sensor. Note that a different choice of vectors F and T is
consistent with the problem general formulation. Finally, note
that the main goal of such a management is never to give more
performance than what is required from a users perspective.
This is the key source of power reduction in our solution.

Figure 3 shows the block diagram of the proposed man-
agement technique. The main components are the Manager
and the Application Observer. The proposed implementation
runs in Linux userspace and requires no modifications at the
operating system level. In the following, we describe the main
components in further details.



A. Sysfs Interface

The Sysfs Interface is the main interface between Linux
kernel and the userspace, in which the OS kernel exposes
data such as current operating conditions and temperature
sensors values. In current versions of Android/Linux it is
also possible to set operating conditions through the sysfs
interface, such as CPU frequency, GPU frequency and display
brightness. Therefore, the power and thermal management can
be completely implemented in userspace, without the need of
modifying the OS.

B. Manager

The Manager is the component devoted to finding the
optimal operating conditions for the mobile device. When
starting execution, it loads matrices A and B. The two matrices
are computed offline according to the procedure described in
Section III.

Then the manager wakes up at a fixed rate and reads
current temperatures Tk from the sysfs interface. It also
reads the required operating conditions Freq

k and the thermal
threshold Tthr from the user experience configuration files.
Using these data it first computes Tk+1 using Equation (4),
then it computes the operating conditions Fk+1 by solving
the problem described in the Formulation (6)–(7) and applies
them by writing values to the sysfs interface. The manager
also writes data to the stats file, for debugging purposes.
The Manager source code is written in C and it is cross-
compiled with Android Native Development Kit (NDK) tools
to run on our reference device, the Nexus 5 [27]. The default
activation rate is 1 second, as this is the minimum rate that
can be achieved in the userspace. To make the manager as
less intrusive as possible, we decided to set a maximum
bound on CPU and GPU frequencies, rather than fixing a
constant value. This design choice guarantees the compatibility
with the kernel-level power management schemes actuated
by frequency governors. Indeed, these modules activate at a
much higher rate (the Ondemand governor activates every
20 ms) [13]. The solution to the management problem to
determine Fk+1 through a simple heuristic algorithm. The
manager first predicts temperature by computing Equation (4)
with Fk+1 = Freq

k+1. If the required operating conditions Freq
k+1

are such that they do not cause temperature to exceed the
threshold, then the manager applies Fk+1 = Freq

k+1. Otherwise
Fk+1 is reduced and predicted temperature is checked again
until the threshold is met. The strategy to reduce Fk+1 and
take advantage of the fact that CPUs in mobile devices
have predefined voltage and frequency operating points. GPU
frequency is not reduced, because the manager assumes that
if the required GPU frequency is high, then it means that
the foreground application involves graphics and requires the
requested performance. Therefore penalizing the GPU may be
unpleasant for the user.

Display brightness is handled separately, according to the
concept of change blindness. When a new application is
launched, display brightness β is set to the required value.
After that, the manager progressively reduces it until reaching
a predefined minimum value βmin. The rate at which β is
reduced and the minimum value βmin are parameters that
can be tuned in the manager configuration. The chosen values

should guarantee that the user does not perceive brightness
changes and degrade user experience [2].

C. Application Observer

The Application Observer essentially monitors which ap-
plication is currently running in the foreground on the device.
Based on this and on the User Experience (UXP) configuration
provided by the user, it periodically updates the required
operating conditions Freq

k+1 and the thermal threshold Tthr for
the current execution, by writing them to the appropriate file
locations. The source code for the application observer is also
written in C and cross-compiled with NDK tools. In the current
implementation, the Application Observer wakes up at a fixed
rate (default is 1 second) and executes the top command.
The output of this command is the list of running processes
with their properties. In particular the PCY field in the top
denotes whether a process is in foreground (flag “fg”) or in
the background (flag “bg”). Usually there is not only a single
process with an fg flag, but rather there is a list of them, and
the application executing on the display is one of them. For
this reason the observer parses the output of top and writes the
names of all foreground processes to the file fg Name, and the
list of process IDs to the file fg PID. Then it compares the list
of current foreground processes with the UXP configuration.
The UXP configuration contains the list of required operating
conditions configured by the user for a set of applications,
together with the desired thermal threshold. If any application
in the UXP configuration appears in the fg Name file, then the
corresponding required operating conditions are written to the
file containing Freq, and the corresponding thermal threshold
is written in the file containing Tthr.

