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Abstract—A variety of real-life mobile sensing applications are
becoming available, especially in the life-logging, fitness tracking
and health monitoring domains. These applications use mobile
sensors embedded in smart phones to recognize human activities
in order to get a better understanding of human behavior. While
progress has been made, human activity recognition remains
a challenging task. This is partly due to the broad range of
human activities as well as the rich variation in how a given
activity can be performed. Using features that clearly separate
between activities is crucial. In this paper, we propose an
approach to automatically extract discriminative features for
activity recognition. Specifically, we develop a method based
on Convolutional Neural Networks (CNN), which can capture
local dependency and scale invariance of a signal as it has been
shown in speech recognition and image recognition domains.
In addition, a modified weight sharing technique, called partial
weight sharing, is proposed and applied to accelerometer signals
to get further improvements. The experimental results on three
public datasets, Skoda (assembly line activities), Opportunity
(activities in kitchen), Actitracker (jogging, walking, etc.), indicate
that our novel CNN-based approach is practical and achieves
higher accuracy than existing state-of-the-art methods.

Keywords—Activity Recognition, Deep Learning, Convolutional
Neural Network

I. INTRODUCTION

In the recent years, the rapid spread of mobile devices
with sensing capabilities has created a huge demand for
human activity recognition (AR). Applications that can benefit
from AR include daily lifelogging, healthcare, senior care,
personal fitness, etc. [7], [32], [31], [9]. As a result, many
approaches were proposed for the recognition of a wide range
of activities [8], [15], [10], [23].

Feature extraction is one of the key steps in AR, since it
can capture relevant information to differentiate among various
activities. The accuracy of AR approaches greatly depends
on features extracted from raw signals such as accelerometer
readings [34]. Many existing AR approaches often rely on
statistical features such as mean, variance, entropy or corre-
lation coefficients [3]. Feature extraction is proposed from the
frequency domain using FFT [17]. Prior works have shown that
some of these heuristically-defined features perform well in
recognizing one activity, but badly for others [15]. Therefore,
given an application scenario and a set of target activities,
one can select a subset of features to optimize the activity
recognition performance [34], [15].

Designing hand-crafted features in a specific application

requires domain knowledge [23]. This problem is not unique to
activity recognition. It has been well-studied in other research
areas such as image recognition [22], where different types
of features need to be extracted when trying to recognize a
handwriting as opposed to recognizing faces. In recent years,
due to advances of the processing capabilities, a large amount
of Deep Learning (DL) techniques have been developed and
successful applied in recognition tasks [2], [28]. These tech-
niques allow an automatic extraction of features without any
domain knowledge.

In this work, we propose an approach based on Convolu-
tional Neural Networks (CNN) [2] to recognize activities in
various application domains. There are two key advantages
when applying CNN to AR:

• Local Dependency: CNN captures local dependencies
of an activity signals. In image recognition tasks, the
nearby pixels typically have strong relationship with
each other. Similarly, in AR given an activity the
nearby acceleration readings are likely to be corre-
lated.

• Scale Invariance: CNN preserves feature scale invari-
ant. In image recognition, the training images might
have different scales. In AR, a person may walk with
different paces (e.g., with different motion intensity).

We summarize the key contributions of this work as
follows:

• We propose an approach based on CNN to extract hu-
man activity features without any domain knowledge.

• The proposed approach can capture the local depen-
dencies and scale-invariant features of activity signals.
Thus, variations of the same activity can be effectively
captured through the extracted features.

• We present the experimental results on three public
datasets collected in different domains. The results
shown that the proposed approach outperforms the
state-of-the-art methods.

