
On-Demand VM Provisioning for Cloudlet-Based
Cyber-Foraging in Resource-Constrained

Environments

Sebastián Echeverrı́a∗†, James Root∗, Ben Bradshaw∗ and Grace Lewis∗
∗Carnegie Mellon Software Engineering Institute

4500 Fifth Ave., Pittsburgh PA, USA
Email: {secheverria, jdroot, bwbradshaw, glewis}@sei.cmu.edu

†Universidad de los Andes
Santiago, Chile

Abstract—Mobile applications are increasingly used by first
responders, medics, researchers and other people in the field
support of their missions and tasks. These environments have
very limited connectivity and computing resources. Cloudlet-
based cyber-foraging is a method of opportunistically discovering
nearby resource-rich nodes that can increase the computing
power of mobile devices and enhance the mobile applications
running on them. In this paper we present On-Demand VM
Provisioning, a mechanism for provisioning cloudlets at runtime
by leveraging the advantages of enterprise provisioning tools
commonly used to maintain configurations in enterprise envi-
ronments. We present details of a prototype for On-Demand VM
Provisioning and the results of a quantitative and qualitative eval-
uation of the prototype compared to other cloudlet provisioning
mechanisms. The evaluation shows that On-Demand VM Provi-
sioning shows promise in terms of flexibility, energy consumption,
maintainability and leverage of cloud computing best practices,
but can be challenging in disconnected environments, especially
for complex applications with many dependencies.

I. INTRODUCTION

Mobile applications are increasingly used by first respon-
ders and other field personnel in support of their missions
and tasks. These environments are not only at the edge of the
network infrastructure, but are also resource-constrained due
to limited computing resources, intermittent network connec-
tivity, and in some cases dynamic context and high levels of
stress. Applications that are useful to field personnel include
speech and image recognition, natural language processing,
sensor data collection, and situational awareness. These are
all computation-intensive tasks that take a heavy toll on the
device’s battery power and computing resources.

Cyber-foraging is the leverage of external resource-rich
surrogates to augment the capabilities of resource-limited
mobile devices [1]. Most existing cyber-foraging solutions
rely on conventional Internet for connectivity to the cloud
or strategies that tightly couple mobile clients with servers
at deployment time. These solutions are typically not appro-
priate for resource-constrained environments because of their
dependence on multi-hop networks to the cloud and static
deployments. Cloudlet-based cyber-foraging relies on discover-
able, generic, stateless servers located in single-hop proximity
of mobile devices. Applications that leverage cloudlet-based
cyber-foraging are typically set up as a thin client that runs

on the mobile device and a computation-intensive server that
runs on the cloudlet. At runtime, once an appropriate cloudlet
has been discovered by a mobile device it has to be set up to
provide the capabilities that are needed; we call this cloudlet
provisioning.

Provisioning tools are commonly used in enterprises to set
up and maintain the configurations of the computers owned by
an organization [2]. These tools are used to quickly set up a
computer/server with all the components that are required for
the machine to provide a predefined computing environment
(i.e., organizational computing baselines). They are usually
also used to ensure that the required state and configuration is
maintained over time as changes are made to configurations
and components. Some of these tools also work at a lower
level, helping with the task of setting up virtual machines
according to a certain configuration [3]. This type of tool could
be used in cyber-foraging solutions, in particular for cloudlet
provisioning. However, little research has been done in the
use of provisioning tools at smaller scale and potentially in
resource-constrained and disconnected environments.

The goal of this paper is to present and analyze a mech-
anism called On-Demand VM Provisioning that leverages
the best practices that provisioning tools offer to enterprise
environments by adapting them to the cyber-foraging context.
These advantages include automation of the setup process,
flexibility in the selection and inclusion of components in a
virtual machine (VM), and the use of mature tools with proven
capabilities and support.

The remainder of this paper is organized as follows. Section
II presents a summary of related work in cyber-foraging and
provisioning tools. Section III describes cloudlet-based cyber-
foraging and the requirements that cloudlet-based solutions
have to take into account. Section IV describes the On-Demand
VM Provisioning mechanism and the challenges of using enter-
prise provisioning tools in resource-constrained environments.
Section V describes the evaluation and selection process that
we followed to select an appropriate provisioning tool. Section
VI presents the architecture and design of the On-Demand VM
Provisioning prototype for cloudlet provisioning. Section VII
presents the results of the system evaluation. Finally, Section
VIII presents conclusions and future research directions.

MobiCASE 2014, November 06-07, Austin, United States
Copyright © 2014 ICST
DOI 10.4108/icst.mobicase.2014.257768



II. RELATED WORK

Previous work on cyber-foraging has presented different
approaches on how to partition code to be offloaded to a
remote server. Systems like MAUI [4] offload only specific
methods, while others like CloneCloud [5] work at the process
level by offloading threads. Other approaches work at higher
levels of abstraction by offloading complete applications along
with their environments [1][6][7]. These systems also differ on
when they define what to offload. Some systems decide what
to offload at runtime [4][5], while others compose applications
in such a way that the offloadable pieces are defined at design
and implementation time [1][7].