D. The User Experience (UXP) Configuration

The UXP configuration is obtained by the configuration
manager which requires a user to execute an application of
his/her choice under the maximum operating conditions. While
the user is executing the application in foreground, the configu-
ration manager progressively lowers the operating conditions.
When the user notices a degradation in the user experience
of the application, s/he notifies the configuration manager,
which registers the least acceptable operating conditions for
that application. Alternatively, the procedure can start from
the minimum operating conditions and increase them until the
user experience of the application behavior reaches acceptable
levels. The user is also asked to choose the default operating
conditions for the device. These are used in the case the Appli-
cation Observer does not find any correspondence between the
list of foreground processes and the applications in the UXP
configuration. The approach though it requires the user’s effort
(relatively low) in setting up the UXP configuration, it has the
advantage of being personalized for that user. Such a provision
is not available in other UXP model-based approaches such
as [16], [17].

Finally, thermal thresholds are selected based on the ac-
cepted values typically used for thermal management, e.g.
Qualcomm’s Thermal Engine daemon.

E. Manager Installation and Execution

To install the management framework on an Android de-
vice it is just required to copy the executables for the Manager



and for the Application Observer to a location in the phone
file system. After that it is sufficient to launch both and let
them run in the background. To insure the correct behavior,
other power or thermal management program running in the
Userspace should be stopped first. However, we have verified
that the manager is compatible co-running with Qualcomm’s
mpdecision. This is a service that automatically handles CPU
hotplug based on computational load.

V. RESULTS

The target platform for the evaluation of the proposed solu-
tion is a Google Nexus 5 smartphone. This device is equipped
with the Qualcomm Snapdragon 800 chipset, featuring a quad-
core Krait 400 CPU. The four cores have a range of frequency
from 300 MHz up to 2.26 GHz, with predefined voltage and
frequency operating points. It also has an Adreno 330 GPU,
with frequency from 200 MHz up to 450 MHz. The display is
a Full HD with In-Plane Switching (IPS) LCD [28] with 255
brightness levels. The phone was rooted to get root privileges
to control the frequencies of CPU and GPU, and display
brightness.

The evaluation has been conducted selecting applications
among the most popular ones: Chrome, Gmail, Angrybirds,
Hangouts, Dialer (standard phone call), Camera, YouTube [14],
[29].

To ensure that comparisons are consistent and reproducible,
we wrote an application that allows to record and replay
sequences of events on the device (e.g. touches on the display,
pressing the power button, pressing the volume button, etc.).

In this device they are already executing by default two
other Userspace managers: the Thermal Engine and mpdeci-
sion. Moreover, the standard Ondemand governor is operating
at the Kernel level. The Thermal Engine also operates by
limiting the maximum operating conditions, based on current
temperature. Therefore, to avoid interference with our man-
ager, it should be stopped. Unfortunately, this program cannot
be stopped, therefore it is necessary to reduce its functionalities
by replacing its configuration file with an empty file. As for
mpdecision, this program essentially switches on and off CPU
cores based on utilization metrics. Since it does not perform
frequency scaling, it should be kept active and compatibility
should be guaranteed.

