
1

Monkey Gamer: Automatic Profiling of
Android Games

Javier Marián Santos, Simin Nadjm-Tehrani, Aruna Prem Bianzino
Department of Computer and Information Science, Linköping University, Sweden

Email: simin.nadjm-tehrani@liu.se

Abstract—Creation of smartphone applications has undergone
a massive explosion in recent years and there is an urgent need
for evaluation of their resource efficiency, trustworthiness and
reliability. A large proportion of these apps are going to be
within the gaming area. In this paper we classify game apps
on the basis of their development process, their I/O process and
their interaction level. We present Monkey Gamer, a software to
automatically play a large class of Android games and collect
execution traces, based on a state machine to partially describe
the game structure and interactions. A significant similarity is
shown when comparing the results obtained by the Monkey
Gamer and by human players, for three of the most popular
Android games. We evaluate the performance of the Monkey
Gamer by comparing the traces it generates with traces created
when humans play the games, and find significant similarity in
the trace sets.

I. INTRODUCTION

The introduction of the app-driven software deployment for
mobile devices is redrawing the application software develop-
ment map for a significant proportion of interactive software.
Many players, including software developing companies and
independent developers, are given the opportunity to enter the
app market and to distribute them in the virtual shops for a
widespread dissemination.

This new dynamics motivates a new look at the application
development cycle and efficient investigations on a mass
market scale. Heterogeneity in the range of available apps
gives rise to the need for tools to easily and automatically test
their efficiency, trustworthiness and reliability - either with a
common denominator, a generic tool that can treat aspects of
many apps, or with a tool that is tailormade to a significant
subset of the apps appearing. Clearly, application profiling,
creating logs of system status, system calls, user inputs, access
to sensitive data, network usage, energy-consuming features,
etc, can be of great help for creation of future system software
and hardware producers, as well as for research.

Games represent a big share of the available apps. It has
been estimated that 20% of the applications available in the
iPhone app store are games, and about 80% of application
downloads concern games [1]. Other more conservative es-
timations still claim that games are responsible for 36% of
the downloads in iTunes and for 22% of the downloads in
Play Store [2]1. Game apps constitute a challenging case from
a testing and profiling point of view, as games require a

1Original data from the mobile app search company Chomp, now dismissed.

higher level of interaction with the user – potentially within a
simultaneous group of users – compared to other apps. Games
usually present a more complex structure including different
screens and different activities.

In this paper, we take two important steps towards au-
tomatically profiling and analysing game bahaviours: (i) we
introduce a game classification, which represents a basis for
a better understanding of the game app population, and (ii)
we develop Monkey Gamer, a software to automatically play
Android games belonging to many of these classes, emulating
their behaviour and producing play traces similar to human-
player traces.

Key elements in automatically playing games are the iden-
tification of the interaction points in the screen and the kind
of input that the game is taking. Our game classification high-
lights these aspects, in order to understand which population
of games can be profiled using Monkey Gamer, and how to
design the tool to be able to play these games. We estimate
that Monkey Gamer is able to profile about 45% of the top
100 downloaded free games on the Google Play Store, as for
the Swedish market [3].

The goal of Monkey Gamer is to support profiling of an
Android game, without the use of expensive human players
and human time consumption. Game profiling by Monkey
Gamer results in a sequence of inputs and the corresponding
execution traces, in terms of system status, system calls, access
to sensitive data, network usage, and game state. The input
sequence is not pre-generated, but constructed on-the-fly, on
the basis of the current game and system state. The Monkey
Gamer should behave as similarly as possible to a human
player, in order to keep the obtained profiling meaningful.

We validate Monkey Gamer considering three popular
games, accounting for millions of downloads. The selected
games represent different levels of game complexity, different
sets in the game classification, different underlying game
development procedures, and different input types (tap and
swipe). Monkey Gamer performance is validated in terms of
similarity to real human player traces, showing high resem-
blance, and provides a deeper exploration of game states.