The rest of this paper is organized as follows: Section 2
presents related work; Section 3 describes our CNN-based
method for activity recognition and improvement; Section 4
presents our experimental results to demonstrate its applica-
tions. Finally, we conclude the study in Section 5.
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II. RELATED WORK

A. Feature Extraction for Activity Recognition

AR can be consider as a classification problem, where the
input are time series signals and the output is an activity class
label. Fig 1 shows the activity recognition process, which is
divided into training phase and classification phase. In the
training phase, we extract features from the raw time series
data. These features are then used to train a classification
model. In the classification phase, we first extract features from
unseen raw data and then use the trained prediction model to
predict an activity label.

Fig. 1. Feature extraction is one of the key components of activity recognition.

Feature extraction for AR is an important task, which has
been studied for many years. Statistical features such as mean,
standard deviation, entropy and correlation coefficients, etc.
are the most widely used hand-crafted features in AR [8].
Fourier transform and wavelet transform [27] are another two
commonly used hand-crafted features, while discrete cosine
transform (DCT) have also been applied with promising re-
sults [11], as well as auto-regressive model coefficients [12].
Recently, time-delay embeddings [10] have been applied for
activity recognition. It adopts nonlinear time series analysis to
extract features from time series and shows a significant im-
provement on periodic activities recognition (cycling involves
a periodic, roughly two-dimensional leg movement). However,
the features from time-delay embedding are less suitable for
non-periodic activities.

In the recent years, some approaches such as principal com-
ponent analysis (PCA) [11] or restricted Boltzmann machine
(RBM) [23] were applied to adapt the feature extraction to
the dataset, i.e. the mapping from raw signals to features is
not predefined, but rather automatically learned from the train-
ing dataset. PCA is a well-established technique to discover
compact and meaningful representations of raw data without
relying on domain knowledge. The PCA feature extraction is
conducted in discrete cosine transform (DCT) domain [11].
After conducting PCA, the most invariant and discriminating
information for recognition is maintained. The PCA based
on empirical cumulative distribution function (ECDF) is pro-
posed [23] to preserve structural information of the signal.

B. Deep Learning for Feature Learning

Although PCA can learn features in an unsupervised man-
ner, its linear combination of raw features does not have
sufficient capability to model complex non-linear dependen-
cies [4]. Therefore, deep neural networks (DNN)1 have been
proposed to extract more meaningful features [23]. The one
key difference between traditional neural networks and deep
neural networks is that DNNs can have many layers in the
networks while traditional neural networks contain three layers
at most. A key advantage of DNN is its representation of input
features. DNN can model diverse activities with much less
training data, it can share similar portions of the input space
with some hidden units, while keeping other units sensitive to
a subset of the input features that are significant to recognition.

DNN in recent made many breakthroughs in many research
areas. The deep architectures can represent complex function
compactly, which have been shown to outperform state-of-the-
art machine learning algorithms in many applications (such as
face detection, speech recognition.) [4]. Fig 2 compares a DNN
model with existing approaches.

A statistic feature model can be considered as a model of
depth 1, where the output nodes represent pre-defined function
such as mean, variance, etc. PCA can be also considered as a
model with depth 1, where the output nodes represents the k
principal components outputted as a linear combination of the
input data. DNN is a model with a a depth of n layers, where
the complex dependencies of the input data can be captured
through hidden layers with non-linear mapping in layers.

Fig. 2. (a): statistical feature computation, (b): PCA model, (c): DNN model

The Restricted Bozltman Machine (RBM), a particular
form of log-linear Markov Random Field (MRF) [13], was
proposed as a DNN technique to extract features for AR [23]. It
employed Gaussian visible units for the first level and trained
the network in a supervised manner. Another DNN model,
Shift-Invariant Sparse Coding [29], [5] was used to perform
unsupervised learning to train an autoencoder network.