Figure 4 reports an extract of 20 seconds of an execution
trace monitored while applying the proposed manager, to
describe the details of working of the propsed manager. For
this experiment we are executing Google Chreme application
with the required operating conditions Freq = [1 GHz, 1 GHz,
1 GHz, 1 GHz, 200 MHz, 150]. The first plot reports the
temperature traces of the 11 sensors present in our device.
For simplicity, no legend is reported here. Note also that
in general the exact location of sensors is not disclosed. In
this case, the thermal threshold was set to 80◦C, therefore
temperature is kept in a safe range. The second plot reports the
behavior of CPU and GPU frequencies. Once the application
is launched (at 2 sec), the Application Observer detects it
running in foreground and selects the corresponding required
operating conditions. No thermal management is activated in
this case, therefore the manager always selects Fk+1 = Freq

k+1.
The black dotted line in the second plot represent the required

Fig. 4. Sample execution trace of temperature and CPU-GPU frequencies
under the deployment of the proposed manager

CPU operating frequency, which is the maximum bound set
by the manager. Indeed, the Ondemand governor at the Kernel
level is free to switch frequency at a higher rate. Moreover,
when a CPU core frequency is equal to zero, then it means
that mpdecision has switched the core off. At 11th second we
can notice that the frequency of CPU 2 exceeds the bound
imposed by the manager. This is due to the combination
of Thermal Engine, mpdecision, and Ondemand governor
activities. However, this does not affect the temperatures much.
Finally, the third plot shows the behavior of display brightness.
When an application is launched, the required level is set (150
in this case). After that, change blindness is exploited and
brightness is progressively reduced by 5 every seconds until
the predefined minimum value βmin is reached (70 in this
case).

In Figure 5 we show what happens when the manager de-
tects a thermal emergency (e.g. the threshold Tthr is exceeded
by some sensor predicted temperature). While executing a
sample trace of the popular game Angrybirds, we monitor
the temperatures and the CPU maximum frequency (e.g. the
output of the manager) in two different cases. In the first case
(on the left) the thermal threshold for the target application
is set at 70◦C, in the second case, the threshold is 60◦C.
For simplicity, only the temperature of the two sensors which
detect thermal excess is reported, namely T9 and T10. In both
cases, the maximum operating conditions are modulated by the
manager in order to keep the predicted temperature lower than
the threshold. Note that the threshold can be tuned to provide
different performance tradeoffs.

Figure 6 reports our results in terms of power savings.
Table I shows the configurations used for various applications



Fig. 5. Example of the proposed manager handling thermal emergenices

Fig. 6. Power savings resulting from the use of the proposed manager

in our evaluation of the proposed power-thermal manager. We
record and replay event traces for each application and measure
power consumption respectively with the default Thermal
Engine and with the proposed user-centric manager. In both
cases, mpdecision is active and the Ondemand governor is
set. Power consumption is monitored by sampling the battery
voltage and current values at the sysfs interface. In devices
where this is not available, it is required to use an external
power monitor. The traces are for a single application with 1
minute duration. Then we also compare power consumption on
longer traces which combines all the considered applications
(labeled as “Long” in the bar graph), which have 10 minutes
duration. The values of power consumption in Figure 6 are
average values.

TABLE I. CONFIGURATION VALUES USED FOR VARIOUS
APPLICATIONS IN THE PROPOSED MANAGER

Application CPU freq. (MHz) GPU freq. (MHz) Display brightness
Chrome 1000 200 150
Camera 1500 350 150
Gmail 800 200 70
Hangouts 900 200 100
Dialer 1300 200 55
YouTube 1500 450 150
Angry Birds 2260 450 255
Default 500 200 100

For all the considered applications, our manager provides
a power saving w.r.t. the standard power management, up to
46% in the case of Hangouts. The only exception is the case
of Angrybirds. Indeed, in this case the user expectation is very
high, therefore the required operating conditions are set at the
maximum. Finally, in the case of Long traces, our manager
provides up to 35% average power saving w.r.t. the standard
power management.

VI. CONCLUSION

In this paper we proposed and presented a ready-to-use
solution for user-centric proactive power and thermal manage-
ment. The proposed approach is able to adapt to maximize
user experience and reduce power consumption while keeping
temperature in a safe range. Temperature prediction is based
on a novel observable-based thermal model which achieves a
mean accuracy of 1.17◦C.

The proposed technique has been implemented on a real
Android device and tested on a set of real life applications.
The experimental results show that our manager achieves up
to 46% reduction in application-specific power consumption
and up to 35% reduction in average power consumption, when
compared to standard power and thermal management.
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