Previous approaches to automatic profiling Android appli-
cations have been targeting just a specific game [8], or just
a specific aspect of games, like the game energy states [7],
game network connections [11], game security [9] or privacy,
i.e., access to user sensitive data by games [10]. A number of
works test generic Android applications, without specifically
targeting games, but they either relay on completely random

MobiCASE 2014, November 06-07, Austin, United States
Copyright © 2014 ICST
DOI 10.4108/icst.mobicase.2014.257771



2

input generation [14], application-specific input generation
[15], a properly tuned mix of random input and input paths
generated from a given application-specific seed [11], or a
prior knowledge of all the interactive elements present in each
game state [12]. Finally, there are approaches to test generic
Android applications from a holistic point of view, but using
human players instead of automated input [13]. Our work is the
first attempt at applying a generic and sophisticated profiling
technique to a large class of Android applications, a major
subset of the games available on the market.

The rest of the paper is organised as follows: Sec. II presents
our classification of Android games. Sec. III describes Monkey
Gamer, while Sec. IV validates it considering real and popular
games. Finally, Sec. V concludes the paper and presents future
work directions.

II. ANDROID GAME CLASSIFICATION

The interaction required by Android games while playing
them may vary a lot, both from the physical and the technical
point of view. A deep understanding of this variability is a
fundamental starting point for automatic game profiling. On
the one hand, it helps to understand which games can be
automatically profiled and which can not. On the other hand, it
characterises the relevance of such analysis in terms of game
population coverage. At the same time, such game classifi-
cation can be of help for other kinds of studies concerning
user/app interaction and app profiling in general.

In the remainder of this section we discuss the different
kinds of user/game interactions, as well as the different choices
available to developers to define the game Graphical User
Interface (GUI).

A. User Input
Some games can be described as a discrete state machine,

where the game enters a state and waits for a user input before
entering the following state. A familiar example of this class
of games may be the game of chess. We refer to this class of
games as “time-independent”. Other games change state in a
continuous fashion, partially independent from the user input,
and respond to a specific input, depending on the instantaneous
state. A familiar example of this class of games may be any car
racing or platform game, where the state of the game changes
even when the player is not interacting with the game. We
refer to this class of games as “time-dependent”.

From the point of view of automatic profiling of games,
the time-dependent games represent a huge challenge as the
state space of a time-dependent game is infinite, and the
Monkey Gamer would have to produce input in a continuous
fashion. For this reason, we decided to narrow our scope to
the profiling of time-independent games. Still 49 of the 100
most downloaded free games on the Google Play Store on the
Swedish market were time-independent games (at the time of
our sampling2), making this subset interesting enough.

In this work we consider user/game interactions through a
touch screen. Other inputs may be given by users through

2The game population analysis was performed on November 28th 2012.

Fig. 1: Distribution of games by GUI implementation technol-
ogy.

other sensors, such as accelerometers, or microphones, but
when considering the time-independent game population a
very common mode of input generation is through the touch
screen interface.

B. GUI Implementation Technology
Users interact with games through the touch screen by

touching specific interactive objects. Game developers can use
different technologies to implement the GUI. The GUI can
be defined using an xml file – a common practice for non-
game applications. As an alternative, game developers can use
specific game engines to define the GUI of a game. Game
engines provide game developers with specific development
tools to manage game graphics, physics engines, animations,
artificial intelligence, etc. These frameworks make the use of
game engines quite popular. At the same time, different game
engines are available depending on the developer needs. The
result of this process is a high heterogeneity in the game
development tools used for games.

The distribution of the GUI implementation technologies
among the 100 most downloaded free games on the sampled
Google Play Store is reported in Fig. 1. This analysis shows
that an approach to automatic profiling games that targets a
specific development technology would be much less relevant
than a generic one, due to the high heterogeneity of develop-
ment technologies.

III. THE MONKEY GAMER

Monkey Gamer is a program executed on a computer that
controls a real (Android) device. It plays a game on the
Android device, generating automatic input and collecting
traces about the game state, the system state, system calls and
network connections generated by the game, etc.

A. Architecture of the profiler
The main blocks comprising the Monkey Gamer are pre-

sented in Fig. 2



3

Fig. 2: Structure of Monkey Gamer as function blocks.

The Main Controller block takes as input the location of
the .apk file of the game to be analysed and is responsible for
coordinating the other modules and collecting the execution
trace.

The Disassembler block is in charge of disassembling the
.apk file of the analysed game, while the Installer block installs
a clean instance of the game in the physical Android device.

The Trace Collector block is responsible for collecting
system calls and network traffic.