The work that is most similar to that proposed in this
paper is cyber-foraging systems in which setup instructions
are provided to the offload target. In the Collective Surrogates
system [8] the mobile device sends a small program which is
simply a script that offloads code from the Internet, installs,
and runs it. In the MAPCloud system [9] an application request
is modeled as a workflow of tasks. The offload target (which in
this case acts as a broker) locates other offload targets that can
perform the tasks and returns a service plan with the URL of
each offloaded workflow task. To the best of our knowledge,
work on cyber-foraging has not focused on on-the-fly assembly
of offloaded computation using provisioning tools.

Provisioning tools are commonly used in enterprises to
manage the configuration of real or virtual machines [10].
Managing the configuration of different components of a
system used to require different tools for different types of
components, but more recent tools are able to configure a com-
plete environment on top of a specific operating system [11].
Configuration management tools, for example, allow system
administrators to easily create copies of an existing machine or
of a pre-defined environment described in a configuration script
[11][12]. Research on system administration and configuration
management has focused on issues such as formal analysis of
system administration [13], simplifying the configuration pro-
cess and tools [14], and deploying system configurations onto
virtual machines [3]. Tools such as Vagrant [15] simplify the
creation and management of VMs by integrating configuration
management tools that can automatically provision a newly
created VM. Research on opportunistically provisioning VMs
focuses on reducing costs or access times by optimizing the
use of resources when multiple VMs can execute concurrently
[16][17][18]. However, most of this work assumes that the
environment for these provisioning tools consists of enterprise
networks with good connectivity and access to resources.

III. CLOUDLET-BASED CYBER-FORAGING

Cloudlets are discoverable, generic, stateless servers lo-
cated in single-hop proximity of mobile devices, that can oper-
ate in disconnected mode and are virtual-machine (VM) based
to promote flexibility, mobility, scalability, and elasticity [1]. In
the cloudlet architecture we have developed, applications are
partitioned at design-time into two parts: a thin client called
a Cloudlet-Ready App that executes on a mobile device, and
a computation-intensive Application Server that runs inside
a VM on the cloudlet server [19]. The Application Server
provides a service to the Cloudlet-Ready App. The VM that
hosts this service is called a Service VM [20].

Cloudlet provisioning is the process of setting up a Service
VM on a cloudlet so that a mobile device can have access to
the service it provides. An effective provisioning technique
has to be able to work efficiently in the resource-constrained
environments in which cloudlets may operate. We define the
following quality attributes [21] to measure the usefulness
of a cloudlet provisioning technique for resource-constrained
environments:

• Energy efficiency: Refers to how much energy a mobile
device consumes when provisioning a cloudlet. Due to
the limited capacity of the batteries used by mobile
devices, reducing the amount of energy consumed during
provisioning is a priority. Given that wireless transmission
accounts for a large part of the battery drain on this type
of devices [22], battery life on the mobile device can be
extended by decreasing the amount of information sent
through the network radio for provisioning a cloudlet.

• Application-ready time: We define this as the time be-
tween start of cloudlet provisioning and acknowledgment
of the Application Server that it has started. Smaller
application-ready times provide a better user experience
because it takes less time to use a mobile Cloudlet-Ready
App. In addition, due to the dynamic context and urgency
of some resource-constrained environments users may not
have the luxury of waiting for long periods of time before
being able to use a mobile application. Provisioning
techniques need to account for this and should strive to
reduce application-ready time.

• Automation of provisioning: Refers to how much man-
ual work is required to provision new Service VMs on a
cloudlet. Cloudlets at the edge are not in dedicated data
centers, can be mobile, and are in an environment where
there may not be skilled system administrators, or even
time for administrators to monitor them. Cloudlets have
to be able to function with as little human administration
as possible and therefore provisioning techniques have to
be as self-sufficient as possible.

• Flexibility: Refers to how adaptable the provisioning
mechanism is to changes in the configuration of the
cloudlet. At the edge, cloudlets may need to be quickly
replaced, and mobile devices will need to connect to
different cloudlets depending on their availability. Provi-
sioning techniques should be able to work correctly with
different cloudlets.

IV. ON-DEMAND VM PROVISIONING

On-Demand VM Provisioning uses a provisioning script
at runtime to set up a Service VM. The mobile device sends
the provisioning script to the cloudlet when the user executes
a Cloudlet-Ready App that needs access to the service. The
cloudlet executes the script inside a clean VM (a Baseline
VM) and uses a provisioning tool to create a Service VM that
has all the components that it needs to provide the service.

The environment for which provisioning tools are designed
has some substantial differences with the resource-constrained
environments in which cloudlets may operate. Part of the goal
of our prototype is to be able to find ways to overcome these
differences. In particular:

• Provisioning tools deployed on an enterprise network rely
on an infrastructure of servers to achieve their goals.



Central servers are commonly used to maintain common
configurations that are deployed on nodes. There is usu-
ally connectivity to remote Internet servers or to internal
repositories of components. Cloudlets, on the other hand,
are expected to work on very small networks, usually
composed of the cloudlet and a mobile device only, with
no permanent infrastructure (cloudlets can move around
and connect to different devices). They have very limited
connectivity to the Internet or to other servers.