However, RBM [23] and Sparse Coding [29], [5] are fully
connected DNN models (as shown in Fig 2(c)). Therefore, they
do not capture local dependencies of the time series signals [1].
Convolution Neural Network (CNN) [20] consists of one or
more pairs of convolution and pooling layers2. The small local

1The deep neural networks is built from traditional artificial neural networks
(ANN) but conquer its shortcoming. The term “deep” is gained because
each layer can be stacked layer by layer. And Geoffrey Hinton and Ruslan
Salakhutdinov showed how a many-layered feedforward neural network could
be effectively pre-trained one layer at a time [14]. But the traditional ANNs
only have three layers at most

2The terms will be defined and discussed in the Section 3



parts of the input were captured by the convolutional layer with
a set of local filters. And the pooling layer can preserver the
invariant features. Top fully connected layer finally combine
inputs from all features to do the classification of the overall
inputs. This hierarchical organization generates good results
in image processing [18], [16] and speech recognition [1]
tasks. In the next section, we will present details of CNN and
describe our proposed CNN-based AR approach.

III. CNN-BASED ACTIVITY RECOGNITION

In this section, we discuss our CNN-based feature
extraction approach. Fig 3 shows the structure of the
proposed approach. Following the settings of [23], given a
3D acceleration time series we use a sliding window with a
length of w values and with a certain percentage of overlap
to extract input data for the CNN.

Our L-layer CNN-based model has three kinds of layers:
1) An input layer (with units h0i ) whose values are fixed by the
input data; 2) hidden layers (with units hli) whose values are
derived from previous layers l − 1; 3) and output layer (with
units hLi ) whose values are derived from the last hidden layer.
The network learns by adjusting a set of weights wli,j , where
wli,j is the weight from some input hli’s output to some other
unit hl+1

j . We use xli to denote the total input to unit uli (ith
unit in layer l), and yli denotes the output of unit hli.

Fig. 3. Structure of CNN for Human Activity Recognition. The dimension
of input data is 64, the dimension convolutional output is 12, the dimension
max-pooling output is 4. The dimension of two hidden layers is 1024 and 30,
respectively. The top layer is a Softmax classifier.

A. Convolutional Layer

In the following we describe how CNN captures local de-
pendencies and the scale invariant characteristics of the activity
signals. In order to capture the local dependencies of the data,
one can enforce a local connectivity constraint between units
of adjacent layers. For example, in Fig 4 the units (neurons)
in the middle layer are only connected to a local subset of
units in the input layer. From biology, we know that there
are complex arrangement of cells in visual cortex, which are
sensitive to small regions of the input, called a receptive field,
and are tiled to generate the entire visual field. These filters

are local in input space and are thus suited to exploit local
correlation hidden in the data, so we also call it local filter. In
terms of local filter, the weight of edge connected ith unit with
jth, wi,j can be reduced by wa, and wi,j = wi,j+m = wa,
where m is the width of the local filter. In Fig 4, the 1D
vector [w1, w2, w3] represents three local filters denoted by
different line style, where wi is weight of edge connecting
in two layers. The convolution operation is conducted over
the local subset. This topological constraint corresponds to
learning a weight matrix with sparsity constraint, which is not
only good for extracting local dependencies, but also reduces
the computational complexity. The output of such a set of
local filters constitute a feature map (Fig 5). At each temporal
position, different types of units in different feature maps
compute different types of features.
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Fig. 4. Left) Traditional weight sharing CNN, Right) Partial weight sharing
CNN. Weights denoted by the same line style are shared

Moreover, in order to form a richer representation of
the data, the convolutional layers are composed of a set of
multiple feature maps (Fig 5), x(·,j), j = 1...J . The following
Fig 5 shows two layers of CNN, containing three feature
maps (x(0), x(1)) at the left layer and two feature maps at
the right layer. Unit’s outputs in x(0) and x(1) are computed
by convolution operation from units of left layer which fall
within their local filter (shown as rectangles in Fig 5). Suppose
we have some N unites layer as input which is followed
by convolutional layer. If we use m width filter w, the
convolutional output will be (N − m + 1) unites. Then the
output of convolutional layer l is:

xl,ji = σ

(
bj +

m∑
a=1

wjax
l−1,j
i+a−1

)
(1)

where xl,ji is the l convolution layer’s output of the jth feature
map on the ith unit, and σ is a non-linear mapping, it usually
uses hyperbolic tangent function, tanh(·). Take Fig 4 as an
example, the first hidden unit of the first local filter is

x11,1 = tanh(w1,1
1 x0,11 + w1,1

2 x0,12 + w1,1
3 x0,13 + b1)

and the second hidden unit of the second local filter is

x21,1 = tanh(w1,1
1 x0,12 + w1,1

2 x0,13 + w1,1
3 x0,14 + b1)

.