The Screens Collector module governs the state machine
associated with the game and is the key module of Monkey
Gamer. Iterations with the game are executed in sequence in
order to simulate a played game. Each interaction corresponds
to a sequence of operations: (i) wait for the screen to stabilise
(screen switch may include animations, a proper switching
time ts is selected), (ii) take a screenshot and check the
system state, (iii) determine the game state, (iv) retrieve the
information about the interactive object on the screen and (v)
generate the following input.

In particular, a specific module, i.e., the Screen Analyser, is
responsible for step (iv) described above. The Screen Analyser
returns the interactive elements of the current game screen,
being buttons, images, or text fields. Interactive elements may
be clearly identifiable, i.e., if the GUI is defined through an xml
file, every object on the screen is uniquely identified in the xml
file, and interactive objects are identified by specific parameters
(e.g., clickable = true). On the other hand, if the GUI is
defined using a game engine, it is not possible to access a file
describing the different objects and their properties since game
engines are not standard. In the latter case, interactive objects
must be identified from the screenshot itself, and this operation
is relegated to the specialised Object Detector module.

Finally, the Input Generator module is responsible for
generating the subsequent input to the game. This step in-
cludes the selection of the object to interact with, the kind
of interaction (type text, press a hard key, touch or swipe),
and eventual interaction parameters (e.g., text to enter, or
direction of the swipe gesture). Each screen is associated
with the list of the detected interactive objects it contains and
the number of times the screen has been visited before. The

Fig. 3: Different screens of the Tic Tac Toe Free game,
corresponding to different game states.

object to be interacted with is selected at each step considering
every interactive object and every possible permutation of the
interactive objects list. For example, if the considered screen
contains three different interactive objects, the sequence of
objects with which to interact at each visit of the screen will be
{1, 2, 3; 1, 3, 2; 2, 1, 3; 2, 3, 1; 3, 1, 2; 3, 2, 1}, where 1, 2, and 3
are the object identifiers.

B. Game States
Game profiling strongly relies on the definition of game

states, as games are modelled as a state machine, but no
agreed standard definitions for “game state” exists. States for
games have been defined in a highly coarse scale [7], or for
very specific games [8]. Our methodology needs to rely on
a definition of game state which is generic enough to be
applicable to all the games in the selected class, while detailed
enough to differentiate different game stages as different game
states. Thus, we define the state of a game as a point within
the game, characterised by a specific screen output and a
specific set of interactive elements. Examples of different game
screenshots, corresponding to different game states, for the
Tic Tac Toe Free game are depicted in Fig. 3. Each state
is characterised by a different screen layout and a different
set of interactive elements. Note that similar screenshots, still
characterised by the same layout and the same set of interactive
elements, are mapped to the same game state. An example of
different screenshots mapped to the same game state, for the
Angry Birds game, is reported in Fig. 4.

From an implementation point of view, the activity class is
defined for mobile applications as a task container, but the use
of game engines makes this class not uniquely corresponding
to our definition of game state, since different activities may
correspond to different states, but a single activity can also hold
different states. That justifies our choice which maps states in
the game state machine to the screenshots. At every stage of
the game profiling, Monkey Gamer needs to know whether
it is visiting a new state of the game or an already known
one. This is needed both to know where to map the state in
the game state machine, and to generate the next input to the
game.



4

Fig. 4: Different screenshots of the Angry Birds game mapped
to the same game state.

The screen comparison is implemented by means of both
a pixel-by-pixel comparison and a histogram comparison. The
pixel-by-pixel comparison guarantees excellent results in case
of static screens (i.e., screens without animations). For each
pixel in a screen, its values of RGB brightness are compared
with the ones of the corresponding pixel in the reference screen
and the difference is contrasted against a proper threshold σp.
The comparison returns the percentage of similar pixels.

The histogram comparison returns a value of similarity
which is global for the picture, representing a better com-
parison method for dynamic screens (i.e., screens including
animation). In this comparison, for each screen a histogram
is produced representing the composition of the distributions
of the brightness values for the three RGB components of the
pixels composing the screen. The comparison between two
histograms returns the percentage of similar elements in the
histograms of the two compared screens, again under a prop-
erly selected threshold σh. The final screen comparison is a
linear composition of the two similarity indexes returned by the
pixel-by-pixel comparison and by the histogram comparison3.
It is compared to a global threshold σg to decide whether the

3The similarity index returned by the pixel-by-pixel comparison goes from
0, i.e., no similarity, to 1, i.e., exactly the same picture. The same applies to
the histogram comparison. The global index is the sum of the two comparison
indexes. Hence, the global similarity index goes from 0, i.e., no similarity at
all, to 2, i.e., exactly the same picture.