• On enterprise networks there is a substantial amount of
manual work performed by data center administrators
whose job is to ensure that the network is working prop-
erly. Cloudlets are expected to work with very limited hu-
man supervision, especially in resource-constrained envi-
ronments in which intermittent connectivity makes it dif-
ficult for continuous monitoring of their state. Cloudlets
require a more robust automated working mode because
administrators will only seldom be available to monitor
the status of a cloudlet and to manually fix issues.

• Deployment of new capabilities can be a carefully planned
and orchestrated task on enterprise networks. Cloudlets,
on the other hand, have to be able to quickly react to
requirements from mobile devices and assemble services
on the cloudlet on-the-fly. Provisioning tools on cloudlet
environments have to be able to easily and automatically
work with different Application Servers that need to be
set up on a cloudlet.

To design our On-Demand VM Provisioning prototype, the
first step was to find a suitable provisioning tool that would
offer enough flexibility to address the challenges mentioned
above. The next step was to design the prototype to use this
tool in such a way that it could handle the characteristics of
cloudlet environments properly.

V. PROVISIONING TOOLS

A major design decision for On-Demand VM Provisioning
was to select an appropriate provisioning tool to set up a
Service VM. We defined a set of requirements that an existing
provisioning tool should address:

• Support for Windows and Linux operating systems be-
cause these are the operating systems used by our bench-
mark applications and would also enable reuse of many
existing applications.

• Disconnected operation mode so that it can work on a
cloudlet that is on an isolated network (i.e., does not
depend on a remote service and does not need to execute
on a cloud platform).

• Stand-alone execution because Service VMs are transient
and are created and disposed of at runtime (i.e., no need
for a central server to maintain configurations for long
periods of time).

• On-demand execution so that it can be executed im-
mediately when the VM is provisioned (as opposed to
executing at some fixed interval).

• Declarative mechanism for defining the components that
should be part of a VM (i.e., defines the end state of the
VM rather than the exact steps to follow to configure the
VM), to simplify the creation of provisioning scripts.

• Support for starting any type of executable after provi-
sioning the Service VM so that the existing Application

Servers used in our benchmarks can be used without
modifications (and in general, to make it easy for existing
servers to be used without having to make major changes).

The tools that we surveyed fall in one of these categories:

• System Configuration Management Software (SCM):
Tools that can install an operating system, install de-
pendencies, and configure them so that services run
adequately. These tools store the configurations so that
they can be reused and updated over time as required.
They usually also allow administrators to manage the state
of multiple machines remotely. Examples include Pup-
pet1, Chef2, CFEngine3, Bcfg24, SmartFrog5 and Salt6.
Most of them have a client-server design, with multiple
clients installed on nodes that pull the configuration for
their host from the server to update the environment to
match the configuration. Other tools that take different
approaches include Docker7 (a Linux container engine
that creates process-level containers to provide an isolated
environment) and NixOS8 (a Linux distribution that uses
a purely-functional package manager to define configura-
tions).

• Service Orchestration Software (SO): Tools that simplify
the configuration of services, their relations, and the way
they should scale.An example is JuJu9, which is targeted
at provisioning services in the cloud and easy integration
and scaling of services.

• Virtual Machine Management Software (VMM): Tools
that simplify the creation, configuration, execution and
maintenance of VMs. An example is Vagrant10, a tool
that creates a VM with a base VM image (box), executes
predefined provisioning scripts, and launches the VM. It
can integrate with SCM tools such as Puppet and Chef.

We quickly found that most tools focus on provisioning
existing machines instead of setting up new VMs and then
provisioning them. Even though several tools matched our
criteria, Puppet and Chef appeared to be the most mature.
We selected Puppet [23] because of its larger community
and its slightly simpler declaration language. The best choice
would have been to use Vagrant (to set up transient VMs) in
combination with Puppet. However, because Vagrant did not
support the QEMU virtual machine manager, on which our
prototype is based, we had to discard it.

VI. SYSTEM ARCHITECTURE

Figure 1 shows the high-level architecture of the system.
The architecture of this prototype is designed to support
different provisioning mechanisms to set up a Service VM
on a cloudlet. The mobile device carries the files that it
needs to provision the cloudlet. However, the format and

1http://puppetlabs.com/puppet/puppet-open-source
2http://www.getchef.com/chef/
3http://cfengine.com/
4http://bcfg2.org/
5http://www.smartfrog.org
6http://www.saltstack.com/
7https://www.docker.com/
8http://nixos.org/
9https://juju.ubuntu.com/
10http://www.vagrantup.com/



Fig. 1. High-level architecture of the cloudlet-based cyber-foraging prototype that implements On-Demand VM Provisioning.

content of these files depend on the cloudlet provisioning
mechanism being used. The provisioning process is controlled
by a generic Cloudlet Client application on the mobile device
that communicates with a Cloudlet Server application running
on the cloudlet. Upon receiving the provisioning files, the
Cloudlet Server sets up the Service VM and makes its service
available to the Cloudlet-Ready App, which can then interact
directly with the Cloudlet-Ready Application Server (Applica-
tion Server for short). Details of the common components of
the architecture that are shared between cloudlet provisioning
mechanisms can be found in [20].

A. Main Components

In Figure 1, the components that are specific to On-Demand
VM Provisioning are the Baseline VM Repository, the Service
and Dependency Repository, the Service Provisioning Payload,
the Service VM SSH Server, and Puppet. What follows is a
description of these components and how they work together.