In traditional CNN model [18], each local filter is addi-
tionally replicated across the entire input space. That means
the weights of local filters are tied and shared by all positions
within the whole input space. For example, in Fig 4, weights
denoted by the same line style are shared (forced to be
identical). The replicated weights allow the features to be
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Fig. 5. Feature Map: three feature maps at input layer and two results at
output layer

detected regardless of the position of the unit, which is also
beneficial for scale-invariant preservation.

In image processing task, full weight sharing is suitable
because the same image pattern can appear at any position in
an image. However, in AR, because different patterns appear
in different frame, the signal appearing at different units may
behave quite differently. Therefore, it may be better to relax
the weight sharing constraint, i.e., weights of the same color
and same type are constrained to be identical (means weight
sharing, in Fig 4)(Right). This weight sharing strategy is first
described in [1], and we called it partial weight sharing in
our application. With the partial weight sharing technique,
the activation the function in convolution layer is changed as
below:

xl,ji,k = σ

(
bj +

m∑
a=1

wja,kx
l−1,j
i+(k−1)×s+a−1

)
(2)

where xl,ji,k is one of the ith unit of j feature map of the kth
section in the lth layer, and s is the range of section. The
difference between Equation 1 and Equation 2 is the range of
weight sharing, using the window (k − 1)× s+ i+ a instead
of i+ a to conduct the convolution operation.

B. Max-Pooling Layer

Once a feature has been detected in the convolutional
layer, its exact location becomes less important, as long as
its approximate position relative to other features is preserved.
Therefore, an additional layer which performs max-pooling is
stacked over convolutional layer to reduce the sensitivity of
the output. Scale-invariant feature preservation is another key
characteristic of CNN, which is achieved by the max-pooling
layer. In the max-pooling layer, features from convolutional
layer are split into several partitions, in each partition, we apply
max operation to output the values. The activation function in
the max-pooling layer in traditional CNN is given by:

xl,ji = maxrk=1

(
xl−1,j(i−1)×s+k

)
(3)

Due to the partial weight sharing structure, only local filters
that are close to each other share weights and will be aggre-
gated together in the max-pooling layer. The pooling function
is slightly different from the traditional pooling function, since
the max operation is only carried out in the same shared
weight section:

xl,ji = maxrk=1

(
xl−1,jk

)
(4)

Thus, filters that work on local time window will provide
an efficient way to represent these local structures and their

combinations along the whole time axis may be eventually
used to recognized different activities.

C. Model Structure and Training Process

The CNN can contain one or more pairs of convolution
and max-pooling layers, where higher layers use broader filters
to process more complex parts of the input. The top layers in
CNN are stacked by one or more fully connected normal neural
networks. These fully connected neural network are expected
to combine different local structures in the lower layers for the
final classification purpose.

In this work, we only use one pair convolution and max-
pooling layer, and two normal fully connected neural networks.
In the training stage, The CNN parameters are estimated
by standard forward and backward propagation algorithms to
minimize the objective function.