Fig. 5: Examples of object detection in the Angry Birds game.

screens belong to the same game state or not.

C. Detailed implementation
Some of the previously described tasks have been solved

using available tools. In particular, the Main Controller is
a monkeyrunner script [4], while for the Trace Collector
module, system calls are collected using the strace tool,
and network traffic is monitored using the tcpdump tool.
The screen comparisons performed by the Screen Controller
module have been implemented using the PIL libraries.

The other described tasks could not be solved using already
available tools, and custom solutions have been developed. In
particular, object detection in games the GUI of which was
defined using game engines has been implemented using the
Hough Transformation [5].

Interactive objects are usually sharp edges, contours, or
shapes, being buttons or touchable elements on the screen.
The Hough Transformation is particularly good in detection
of this kind of objects in an image, like a screenshot. Open
source libraries for implementing the Hough Transformation
are available [6]. An example of object detection results for
two different screenshots of the Angry Birds game is presented
in Fig. 5, using the (green) highlighted boxes. As we can see,
most of the interactive objects are correctly detected, especially
for regular shaped objects (e.g., the square buttons in the top
screen), but some interactive objects are not detected (e.g., the



5

Symbol Value Description
σo 500 square pixels Minimum size for interactive detected objects

to be considered.
ts 2 s Waiting time for screen switching.
T 14-21 hours Simulation duration.
σp 10 Pixel-by-pixel comparison threshold for the

difference in luminosity, for each RGB com-
ponent.

σh 100 pixels Histogram comparison threshold for the differ-
ence in luminosity distribution, for each RGB
component.

σg 1.2 Global threshold for screen comparison.

TABLE I: Simulation parameters.

pause button in the top left corner of the bottom screen) and
some interactive objects are detected while they are not present
(e.g., a grass block in the bottom right corner of the right side
screen).

The right tradeoff between false positives and false negatives
in interactive object detections may be tuned by a suitable
selection of the parameters of the Hough Transformation and
by the definition of proper heuristics (e.g., do not consider “too
small” objects, having a size of less than σo square pixels).
Finally, some times a part of the screen is defined using an
xml file, while another part is defined using a game engine.
In this case the two parts can be easily identified in the xml
file, and a hybrid object detection is performed by the Object
Detector module.

IV. PROTOTYPE VALIDATION

We validate the Monkey Gamer in terms of similarity to the
game profiling obtained by real human players. This section
details the evaluation setting and methodology, and describes
the obtained results.

A. Validation Scenario
The testing environment consists of a Dell Latitude E6320

laptop, Intel Core i7-2620M CPU at 2.70GHz x 4, 8GB mem-
ory, running Ubuntu Linux 12.04 64-bit, an HTC Sensation
Z710e smartphone, 1.2GHz Qualcomm MSM8660 Dual-Core,
running Android Gingerbread 2.3.5 (developers build), and
an LG-P990 smartphone, ARMv7 Processor rev0, running
Android Jelly Bean 4.2.2 (CyanogenMod). The phones were
connected to the Internet via a general purpose WiFi network
(eduroam). Results are reported in the rest of the paper used
the HTC phone, while tests have been executed also on the
LG phone to test the Monkey Gamer compatibility in terms of
hardware and OS version.

The evaluation was carried out with three Android games,
representing a heterogeneous selection with respect to the
game population described in Sec. II. In particular, the three
selected games are Tic Tac Toe Free (TTTF), Bubble Worlds
(BW), and Angry Birds (AB). TTTF represents a simple game,
with a reduced and countable number of states. Its GUI is
defined using an xml file and the player/game interaction
is limited to taps. BW represents a more complex game,
resulting in an uncountable number of final results. Its GUI

is defined using the OpenGL game engine (the most popular
game engine, according to our game population analysis). The
player/game interactions in BW are still limited to tap gestures.
Finally, AB is a really popular game, representative of a higher
complexity. It accounts for higher variety among screens, an
uncountable number of final results, and requires both tap and
swipe gestures to be played. The AB’s GUI is defined using
the Cocos2d game engine. All the selected games are among
the top 100 downloaded free games on the Google Play Store,
as mentioned before, and account for millions of downloads
each.