1) Baseline VM Repository: A Baseline VM is a suspended
VM that has all the components that are considered part of
a baseline configuration. A Baseline VM can be used as a
template for the provisioning of Service VMs. Baseline VMs
can be modified, updated, and maintained continuously without
affecting the provisioning process. Changes to a Baseline VM
will only affect new Service VMs that are derived from it
because there is no persistent link between a Service VM and
the Baseline VM that it was created from.

In our prototype, Baseline VMs are created with the virtual
machine manager QEMU [24], plus the KVM kernel module.
Service VMs created from Baseline VMs are set up with User
Networking [25], which isolates the VM in an internal virtual
network contained inside the QEMU process that is hosting
the VM. Services that need to be accessed from outside the

VM, such as the ones provided by the Application Server, are
mapped through QEMU’s port forwarding configuration.

Baseline VMs are stored in the Baseline VM Repository
as a set of files with the following structure:

• Disk Image file (.qcow2): Disk image file in QCOW2
format [26] used as the virtual disk of a VM. It contains
a basic OS installation plus common libraries that will
likely be used by many services. A Baseline VM will
need to have at least the following components installed
or configured in its disk image, according to our current
implementation:
◦ SSH server: Enables the Cloudlet Server to send files

and commands. The SSH port is forwarded though
QEMU so that the Cloudlet Server can connect through
SSH.

◦ Puppet client: Enables the execution of Puppet man-
ifests inside the VM as a standalone component (no
master/agent setup required).

◦ Link to Cloudlet HTTP File Server: Enables the Ser-
vice VM to download packages stored locally on the
Cloudlet (through HTTP). With User Networking, the
Service VM always uses the same virtual IP address
to contact the VM host. The Baseline VM has to be
configured once to be able to reach this IP address
when installing packages.

• VM State Image file (.lqs): VM state image generated by
the libvirt VM management API [27]. This image includes
both the description of the VM that was suspended, as
well as the memory state of the VM.

• Baseline VM Metadata file (.jsonbmd): JSON file describ-
ing the basic features of the Baseline VM. It has the
following fields:



Fig. 2. Sequence diagram for cloudlet provisioning and Cloudlet-Ready App execution using On-Demand VM Provisioning.

◦ osFamily (string): OS family (e.g., ”Linux”, ”Win-
dows”).
◦ os (string): Name of the specific OS or distribution

(e.g., ”Windows 7”, ”Ubuntu”).
◦ osVersion (string): Version of the OS (e.g., ”SP1”,

”8.1”, ”12.10”).
◦ osISA (string): Instruction set of the compiled OS in

the disk image (e.g., ”x86-32”, ”x86-64”).

A Baseline VM Repository contains a folder for each
Baseline VM that it stores. The name of the folder is a unique
ID that is used to identify the Baseline VM. Each folder has
the three files described above.

2) Service Provisioning Payload: The Service Provisioning
Payload files describe how to provision a Service VM on
a cloudlet. They are stored on the mobile device and are
transferred to the cloudlet when the client needs access to the
service provided by that Service VM. The payload is composed
of two metadata files and a provisioning script:

• Baseline VM Metadata file (.jsonbmd): JSON file that

describes the features that are required of a Baseline VM
to serve as a template to create an appropriate Service
VM. The format is the same as the Baseline VM Metadata
file described above, although some fields can be omitted
if there is no requirement related to them.

• Service Metadata file (.jsonsvm): JSON file that describes
the attributes of a service to be hosted on the Service VM
that will be provisioned. These attributes include:
◦ serviceId (string): Unique identifier of the service that

will be provided by the Service VM.
◦ servicePort (integer): Port that the Application Server

will be listening on to provide its service inside the
Service VM.

• Puppet Manifest (text file): Script detailing what has to
be provisioned to set up the Service VM. This includes
the Application Server code to install, dependencies for
that server, and required libraries. It is written in the
default language used for Puppet manifests (http://docs.
puppetlabs.com/learning/manifests.html).



3) Service and Dependency Repository: A cloudlet host
has a repository of packages that are available to a Service VM
to be able to provision itself. There are two types of packages:

• Service Packages: Application Server files that provide
the actual services, packaged in an easy-to-install way
that can be handled by Puppet.

• Dependency Packages: Components or libraries that can
be used by different services.

In the prototype, all these packages are made available via
HTTP from the Cloudlet Server because it can serve static
files via HTTP. The Ubuntu packages are available in an
Apt-Get [28] repository installed inside the Cloudlet Host.
The Windows components are stored as Windows Installer
Packages (MSI) [29] inside the same Cloudlet Host.

B. Provisioning Sequence

The provisioning process is shown in Figure 2 and follows
these steps:

1) The Cloudlet Client sends the Baseline VM Metadata file
(part of the Service Provisioning Payload) to the Cloudlet
Server to look for a matching Baseline VM.

2) The Cloudlet Server checks if the cloudlet has a Baseline
VM that matches the requirements given in the Baseline
VM Metadata file.

3) If it does, the Cloudlet Client sends the Service Metadata
file and the Provisioning Script (part of the Service
Provisioning Payload) to the Cloudlet Server.