D. Training Process

1) Forward Propagation: First, the forward propagation is
conducted in convolutional layer with N nodes by equation
(2). If we use m filter w, our partial convolutional layer output
will be of size N − m + 1. The output of the convolutional
layer will be feed into the max-pooling layer. The max-pooling
is conducted by equation (4). Assume taking some k width
window and outputting a single value, which is the maximum
in that window. For instance, if the input layer is a N nodes
layer, there will then output Nk nodes in the max-pooling layer,
as each k window is reduced to just a single value via the max
function. Then a fully connected network is followed by the
max-pooling layer. The forward propagation is:

xli =
∑
j

wl−1j,i σ(x
l−1
i ) + bl−1i (5)

The top is softmax classifier:

f(x) = argmaxcp(y = c|x) = argmaxc
ex

Twj∑K
k=1 e

xTwk

(6)

where c is a class label, x is a sample feature, y is label
variable, and w is weight vector, K is the number of class.

2) Backward Propagation: Once one iteration of forward
propagation is done, we will have the error value, with the loss
function L (we use L2-norm here), we are able to use gradient
descent to update each edge w. For the fully connected layer,
the gradient can be calculated in the traditional way as follow:

∂L

∂wli,j
= yli

∂L

∂xl+1
j

(7)

where non-linear mapping function yli = σ(xli) + bli, and xl+1
j

is node j in l + 1 layer, xli =
∑
j w

l−1
j,i y

l−1
j . the gradient in

convolutional layer is computed as follow:

∂L

∂wa,b
=

N−m−1∑
i=1

yl−1(i+a)

∂L

∂yli
σ′(xli) (8)

The detailed procedure to obtain (8) is given in the Appendix.

For the gradient in max-pooling layer, as noted earlier, the
max-pooling just reduces the size of the convolutional output



by introducing sparseness. In forward propagation, k width
window is reduced to a single value. Then only this single
value contributes an error from backward propagation from
the previous layer (convolutional layer). Since it only comes
from one place in the k width window, the backpropagated
errors from max-pooling layer are rather sparse.

The pseudo-code for the activity recognition CNN model
is described in Algorithm 1.

Algorithm 1: Convolutional Neural Network for Activity
Recognition

Input: Labeled dataset Dlabeled = {((xi, yi, zi), ai)},
an unlabeled dataset Dunlabeled = {(xi, yi, zi)}
and positive parameters λ, β

Output: Activiy Labels A of the unlabeled data
repeat

Forward Propagation:
foreach Accelerometer data from tri-axises, (x, y, z)
do

• Use (2) to conduct convolution operation
with the input data

• Use (4) to conduct max-pooling with the
output of convolution

end
• Use fully-connected layer to integrate the

pooling results of tri-axises {((xi, yi, zi), ai)}
data

• Use soft-max to do classification and update
the weight of each edge in the network

Backward Propagation:
• Use (7), (8) to conduct backward propagation

until wi convergences;
• Use the trained network to predict the labels

E. Regularization for Improvement

In spite of many successes in CNN, there are still many
weaknesses, such as local optimum problem, overfitting, etc. In
this section, we discuss the regularization terms to train more
robust CNN model. In the training stage, we used stochastic
gradient descent with batch size of 200 examples and the
learning rate of 0.05. The weights of weight decay, momentum
and dropout should be set carefully.

1) Weight Decay: The motivation of weight decay is to
avoid over-fitting. The learning rate is a parameter that deter-
mines how much an updating step influences the current value
of the weights, while weight decay is an additional term in
the weight update rule that causes the weights to exponentially
decay to zero, if no other update is scheduled.
Assume that the cost function that we want to minimize is
L(w). Gradient descent tells us to modify weights w in the
direction of steepest descent in L:

wi = wi − η
∂L

∂wi
(9)

where η is the learning rate, and if it’s too large it will
have a correspondingly large modification of the weights wi

In order to effectively limit the number of free parameters
in the model and avoid over-fitting, it is possible to regularize
the cost function. An easy way is by introducing a zero-
mean Gaussian prior over the weights, which is equivalent
to changing the cost function to L̂(w) = L(w) + λ

2w
2. In

practice, this penalizes large weights and effectively limits
the freedom in the model. The regularization parameter λ
determines how one trade off the original cost L with the large
weights penalization.

