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Abstract—The interest in cultural cities is in constant growth,
and so is the demand for new multimedia tools and applications
that enrich their fruition. In this paper we propose an egocentric
vision system to enhance tourists’ cultural heritage experience.
Exploiting a wearable board and a glass-mounted camera, the
visitor can retrieve architectural details of the historical building
he is observing and receive related multimedia contents. To
obtain an effective retrieval procedure we propose a visual
descriptor based on the covariance of local features. Differently
than the common Bag of Words approaches our feature vector
does not rely on a generated visual vocabulary, removing the
dependence from a specific dataset and obtaining a reduction
of the computational cost. 3D modeling is used to achieve a
precise visitor’s localization that allows browsing visible relevant
details that the user may otherwise miss. Experimental results
conducted on a publicly available cultural heritage dataset show
that the proposed feature descriptor outperforms Bag of Words
techniques.

Keywords—computer vision, egocentric vision, smart guides,
enhanced tourist experience.

I. INTRODUCTION

Cultural cities and museums are an increasingly common
destination for tourists: half of the Americans traveling abroad
visits historical places and almost one third of them chooses
cultural heritage sites [1]. From the popularity of this kind of
tourism, new challenges and possibilities arise. Indeed, many
tourists of the 21th century are digital natives and expect
mobile and multimedia to follow them during their visits.
While the problem of providing immersive and interactive
contents have been addressed in the past, e.g. exploiting touch
interfaces [2] or creating interactive environments [3], much
can still be done. In fact, these systems can only provide
an enriched interaction in the environment they are designed
for and lack the ability to adapt to changes in the cultural
heritage site setting or to follow the user in its cultural visit. For
instance, problems arise in unconstrained environments such as
outdoor visits in large areas where people move freely around
masterpieces, buildings etc.

Following this growing request for multimedia tools and
applications for smart tourism, we aim at designing a system
that is capable of assisting the visitor in an unconstrained
outdoor tour. To be effective, such system requires the ability
to see what the user sees in a perspective that resembles his
very own. Recently, due to the increased diffusion of wearable
devices and head mounted cameras, systems dealing with an
egocentric perspective are arousing a growing interest in the
research community. Egocentric vision, often referred to as

ego-vision, tackles with problems such as activity and gesture
recognition [4], social interactions [5] or video summarization
[6] exploiting the unique perspective of wearable cameras.

In fact, being tied to its user, the camera follows his path
effectively providing a recording of the objects he interacts
with, people and events he focuses his attention on and, in
short, events and things that are relevant to him. This feature
is of extreme interest when designing a system that aims at
following a tourist during his visit. Being capable of seeing in
real-time what the users sees allows the method to provide him
with useful information that is directly relates to his focus of
attention, effectively guiding the visit in a natural and intuitive
way.

In this paper we propose a system that can retrieve archi-
tectural details from images and can provide the tourist with an
augmented experience. The main idea behind our framework
is that a tourist may not be able to immediately identify all the
details in an artwork and may have to rely on a guide to do
so. Using a handbook is neither practical not desirable since it
often requires time to find the correct building and can distract
from the actual artwork. Using a wearable computing board
and a glass-mounted camera, the user can ask to the system to
provide him with the details of the scene he is looking at. This
requires almost no effort from the tourist since the system is
already seeing what he is. Using the visitor’s smartphone as
a screen, the method can then display a view of the captured
artwork where the noteworthy details have been highlighted.

Here, we make several contributions: we design a system
capable of following a tourist in his visit and provide him with
useful information minimizing the amount of input that the
user must provide, resulting in a natural and more enjoyable
interaction. Furthermore, we propose a retrieval method that
relies on a fast descriptor based on the covariance of local
features, which is particularly suited for the task at hand
and outperforms the descriptors that exploit the Bag of Word
paradigm (BOW). In contrast to common BOW techniques [7]
our descriptor does not require a pretrained visual vocabulary,
resulting in decreased computational costs and independence
from a specific context and dataset. We also provide a new and
publicly available cultural heritage dataset that features a large
set of images of the romanesque dome of Modena, annotated
with 10 different possible retrieval queries. Finally, we perform
an extensive evaluation in which we compare our descriptor
to several competitors showing improved performances.

INTETAIN 2015, June 10-12, Torino, Italy
Copyright © 2015 ICST
DOI 10.4108/icst.intetain.2015.260034



Fig. 1. Schematization of the proposed system.