4) The Cloudlet Server creates a copy of the Baseline VM,
sets it up using the Service Metadata and starts it as a
new Service VM through QEMU.

5) The Cloudlet Server transfers the Provisioning Script
(Puppet Manifest) via SSH to the running Service VM
instance and sends an SSH command for Puppet to
execute the script.

6) Puppet, inside the Service VM Instance, executes the
Provisioning Script.

7) Puppet obtains the files for the service and its dependen-
cies from the Cloudlet Host using HTTP download via
the Cloudlet Server.

8) Puppet installs the service and its dependencies, starts the
Application Server that provides the service, and notifies
the Cloudlet Server that the installation is complete.

9) The Cloudlet Server sends the IP address and port that
will be used to connect to the Service VM back to the
Cloudlet Client.

10) The Cloudlet Client starts up the Cloudlet-Ready App that
will access the service.

11) The Cloudlet-Ready App communicates with the Appli-
cation Server through the forwarded port set up by the
QEMU process hosting the Service VM.

VII. SYSTEM EVALUATION

This section focuses on the evaluation of the On-Demand
VM Provisioning System against the requirements of cyber-
foraging in resource-constrained environments. It starts by
describing previous cloudlet provisioning mechanisms that we
have developed as part of our research. It then presents the
analysis of the architecture of the prototype as well as some
experimental results.

A. Previous Cloudlet Provisioning Mechanisms

We implemented several cloudlet provisioning mechanisms
as part of our research [20]. Part of the motivation to design
and implement the On-Demand VM Provisioning approach
was to try to overcome some of the shortcomings of these
methods.

VM Synthesis works by creating an overlay, which is the
binary difference between a Base VM and a Service VM
(which is created by installing an Application Server on the
Base VM and calculating the binary difference between the
two image files). The overlay is carried by the mobile device
and transferred to a cloudlet to reassemble the full Service
VM if it has the same Base VM. The main advantage of
VM Synthesis is that it ensures the proper execution of the
Application Server because it packages the full environment
that the server needs to run on. However, the overlay tends
to be significant in size, and transferring it to the cloudlet
consumes a large amount of energy from the mobile device.
Also, VM Synthesis is not very flexible in its deployment and
maintenance because the exact Base VM has to exist in the
cloudlet to reassemble the Service VM (no security updates
can be added to the base VM, for example).

Cached VM works by pre-provisioning a cloudlet with full
Service VM images. Each VM image file has a unique service
identifier. At runtime, the mobile device instructs the cloudlet
to start the VM that corresponds to the service for the launched
client app. This method requires almost no communication
between the mobile device and the cloudlet, other than sending
the identifier of the required Service VM. However, Service
VMs have to be provisioned in advance on any cloudlet that
the mobile device may connect to.

In Cloudlet Push, the cloudlet is not only pre-provisioned
with Service VM images, but also the corresponding mobile
client apps. At runtime, the mobile device queries the cloudlet
for available capabilities, similar to accessing an app store. The
cloudlet pushes the selected client app to the mobile device
and then starts the corresponding Service VM. This has the
same advantages and disadvantages as the previous method,
plus the issue of ensuring that the apps stored in the cloudlet
are compatible with the device that is requesting them.

B. Qualitative Evaluation: Analysis of the Architecture

The following is an analysis of how On-Demand VM
Provisioning addresses the cloudlet requirements we defined
in Section III, in comparison to the other cloudlet provisioning
mechanisms described above.

• Energy efficiency: On-Demand VM Provisioning needs
to transfer only a small script and some metadata to
provision a Service VM on a cloudlet. VM Synthesis has
to send much more data during the provisioning process,
including (in binary difference format) the Application
Server itself and its dependencies, and the memory state
of the VM. On the other hand, Cached VM and Cloudlet
Push do not require to send any data at all (other than
an identifier) during provisioning, mainly because they
assume that the cloudlet has already been provisioned.
Of the techniques that actually provision a cloudlet, On-
Demand VM Provisioning transfers the least amount of
data.



TABLE I. PAYLOAD SIZE, APPLICATION-READY TIMES AND CONSUMED CLIENT ENERGY FOR ON-DEMAND VM PROVISIONING (AVERAGES).

Application Payload
Size (KB)

Application-
Ready Time (s)

Total Client
Energy (J)

Client Comm.
Energy (J)

FACE (Windows) 0.68 112.7 129.1 16.4
OBJECT (Linux) 1.23 211.0 244.0 33
SPEECH (Win.) 1.32 237.6 269.2 31.6
SPEECH (Linux) 0.76 94.1 109.3 15.2

• Application-ready time: Because the VM has to be
provisioned before it can provide a service, the time that
it takes to be ready will vary depending on the time
that Puppet takes to configure the system. For a service
with multiple dependencies, each of these would have
to be transferred and installed in the VM before it is
ready to be used by the mobile client. In comparison,
the application-ready time for VM Synthesis depends on
the time that it takes to transfer the payload and set up the
Service VM, which could be less than the time that On-
Demand VM Provisioning may take for complex services
with many dependencies. Cached VM and Cloudlet Push
have almost no application-ready time, since they assume
that the Service VM is already provisioned. Cached VM
could be used to cache VMs assembled by On-Demand
VM Provisioning to decrease the application-ready time
for new requests for the same service.