Applying gradient descent to this new cost function we
obtain:

wi = wi − η
∂L

∂wi
− ηλwi (10)

The new term −ηλwi coming from the regularization
causes the weight to decay in proportion to its size. More
intuitively, the “weight decay” terms models the data well and
has “smooth” solutions.

2) Momentum: Momentum is a technique for accelerating
gradient descent and attempting to move the global minimum
of the function [24] . It accumulates a velocity vector in direc-
tions of persistent reduction in the objective across iteration.
The intuition behind this strategy is that the current solution
wk has a momentum, which prohibits sudden changes in the
velocity. This will effectively filter out high frequent changes
in the cost function and allow for larger step in favorable di-
rections. Using appropriate parameters, the rate of convergence
is increased while local optima may be overstepped. The cost
function L(w) to be minimized, classical momentum is given
by

vt+1 = −η(1− µ)∇L(wt) + µvt
wt+1 = wt + vt+1

(11)

where η > 0 is the learning rate, µ ∈ [0, 1] is the momentum
coefficient, and ∇L(wt) is the gradient at wt. The application
of momentum for DNN is proposed in [26]. Note that µ = 0
gives standard descent wk = −η∇L(wt), while µ = 1, we
obtain “infinite momentum” wk = wk−1.

3) Dropout: In spite of the appealing representational
power of DNNs, the overfitting is still one of the severe
weaknesses because of the non-linear hidden layers. Dropout
is a simple optimization technique widely used in deep neu-
ral network optimization [30]. The term “dropout” refers to
removing units (hidden and visible) from a neural network,
along with all its incoming and outgoing edges. The choice
of which units to drop is random. Moreover, dropping out is
done independently for each hidden unit and for each training
case. Thus, applying dropout to a neural network also equals
to sub-sampling a sub-neural network from it.

Training a network with dropout and using the approximate
averaging method at test time leads to significantly lower gen-
eralization error on a wide variety of classification problems.
The dropout is applied in the top fully-connected layer.

IV. EXPERIMENTAL ANALYSIS

A. Dataset and Preprocessing

We selected three publically available datasets for our
evaluation. All datasets related to human activities in different
contexts and have been recorded using tri-axial accelerometers.
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Fig. 6. Accuracy of classification for experimental evaluation of learned fea-
tures. The Statistical, RBM and PCA-ECDF do not consider local dependency
or scale invariant, but CNN-based model take account of local dependency and
scale invariant.

Sensors were either worn or embedded into objects that
subjects manipulated. The sensor data was segmented using a
sliding window with a size of 64 continuous samples with 50%
overlap. The acceleration values were normalized to have zero
mean and unit standard variance for CNN-based approach. All
the deep learning based algorithms (CNN-based, and RBM)
are performed on a server, equipped with a Tesla K20c GPU
and 48G memory. The traditional learning algorithms (PCA,
statistics) are run on the same server with an Intel Xeon E5
CPU.

• Opportunity (Opp) [25], [6] The dataset contains
activities performed in a home environment (kitchen)
using multiple worn sensors. The dataset records ac-
tivities of multiple subjects on different days with
64Hz. The activities contain “open then close the
fridge”, “open then close the dishwasher”, “drink
while standing”, “clean the table”, etc. Our settings
on this dataset is the same with [23]: only using
one sensor on the right arm, and we consider 11
activities categories, including 10 low-level activities
and 1 unknown activity. The dataset contains around
4,200 frames.

• Skoda [33] The Skoda Mini Checkpoint dataset de-
scribes the activities of assembly-line workers in a
car maintenance senario. The dataset records a worker
wearing 20 accelerometers in both arms while per-
forming 46 activities in the factory at one of the qual-
ity control checkpoint. The activities include “open
hood”, “close left hand door” “check steering wheel”,
etc. The frequency of sampling is 96Hz resulting
around 15,000 frames. The settings of CNN on this
data follows that of [23]: use only one accelerometer
on the right arm to identify all 10 activities related to
right arm and perform 4-fold cross validation.