II. RELATED WORK

In the last years several methods and approaches regarding
building and visual landmark recognition have been proposed
[8]. They deal with the problem of identifying different build-
ings in a large-scale dataset and recognizing them in query
images, in order to provide existing information about what
the user is interested in. These techniques can be roughly
divided in methods that are focused on improving recognition
performance or reducing computational effort.
In particular, the method described in [9] relies on wide
baseline matching (i.e. image matching under significant view-
point change), extracting affine invariant vertical segments and
describing them with geometrical and color information. Then,
the matching score is calculated by Mahalanobis distance
between such descriptors and distance between segments.
Trinh et al. [10] address the problem of recognizing multiple
buildings in a dataset by extracting facets of each building
exploiting line segments and vanishing point information, and
then describing them with color histogram and a list of SIFT
features. Nearest-neighbor is then used for matching a query
image to its closest model. The problem has also been faced
as a ranking one. Relying on the vector space model as image
representation, Philbin et al. [11] described a system able
to propose a ranked list of images in response to a query
depicting a building. They also remark how important the
spatial verification of such words is, in order to re-rank the top
scored retrieved images filtering out false positives. However,
these techniques aim at recognizing building landmarks and
provide to the user general information of what he/she is
looking at, but miss interesting architectural details such as
statues, decorated windows or arches etc.

Recently, in [12] the authors analyzed a full pipeline for
visual landmark and architectural detail recognition from
Internet photo collections, in order to understand if some of
the buildings are easier to recognize with respect to other
ones, what kind of representation allows the images to be

efficiently stored in memory, how reliable user provided
semantic information are, and so on. In their analysis, they
cluster images into categories to understand how the visual
recognition behaves for each of those types. One important
remark is the trade off they highlight between the difficulty of
the recognition and the reliability of user provided semantic
annotation. As they state, landmarks easier to classify due to
high cardinality of the cluster (such as building facades) often
suffer from noisy semantic information, while well annotated
images (such as architectural details) usually belong to less
populated categories, and hence are more difficult to recognize.

A few works addressed the problem of directly identifying
or retrieving details, instead of relying on semantic annotation.
Weyand and Liebe [13] address the problem of discovering
popular details given a large collection of images of a specific
building. They presented an offline hierarchical technique
capable of finding iconic images at various scales, iteratively
solving a medoid shift increasing the kernel bandwidth. The
technique presented by Mikulik et al. [14] proposed a retrieval
system based on Bag of Word that returns to the user the
images of the details depicted in the query. This is achieved
thanks to a distance metric that scores the match between
visual words according to the corresponding keypoint scale
change, preferring scaling-up rather than scaling down (i.e.
zoom-in rather than zoom-out).

III. THE PROPOSED ARCHITECTURE

Our system consists in a collection of wearable egocentric
vision devices and a processing center. The wearable devices
embed a glass-mounted camera, an Odroid-XU developer
board serving as image processing, GPS module and network
communication unit. Our wearable solution is composed by
several commercial components in order to have: low costs
for prototypes evaluation; the computational power and energy
efficiency of the Big-Little architecture; the possibility of



peripheral addition to extend connections and input devices.
In particular the Odroid-XU developer board [15] embeds
the ARM Exynos 5 SoC, that hosts a Quad Big-Little ARM
processor (Cortex A15 and A7) [16], and is powered by a
battery pack of 3000 mAh to make it portable.

The processing center stores the users’ current location in
order to collect data for statistical analysis and provides cul-
tural information. In particular, the processing center contains
3D models of cultural heritage buildings generated from a set
of uncontrolled images (see below, Section V). A 3D build-
ing model consists in a 3D point cloud, where architectural
details are annotated, its geographical location and an image
collection C = {I1, . . . In} used in the reconstruction. For
each image I , we store the detected 2D-3D correspondences
between 3D and local interest points in the point cloud.

When the user captures an image, the image processing
algorithm, that is able to detect the architectural details of the
building the user is observing, runs on the wearable board (see
Figure I). In particular, the image is analyzed by extracting
local SIFT features and computing, as image global descriptor,
the Projected Covariance Descriptor (pCov, see Section IV).
This descriptor is used to retrieve a ranked list of similar
images from the building image collections connecting with
the processing center; image collections linked to cultural
heritage building far from the user’s geographical location are
discarded. The search proceeds by calculating the similarity
between the query vector and each image feature descriptor in
the candidate collections using Euclidean distance.

To select the most similar images in the corpus, we include
a spatial verification step on the K top ranked images (in our
experiments we fix K=5). The spatial verification estimates
a geometrical transformation between the query image and
each K top candidates and scores them based on how well
local features locations are reprojected by the estimated trans-
formation. Following [11], we use RANSAC algorithm that
generates transformation hypotheses using a minimal number
of correspondences and then evaluates them based on the
number of inliers. We consider the affine transformation as
model for generating hypotheses that can cover situations such
as zooming or observation of a cultural site from different
view points, since it can encode rotation and translation warps.
The affine transformation has six degrees of freedoms and can
be computed from three point correspondences. Once similar
images are obtained we can exploit 2D-3D correspondences to
determine the absolute camera pose by solving the perspective-
n-point (PnP) problem [17], [18]. Differently from the standard
solution that uses three point correspondences (assuming that
the intrinsic parameters of the camera are known), we propose
to use the recent approach proposed by Kukelova et al. [19]
that solves the pose problem from cameras with unknown
radial distortion and unknown focal length. This technique
allows us to obtain a good accuracy even if we are using
commercial wearable cameras with large radial distortions.