• Automation of provisioning: Provisioning a Service
VM through On-Demand VM Provisioning is done with
no user intervention on the cloudlet side. However, it
does need the cloudlet to be have Baseline VMs and a
repository of services and dependencies already set up.
VM Synthesis, in comparison, needs only the correct Base
VMs to be set up before the provisioning process and
the provisioning process itself is also automated. On the
other hand, Cached VM and Cloudlet Push need manual
provisioning of some sort to work on their own because
they assume that the cloudlet administrator will have
already provisioned the necessary Service VMs.

• Flexibility: Because a provisioning script only defines the
basic features of a Baseline VM and the dependencies
that are needed, these components can be maintained and
updated without any negative effects on the On-Demand
VM Provisioning process. Baseline VMs can be safely
upgraded and patched, and new versions of libraries can
be made available on the cloudlet. VM Synthesis, in
comparison, needs the exact Base VM used to create
an overlay, which cannot be modified without having
to re-create all overlays generated from it. There is a
trade-off, however, between the flexibility of On-Demand
VM Provisioning and the probability of failure due to a
missing dependency. With On-Demand VM Provisioning,
if a dependency or library that is required by the service
is not available on the cloudlet, it will not be possible to
set up a Service VM. By allowing more flexibility, there
are more ways for the process to fail in comparison to
other cloudlet provisioning mechanisms (VM Synthesis,
for example, only needs the Base VM). A potential way
of overcoming this issue is to allow the cloudlet to obtain
dependencies from the cloud when Internet connectivity
is available. The cloudlet could asynchronously download
more dependencies to increase the chances of having all
the dependencies needed for a particular service.

C. Quantitative Evaluation: Experiments and Results

We conducted a set of experiments to compare On-Demand
VM Provisioning against our previous provisioning techniques.
For the experiments we used three applications that were
partitioned into Cloudlet-Ready Apps and Application Servers:
face recognition (FACE), speech recognition (SPEECH), and
object recognition (OBJECT). These are three Android-based
apps we developed internally for testing purposes. We used a
Galaxy Nexus with Android 4.3 as a mobile device and a Core
i7-3960x based server with 32 GB of RAM running Ubuntu
12.04 as the cloudlet. We created a self-contained wireless
network (using Wi-Fi 802.11n at 2.4 GHz, 65 Mbps) to be
able to isolate network traffic effects. Energy was measured
using a PowerMeter from Monsoon Solutions. For details on
the complete experiments, see [20].

In the data tables, application-ready time is measured as
the time in seconds from the start of the provisioning process
until the cloudlet responds that it is ready. Total client energy
is measured as the total energy consumed on the mobile
device during application-ready time. Client communication
energy is calculated by subtracting the energy consumed by the
phone while idle (measured as 1 J/s in our experiments) from
the total client energy consumed (to approximate the actual
energy spent by On-Demand VM Provisioning, discarding
other energy consumers such as the screen). This last value
was indirectly calculated and not measured because the power
monitor measures total energy consumption, and does not
distinguish between energy consumed for communication from
energy consumed by other parts of the mobile device.

Application-ready time is very variable for On-Demand
VM Provisioning, as can be seen in Table I. The Windows
version of SPEECH has a much longer application-ready time
than its Linux counterpart because in Windows the component
installation processes have more steps. The OBJECT test app is
the one with the highest number of dependencies, increasing its
application-ready time. The client energy consumed is directly
proportional to the application-ready time. The approximate
energy consumed by the transfer of messages and the payload
is proportional to the payload size (the scripts and and metadata
transferred).

TABLE II. APPLICATION-READY TIMES OF OTHER CLOUDLET
PROVISIONING MECHANISMS AS A PERCENTAGE OF THE TIMES FOR

ON-DEMAND VM PROVISIONING (AVERAGES)

Application-Ready Time

Application
VM

Synthesis
Cached

VM
Cloudlet

Push

FACE (Windows) 47% 7% 7%
OBJECT (Linux) 83% 5% 6%

SPEECH (Windows) 36% 5% 5%
SPEECH (Linux) 105% 13% 14%



TABLE III. CLIENT ENERGY CONSUMED BY COMMUNICATIONS BY
OTHER CLOUDLET PROVISIONING MECHANISMS AS A PERCENTAGE OF THE

ENERGY CONSUMED BY COMMUNICATIONS BY ON-DEMAND VM
PROVISIONING (AVERAGES)

Client Energy

Application
VM

Synthesis
Cached

VM
Cloudlet

Push

FACE (Windows) 27% 13% 36%
OBJECT (Linux) 478% 6% 16%

SPEECH (Windows) 284% 8% 17%
SPEECH (Linux) 484% 18% 36%

Table II shows that the application-ready times are lower
for Cached VM and Cloudlet Push in comparison to On-
Demand VM Provisioning. This is expected because these
two methods have the Service VM already provisioned on
the cloudlet. VM Synthesis shows lower application-ready
times in comparison to On-Demand VM Provisioning, for the
most part. This most likely has to do with the amount of
dependencies required by the benchmark applications, which
in turn make On-Demand VM Provisioning take longer to
assemble the Service VM. On-Demand VM Provisioning is
a bit faster than VM Synthesis in the case of the SPEECH test
application in Linux because this is the benchmark server with
the least dependencies.