• Actitracker [21] This dataset contains six daily activi-
ties collected in an controlled laboratory environment.
The activities includes “jogging”, “walking”, “ascend-
ing stairs”, and “descending stairs”, etc., which are
recorded from 36 users collected using a cell phone in
their pocket with 20Hz sampling rate resulting around
29,000 frames. 10-fold cross validation is conducted
on this dataset.

B. Classification Accuracy

In the first experiment, we evaluate the activity recognition
results presented in Fig 6. The CNN is composed of a
convolution layer with the partial weight sharing, with the
filter size set to 20 and max-pooling size set to 3. The top two
fully connected hidden layer have 1024 nodes and 30 nodes
respectively. One additional softmax top layer is used to
generate state posterior probabilities. All the other compared
algorithms used the same settings as [23]: calculating 23
dimension statistical value (mean, standard deviation energy,
etc.) as statistical feature; PCA (ECDF prepossessed) with 30
principal component (30 dimension); the structure of RBM
is 192-1024-1024-30. KNN is used as the label predictor. To
show the general applicability of the methods, the learning
parameters and the network layout were tuned on the Skoda
dataset via cross-validation and then applied as is for the
remaining datasets.

From Fig 6 we can observe that CNN+partial weight
sharing could improve the classification accuracy (with 95%
confidence) for all the three datasets. This CNN-based model
achieves classification accuracy of 88.19%, 76.83% 96.88%
on Skoda, Opp, Antitracker respectively, which is 4.41%,
1.2%, 9.02% higher than the best algorithm (PCA-ECDF)[23].

To analyze the results in more detail, we show the
confusion matrix for the Actitracker dataset using PCA
(Table I) and CNN (Table II). The two confusion matrices
indicate that many of the prediction error are due to
confusion between these three activities: ”walking”, ”walking
down”, ”walking up”. This is because these three activities
are relatively similar [19]. However, from the results we
can observe that the CNN+partial weight sharing model
outperforms the PCA-ECDF due to the two characteristics
of CNN+partial weight sharing. Note that in the PCA-ECDF
confusion matrix, the confusion in (up,walk) and (down,walk)
is high. This is because the signal vibration of ”walking
up” and ”walking down” activities are like ”walking”. But
CNN-based models performs well in these two cases, which
indicates CNN could extract better representative features for
”walking down” and ”walking up”.

Predict Class
Jog Walk Up Down Sit Stand

A
ct

ua
l Jog 649 13 8 3 0 7

Walk 2 1146 7 1 2 5
Up 5 42 187 30 2 48

C
la

ss Down 0 44 65 101 3 42
Sit 0 0 0 0 166 0

Stand 0 0 0 0 0 133

TABLE I. CONFUSION MATRIX FOR PCA-ECDF ON ACTITRACKER
DATASET

C. Sensitivity of Parameters

We evaluate the sensitivity of varies pooling window size,
the weight decay, momentum and dropout. In the following, we
vary the width of pooling window, weight decay, momentum,
and dropout respectively while keeping the other parameters
as the best settings.



Predict Class
Jog Walk Up Down Sit Stand

A
ct

ua
l Jog 667 5 1 3 0 0

Walk 1 1145 8 5 0 0
Up 5 13 274 17 1 1

C
la

ss Down 2 9 13 231 0 0
Sit 0 0 0 0 166 0

Stand 0 0 0 0 0 133

TABLE II. CONFUSION MATRIX FOR CNN ON ANTITRACKER
DATASET

1) Pooling Size: In the following, we evaluate the effect
of different pooling sizes of the CNN configuration. Assume
CNN is composed of a convolution layer with the partial
weight sharing, filter size of 20 units, a max-pooling layer
with a sub-sampling factor of 3, and two top fully connected
hidden layer having 1024 nodes and 30 node respectively. And
one additional the softmax top layer to generate state posterior
probabilities. We have tested CNN with pooling size from 1
to 5, where 1 corresponds to the case of no max-pooling.
The recognition results are shown in Fig 7. The results with
max-pooling are better than that with no max-pooling because
max-pooling is able to preserve scale invariant. The best results
are consistently achieved when setting the pooling size to 3. In
this case, the recognition accuracy is increased from 85.68%
to 88.19% on the Skoda dataset, and from 71.94% to 76.77%
on Opp dataset.
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Fig. 7. Influence of pooling size on accuracy.