The obtained execution traces have been compared to traces
obtained while human players were playing the same games in
the same setting. Three person have been asked to play each
game, providing a total of nine different human players. Each
human playing session was over a period lasting between 15
and 30 minutes.

B. Parameter Selection
Simulation parameters were empirically selected on the

basis of the worst case among the observed ones, e.g., longest
screen transaction time for the ts parameter, or smallest inter-
active object for the σo parameter. The simulation durations
were chosen in order to obtain the same number of inputs
generated by the human players while playing a specific game,
resulting in 21 hours for TTTF, 16 hours for BW, and 14 hours
for AB4. Parameter values are summarised in Tab. I.

C. Validation Results
For each analysed game, we have three human execution

traces and one Monkey Gamer trace. Each trace includes the
sequence of the game system calls, the TCP traffic generated
and received by the game, the player input sequence and a
screen shot of each game step (i.e., after each input).

a) Network Connections: From the point of view of the
network connections, we compare the different traces looking
at the IP addresses to which the game connects. Games connect
to servers when some specific states are reached in the game.
This usually means that a result is registered into a global
server for ranking purposes, or new contents are required and
downloaded.

Tab. II reports the results for the network connection com-
parison for the three analysed games, where Human is the
average number of IP addresses to which the game connects
during the human play testing, MG is the number of IP
addresses to which the game connects during the Monkey
Gamer testing, Common is the average number of common
IP addresses to which the game connects both during the
human play testing and during the Monkey Gamer testing,
and Coverage is the average percentage of IP addresses of the
human player trace covered by the Monkey Gamer trace.

4Note that simulation times are much longer than the human players playing
time, as Monkey Gamer is waiting after each input for the longest possible
animation time, i.e., 2 s, while the human players have much shorter and
adaptive response time. Furthermore, the Monkey Gamer needs to wait for
computations to be completed for each screen analysis step.



6

Game Human MG Common Coverage
TTTF 17.67 79 7.67 46.67%
BW 4.67 57 2.67 73.13%
AB 12.00 36 5.00 35.20%
Average 11.45 57.33 5.11 51.67%

TABLE II: Network connections: number of IP addresses to
which the game connects.

Game Human MG Common Coverage
TTTF 6.00 9 6.00 100.00%
BW 8.33 11 8.00 95.83%
AB 18.33 22 9.33 50.39%
Average 10.89 14.00 7.78 82.07%

TABLE III: Game states visited during the tests.

Analysing the traces we observed a high variability for the
IP addresses to which the game connects, even among the
different human traces for a single game. At the same time,
we observe that the Monkey Gamer covers on average more
than half of the network connections generated by a human
player, while exploring more than five times more potential
network connections.

b) Game States: Game states are identified by the screen
shown by the game. We compare here the game states met
by the game during the Monkey Gamer testing and during the
Human play testing.

Tab. III reports the results for the game state validation for
the three analysed games, where Human is the number of game
states visited by the game during the human play testing, MG
is the number of game states visited by the game during the
Monkey Gamer testing, Common is the average number of
common states between the human traces and the Monkey
Gamer trace, and Coverage is the average percentage of states
from the human traces covered by the Monkey Gamer trace.

The Monkey Gamer covers a very high percentage of the
states covered by the human players, while offering a higher
exploration of the game-state space.

c) System Calls: System calls represent the interface
between an app and the operating system. They are the way
apps require services to the kernel. This may include access
to data, creation and execution of processes, communication
with kernel services (e.g., scheduler), etc. While comparing
the human and the monkey gamer traces for system calls we
are interested in “patterns”, i.e., sequences of system calls,
since the presence of a similar pattern in the different traces
means that the same macro-operation has been performed
by the game in the different tests. We define system call
patterns as sequences of at least two consecutive system
calls. As the repetition of a macro-operation may result in
a slightly different sequence of system calls, we consider two
consecutive patterns as a single pattern, even if the two patterns
are separated by a single different system call. For instance,
for the system calls A, B, C, and D, the two sequences
{A,A,B,C,A} and {A,A,D,C,A} are considered as the
same pattern.