Table III shows that, as expected, the client energy con-
sumed is lower for Cached VM because it has to transfer no
payload. On-Demand VM Provisioning consumes more energy
than Cloudlet Push, which has to transfer a packaged app from
the cloudlet server to the mobile device. Even though the app
is bigger than the payload of On-Demand VM Provisioning,
the energy consumed on the mobile device is lower because
it is only receiving data and not sending data [30]. On-
Demand VM Provisioning consumes much less energy for
communications than VM Synthesis in most cases, due to
the large amount of data being transferred by this cloudlet
provisioning mechanism.

VIII. CONCLUSIONS AND FUTURE WORK

On-Demand VM Provisioning is a valid and effective
alternative to previous cloudlet provisioning mechanisms. It
leverages the flexibility and automation capabilities of a con-
figuration management tool such as Puppet to address the
issues of energy efficiency, application-ready time, automation
and robustness when working in resource-constrained edge
environments.

This technique does have some drawbacks, mainly related
to the application-ready time and robustness for complex
applications with multiple dependencies. If the scope and type
of applications using this system is clearly defined, however,
these problems may not be a major issue.

A hybrid mechanism could be used to leverage the ad-
vantages of the different cloudlet provisioning techniques. A
cloudlet could be set up to have all these cloudlet provisioning
mechanisms available, and the system could select the one
that is the most appropriate based on the current context (e.g.,
remaining battery, available bandwidth, cloudlet connectivity).
For example, if the mobile device has very little battery power
remaining, and the cloudlet is temporarily connected to the

Internet, On-Demand VM Provisioning could be selected to
provision the cloudlet because it would require very little
energy consumption from the device, and any missing depen-
dencies could be downloaded from the Internet.

Another similar approach would be to combine the different
provisioning mechanisms by attempting to use each of them
sequentially, falling back on the next one if the previous one
fails to provision the cloudlet. For example, Cached VM could
be tried first, but it would only work if the cloudlet already
has the Service VM in its cache. If this is not the case, On-
Demand VM Provisioning could be used next, and if it does not
work out due to missing dependencies, VM Synthesis could
be attempted as a last resort.

In any case, keeping a cache of assembled Service VMs is
a good idea to avoid sending data for a service that is already
available. Once a Service VM is provisioned by On-Demand
VM Provisioning, it can be stored on the cloudlet’s internal
Service VM cache. The next time a mobile device requests
the service, the Cloudlet Server can first check if the Service
VM is already cached, and only perform On-Demand VM
Provisioning if it is not. It may be necessary to re-assemble
a Service VM for a particular service if a new version of
the service is available, or new dependencies are used by it.
Information such as service version could be added to the
service metadata file to force the re-assembly of an outdated
Service VM through On-Demand VM Provisioning.

Future work could also focus on defining which provi-
sioning mechanism is more appropriate for an application
based on its characteristics. Applications that have very few
dependencies can benefit considerably from On-Demand VM
Provisioning, and therefore this type of application could
be packaged to use this technique. Complex or dependency-
heavy applications may be better handled by other techniques,
such as VM Synthesis. A cloudlet could then choose which
provisioning mechanism to use based on the characteristics of
the application, or on a preference explicitly provided by the
application.

ACKNOWLEDGEMENTS

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center. This material has been approved for
public release and unlimited distribution (DM-0001547).

REFERENCES

[1] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
vol. 8, no. 4, pp. 14–23, Oct 2009.

[2] J. Rahman, “Investigating configuration management tools usage in
large infrastructure,” Master’s thesis, University of Oslo, Department
of Informatics, 2012.

[3] G. Vallee, T. Naughton, and S. L. Scott, “System management
software for virtual environments,” in Proceedings of the 4th
International Conference on Computing Frontiers, ser. CF ’07. New
York, NY, USA: ACM, 2007, pp. 153–160. [Online]. Available:
http://doi.acm.org/10.1145/1242531.1242555



[4] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer
with code offload,” in Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’10.
New York, NY, USA: ACM, 2010, pp. 49–62. [Online]. Available:
http://doi.acm.org/10.1145/1814433.1814441

[5] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings
of the Sixth Conference on Computer Systems, ser. EuroSys ’11.
New York, NY, USA: ACM, 2011, pp. 301–314. [Online]. Available:
http://doi.acm.org/10.1145/1966445.1966473

[6] A. Iyer and T. Roopa, “Extending android application programming
framework for seamless cloud integration,” in Mobile Services (MS),
2012 IEEE First International Conference on, June 2012, pp. 96–104.

[7] C. Jarabek, D. Barrera, and J. Aycock, “Thinav: Truly lightweight
mobile cloud-based anti-malware,” in Proceedings of the 28th Annual
Computer Security Applications Conference, ser. ACSAC ’12. New
York, NY, USA: ACM, 2012, pp. 209–218. [Online]. Available:
http://doi.acm.org/10.1145/2420950.2420983

[8] S. Goyal, “A collective approach to harness idle resources of end nodes,”
Ph.D. dissertation, University of Utah, 2011.