2) Weight Decay: we evaluate the sensitivity
of the weight decay for the weight values
{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 1}.
The general trend show that, the accuracy of CNN steadily
improves from [0.0001, 0.25]. Then it decreases even the
weight continues increasing. It shows that this small amount
of weight decay was important for the model to learn (Fig 8).
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Fig. 8. Influence of weight decay on accuracy.

3) Momentum: We evaluate the sensitivity of
the weights of momentum for the weight values

{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. The general
trend shows that, the accuracy of CNN steadily improves from
[0.0, 0.5]. Then it drops quickly even the weight continues
increasing. With increasing weight momentum, the search
direction tends to use the initial direction of the last step
(Fig 9).

4) Dropout: Dropout has a tune-able hyperparameter p,
which represents the probability of retaining a hidden unit in
the network. We explain the effect of varying this hyperpa-
rameter. The comparison is done when the number of hidden
units is held constant. This means all the nets have the same
architecture at test time but they are trained with different
amount of dropout. Fig 10 shows the test accuracy obtained
as a function of p. It can be observed that the performance is
insensitive to the value of p if 0.5 ≤ p ≤ 0.9, but drops sharply
for small value of p. This is to be expected because for the
same number of hidden units, having small p means very few
units will turn on during training phase. It is also worth noting
that the accuracy on Skoda dataset is lower than the others
when p is small, then it increases faster when the p grows
high. The reason is the number of Skoda has less samples than
the other datasets, but when the number of samples becomes
larger, it will perform better.
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Fig. 9. Influence of momentum on accuracy.
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Fig. 10. Influence of dropout on accuracy.

V. CONCLUSION

In this paper, we have proposed a CNN-based feature
extraction approach, which extracts the local dependency and
scale invariant characteristics of the acceleration time series.
The experimental results have shown that by extracting these
characteristics, the CNN-based approach outperforms the state-
of-the-art approaches.

Experiments with larger datasets are needed to further
study the robustness of the proposed technique. Further im-
provements may be achieved by using unsupervised pre-
training and repeating pooling operations in multiple layers
of the CNN model.



APPENDIX

Since we know the error from previous layer, we need
to compute for the previous layer is the partial of L with
respect to each neuron output ∂L

∂yli
. According the chain rule,

the gradient of w is computed by:

∂L

∂wa,b
=

N−m−1∑
i=1

∂L

∂xli,j

∂xli,j
∂wa,b

=

N−m−1∑
i=1

∂L

∂xli,j
y
(l−1)
(i+a)

(12)

In order to compute the first term of rightmost of (12),
which is straightforward to compute using the chain rule:

∂L

∂xli,j
=

∂L

∂yli,j

∂yli,j
∂xli,j

=
∂L

∂yli,j

∂

∂xli,j

(
σ(xli,j)

)
=

∂L

∂yli,j
σ′(xli,j)

(13)
As we can see, since we already know the error at the current
layer ∂L

∂yli
, we can easily compute ∂L

∂xli
at the current layer by

just using the derivative of the mapping function, σ′(x).

In addition to compute the weights for this convolutional
layer, we need to propagate errors back to the previous layer
by:

∂L

∂yl−1i,j

=

m−1∑
a=0

∂L

∂xl(i−a)

∂xl(i−a)

∂yl−1i,j

=

m−1∑
a=0

∂L

∂xl(i−a)
wa,b �

(14)
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