In order to objectively quantify the similarity between two

B B A A D C A D
D
A
A
B
C
A
B
B

Fig. 6: Graphical representation of the similarity between two
system call sequences: the area in red represents a similarity
between the two sequences.

Chunk Human MG Common Similarity
TTTF-1 912.00 812 534.33 43.17%
TTTF-2 572.00 458 154.67 69.70%
TTTF-3 297.33 293 110.33 76.00%
BW-1 261.33 292 37.00 71.23%
BW-2 92.33 201 29.00 85.83%
BW-3 32.00 86 18.33 88.53%
AB-1 398.67 395 90.33 68.57%
AB-2 218.67 142 28.33 79.53%
AB-3 63.67 115 22.67 88.87%
Average 316.44 310.44 113.89 74.60%

TABLE IV: Validation results for the system calls pattern
comparison.

different traces from the point of view of the system call
sequences, we use the technique described in the work by Cor-
nelissen and Moonen [16]. This technique produces a graphical
representation of the similarity between two sequences5. An
example is reported in Fig. 6, where the two compared
sequences are reported on the x and y axis, respectively. The
(dark) red area represents the intersection between common
patterns, while the (light) green area represents the intersection
between non-common parts of the sequences. We measure the
similarity between two sequences as the percentage of the total
area covered by intersection between the common patterns
(45.31% in the shown example).

Collected traces contain hundreds of thousands of system
calls. For each trace, we analyse three different chunks of
104 system calls, corresponding to an early, a middle, and
a late game stage. Each trace chunk from the Monkey Gamer
simulation is hence compared to the corresponding ones from
the human play traces. Results are reported in Tab. IV, where
Chunk is the ID of a given chunk, composed by the game
acronym and by a sequence number (i.e., 1 for the early chunk,
2 for the middle chunk, and 3 for the late chunk), Human
is the average number of distinct system calls made by the

5The technique is originally used to highlight self similarities in a single
sequence by comparing a sequence to itself [16]. Here we use the technique
to draw the same conclusions when comparing two different sequences.



7

game for the considered chunk while played by humans, MG
is the number of distinct system calls made by the game for
the considered chunk during the Monkey Gamer play test,
Common is the number of system calls made by the game for
the considered chunk during the human play testing covered
in the corresponding chunk of the Monkey Gamer play testing
trace, and Similarity is the similarity percentage computed as
described above considering the system call patterns.

Despite the very high number of distinct system calls in
the traces, Monkey Gamer is able to produce a test trace with
high similarity to the one produced by the human players.
Even if the overall rate of covered individual system calls
is sometimes low, the similarity between traces in terms of
patterns is high, meaning that the macro-activities performed
by the game are generally the same in the Monkey Gamer
traces compared to the human traces, and that the common
system calls are used more often than the non-common ones.
Furthermore, we can see that later stages of the game are
characterised by higher similarity. Later stages present a lower
amount of distinct system calls, among which, apparently, the
common patterns dominate.

D. Validation Discussion

Considering the results obtained analysing the Monkey
Gamer behaviour while testing the three selected games, and
contrasting it with the human play testing, we can conclude
that Monkey Gamer offers a good approximation of a human
player while profiling games. This applies from the point of
view of the number of network connections, the game states,
and the patterns of system calls.

Apart from a good approximation of a human player, the
Monkey Gamer also offers a higher coverage of network con-
nections, game states, and system calls potentially performed
by the game, offering a higher value for game testing. These
are valuable inputs to several types of studies e.g., security
analysis. For example, while profiling the AB game with the
Monkey Gamer, a request for Superuser permissions was de-
tected, which was not detected during the human play testing,
and which may represent a security threat. A screenshot of the
suspicious permission request is depicted in Fig. 7.

V. CONCLUSIONS

Mobile applications have a high and increasing penetration
in everyday life, and gamification is being used to expand
the reach of software applications in new settings. Games
represent a considerable share of current application download
and usage. Automatic profiling of game applications is needed
for research and development purposes, and to check the
efficiency, trustworthiness and reliability of the games. To-
wards these goals, this paper describes our effort in automatic
profiling for Android games. Games are profiled to reach a
wide variety of the system states, and to obtain records of the
system calls and network traffic generated by the game. The
game profiling process relies on the automatic and adaptive
input generation, taking into account the interactive objects
detected at each game state.

Fig. 7: Superuser permission request by Angry Birds.