[9] M. R. Rahimi, N. Venkatasubramanian, S. Mehrotra, and A. V.
Vasilakos, “Mapcloud: Mobile applications on an elastic and scalable
2-tier cloud architecture,” in Proceedings of the 2012 IEEE/ACM Fifth
International Conference on Utility and Cloud Computing, ser. UCC
’12. Washington, DC, USA: IEEE Computer Society, 2012, pp.
83–90. [Online]. Available: http://dx.doi.org/10.1109/UCC.2012.25

[10] S. Pandey, “Investigating community, reliability and usability of
cfengine, chef and puppet,” Master’s thesis, University of Oslo, De-
partment of Informatics, 2012.

[11] E. Dolstra, M. Bravenboer, and E. Visser, “Service configuration
management,” in Proceedings of the 12th International Workshop
on Software Configuration Management, ser. SCM ’05. New
York, NY, USA: ACM, 2005, pp. 83–98. [Online]. Available:
http://doi.acm.org/10.1145/1109128.1109135

[12] C. Lueninghoener, “Getting started with configuration management,”
;login:, vol. 36, no. 2, pp. 12–17, Apr 2011.

[13] M. Burgess, “On the theory of system administration,” Science of
Computer Programming, vol. 49, no. 1, pp. 1–46, 2003.

[14] A. Sekiguchi, K. Shimada, Y. Wada, A. Ooba, R. Yoshimi, and
A. Matsumoto, “Configuration management technology using tree
structures of ict systems,” in Proceedings of the 15th Communications
and Networking Simulation Symposium, ser. CNS ’12. San Diego, CA,
USA: Society for Computer Simulation International, 2012, pp. 4:1–4:7.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2331762.2331766

[15] J. Palat, “Introducing vagrant,” Linux J., vol. 2012, no. 220, Aug. 2012.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2371484.2371486

[16] M. Bjorkqvist, L. Chen, and W. Binder, “Opportunistic service provi-
sioning in the cloud,” in 2012 IEEE 5th International Conference on
Cloud Computing (CLOUD). Washington, DC, USA: IEEE Computer
Society, 2012, pp. 237–244.

[17] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, and N. Sharma,
“Towards autonomic workload provisioning for enterprise grids and
clouds,” in Grid Computing, 2009 10th IEEE/ACM International Con-
ference on. Washington, DC, USA: IEEE Computer Society, Oct 2009,
pp. 50–57.

[18] K. Wang, J. Rao, and C.-Z. Xu, “Rethink the virtual machine
template,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser.
VEE ’11. New York, NY, USA: ACM, 2011, pp. 39–50. [Online].
Available: http://doi.acm.org/10.1145/1952682.1952690

[19] S. Simanta, G. A. Lewis, E. Morris, K. Ha, and M. Satyanarayanan, “A
reference architecture for mobile code offload in hostile environments,”
in Proceedings of the Joint Working IEEE/IFIP Conference Software
Architecture (WICSA) and European Conference on Software Architec-
ture (ECSA). Washington, DC, USA: IEEE Computer Society, 2012,
pp. 282–286.

[20] G. A. Lewis, S. Echeverrı́a, S. Simanta, B. Bradshaw, and J. Root,
“Cloudlet-based cyber-foraging for mobile systems in resource-
constrained edge environments,” in Companion Proceedings of the
36th International Conference on Software Engineering, ser. ICSE

Companion 2014. New York, NY, USA: ACM, 2014, pp. 412–415.
[Online]. Available: http://doi.acm.org/10.1145/2591062.2591119

[21] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2012.

[22] J. Manweiler and R. Roy Choudhury, “Avoiding the rush hours:
Wifi energy management via traffic isolation,” in Proceedings of the
9th International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’11. New York, NY, USA: ACM, 2011, pp. 253–
266. [Online]. Available: http://doi.acm.org/10.1145/1999995.2000020

[23] P. Labs, “Puppet Open Source,” http://puppetlabs.com/puppet/
puppet-open-source, [Online; retrieved 7-May-2014].

[24] F. Bellard, “QEMU: Open Source Processor Emulator,” http://wiki.
qemu.org/Main Page, [Online; retrieved 7-May-2014].

[25] QEMU, “QEMU: Open Source Processor Emulator - Documenta-
tion/Networking,” http://wiki.qemu.org/Documentation/Networking,
[Online; retrieved 7-May-2014].

[26] M. McLoughlin, “The QCOW2 Image Format,” https://people.gnome.
org/∼markmc/qcow-image-format.html, 2008, [Online; retrieved 7-
May-2014].

[27] libvirt Virtualization API, “Snapshot XML Format,” http://libvirt.org/
formatsnapshot.html, [Online; retrieved 7-May-2014].

[28] U. Documentation, “Apt-Get,” https://help.ubuntu.com/12.04/
serverguide/apt-get.html, [Online; retrieved 7-May-2014].

[29] Microsoft, “Microsoft TechNet - Windows Installer Package,” http:
//technet.microsoft.com/en-us/library/cc978328.aspx, [Online; retrieved
7-May-2014].

[30] D. Halperin, B. Greenstein, A. Sheth, and D. Wetherall, “Demystifying
802.11n power consumption,” in Proceedings of the 2010 International
Conference on Power Aware Computing and Systems, ser. HotPower’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 1–. [Online].
Available: http://dl.acm.org/citation.cfm?id=1924920.1924928