Simulation results show that the obtained profiling for three
of the most popular Android games is highly similar to the
one obtained while using real human players, and guarantees a
higher degree of exploration for potential game states, network
traffic and system call generation.

This work began with a pre-study of the games market,
and thereby offers a first step in the analysis of the game
population, cataloguing games from the point of view of the
user input process and of the game development process.

The analysis and results presented in this paper should be
intended as a first tool validation, while, for a systematic eval-
uation of bugs and games reliability, more testing is needed. A
further tool validation should include a comparison with other
automatic tools, even if narrowed down to the specific game
aspect, or to the specific game, targeted by the tool which is
object to comparison. This aspect is left as future work.

Future work will also aim at extending automatic game
profiling to include time-dependent games, as well as other
kinds of inputs, like multitouch gestures (e.g., pinch, rotate,
etc) or phone sensor inputs (e.g., gyroscope).

ACKNOWLEDGMENTS

This work has been supported by the Swedish national
Graduate school in computer science (CUGS). The Authors
thank Dr. Marcello Calisti for the insightful suggestion on the
use of the Hough transformation for object detection.

REFERENCES

[1] Manweiler, J., Agarwal, S., Zhang, M., Roy Choudhury, R., and Bahl,
P. “Switchboard: a matchmaking system for multiplayer mobile games.”
Proceedings of the 9th international conference on Mobile systems,
applications, and services (MobiSys 2011). ACM, 2011.

[2] Perez S., Tech Crunch, http://techcrunch.com. Cited 30 May 2013.
[3] Play Store (previously Android Market), http://play.google.com/store.

Cited 30 May 2013.
[4] MonkeyRunner, http://developer.android.com/tools/help/monkeyrunner

concepts.html. Cited 30 May 2013.
[5] Duda, R.O., and Hart, P.E., “Use of the Hough transformation to detect

lines and curves in pictures.” Communications of the ACM 15.1 (1972):
11-15.



8

[6] Open Source Computer Vision Library, http://www.opencv.org. Cited 30
May 2013.

[7] Dietrich, B., and Samarjit, C., “Power management using game state
detection on android smartphones.” Proceeding of the 11th annual interna-
tional conference on Mobile systems, applications, and services (MobiSys
2013), ACM, 2013.

[8] Patro, A., Rayanchu, S., Griepentrog, M., Ma, Y., and Banerjee, S., “The
anatomy of a large mobile massively multiplayer online game.” ACM
SIGCOMM Computer Communication Review, 42.4 (2012): 479-484.

[9] Gilbert, P., Chun, B. G., Cox, L. P., and Jung, J., “Vision: Automated
Security Validation of Mobile Apps at App Markets.” In Proceedings of the
second international workshop on Mobile cloud computing and services,
ACM, 2011.

[10] Gilbert, P., Chun, B. G., Cox, L., and Jung, J., “Automating Privacy
Testing of Smartphone Applications.” Technical Report CS-2011-02, Duke
University, 2011.

[11] Dai, S., Tongaonkar, A., Wang, X., Nucci, A., and Song, D., “Net-
workprofiler: Towards automatic fingerprinting of android apps.” In
Proceedings of the 32nd IEEE International Conference on Computer
Communications (INFOCOM), 2013, Chicago.

[12] Anand, S., Naik, M., Harrold, M. J., and Yang, H., “Automated Concolic
Testing of Smartphone Apps.” In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
2012.

[13] Wei, X., Gomez, L., Neamtiu, I., and Faloutsos, M., “Profiledroid:
Multi-Layer Profiling of Android Applications.” In Proceedings of the 18th
annual international conference on Mobile computing and networking,
ACM, 2012.

[14] Hu, C., and Iulian N., “Automating GUI Testing for Android Applica-
tions.” Proceedings of the 6th International Workshop on Automation of
Software Test, ACM, 2011.

[15] Takala, T., Katara, M., and Harty, J., “Experiences of System-Level
Model-Based GUI Testing of an Android Application.” Software Testing,
Verification and Validation (ICST), Fourth International Conference on,
IEEE, 2011.

[16] Cornelissen, B., and Moonen, L., “Visualizing Similarities in Execution
Traces.” Proceedings of the 3rd Workshop on Program Comprehension
through Dynamic Analysis (PCODA), SERG, 2007.