Currently a Android application allows the user to see
his captured photo with interesting architectural details high-
lighted. As future work, we want to extend this application
also to run on a head-mounted display that will enable the
visitor to obtain a more natural browsing of the contents.

IV. PROJECTED COVARIANCE DESCRIPTOR

Let F = {f1 . . . fN} be a set of local SIFT features
extracted on an image I , we represent them by a covariance
matrix C , that encodes information about the variance of the
features and their correlations:

C =
1

N − 1

N∑
i=1

(fi −m)(fi −m)T , (1)

where m is the mean vector of the set F . Although
the space of covariance matrices can be formulated as a
differentiable manifold, it does not lie in a vector space (e.g the
covariance space is not closed under multiplication with a neg-
ative scalar) and Euclidean distance between image descriptors
can not be computed. Therefore to use this descriptive feature
vector, we need to define a suitable transformation. We exploit
a projection from the Riemannian manifold to an Euclidean
tangent space, called Log-Euclidean metric as suggested by
[20]. The basic idea of the Log-Euclidean metric is to construct
an equivalent relationship between the Riemannian manifold
and the vector space of the symmetric matrix.

The first step is the projection of the covariance matrix on
an Euclidean space tangent to the Riemannian manifold, on a
specific tangency matrix T. The second one is the extraction
of the orthonormal coordinates of the projected vector. In the
following, matrices (points in the Riemannian manifold) will
be denoted by bold uppercase letters, while vectors (points in
the Euclidean space) by bold lowercase ones. The projection
of C on the hyperplane tangent to T becomes:

c = vecI

(
log
(

T− 1
2 CT− 1

2

))
, (2)

where log is the matrix logarithm operator and I is the
identity matrix, while the vector operator on the tanget space
at identity of a symmetric matrix Y is defined as:

vecI(Y) =
[
y1,1
√
2y1,2

√
2y1,3 . . . y2,2

√
2y2,3 . . . yd,d

]
.

(3)

As observed in [21], by computing the sectional curvature
of the Riemmanian manifold, the natural generalization of
the classical Gaussian curvature for surfaces, it is possible
to show that this space is almost flat. This means that the
neighborhood relation between the points on the manifold
remains unchanged, wherever the projection point T is located.
Therefore, from a computational point of view, the best choice
for T is the identity matrix, which simply translates the
mapping into applying the vecI operator to the standard matrix
logarithm. This also frees us from the problem of optimizing
the projection point for the specific data under consideration,
leading to a generally applicable descriptor. Since the projected
covariance is a symmetric matrix of d × d values, the image
descriptor is a (d2 + d)/2-dimensional feature vector.

V. 3D MODEL AND ARCHITECTURAL DETAILS
LOCALIZATION

In order to generate a 3D model of a cultural heritage
building and to locate the relevant architectural details, we



Fig. 2. 3D reconstruction and relevant details of San Giorgio’s Church in
Modena (Italy).

perform structure from motion (SfM) on a set of images. A
SfM system exploits image matching based on local SIFT
features to infer information about the scene structure. After
finding a set of geometrically consistent matches between each
image pair, such matches are organized into tracks. Each track
is a set of matching keypoints across multiple images. To
recover the set of camera parameters (position, orientation,
focal length and radial distortion) and 3D location for each
track, a non linear optimization problem is solved, minimizing
the reprojection error (the sum of distances between the
projections of the track and its corresponding keypoints). This
problem can be solved using the Bundle Adjustment technique
(BA) [22].
Since non-linear least squares solvers suffer from bad local
minima, usually the estimation is evaluated incrementally,
starting from a single pair of images and then adding one
image at a time. The initial pair is selected as the one with
largest number of matches, subject to the condition that such
matches cannot be modeled by a single homography. This is
done to avoid pairs having a small change in point of view,
therefore generating a worst parameter esteem.
The SfM algorithm iteratively adds a single image and solves
BA optimization. At each iteration, the image having the
largest number of tracks whose 3D locations have already
been estimated is added to the evaluation, and its tracks are
considered in the optimization.

Bundle adjustment algorithm is a non-linear optimization
used to refine the model structure and parameters. As stated,
this optimization can be formulated as a non-linear least
squares problem, in which the error function is based on the
difference between the observed 2D corresponding locations
and the projections of the corresponding 3D point on the image
plane of the camera. More formally, let p be the parameter
vector and f(p) be the residual reprojection errors for a 3D
reconstruction, the optimization can be defined as:

p̂ = argmin
p
‖f(p)‖2 . (4)

A solution to this problem is obtained by using the

Levenberg-Marquardt (LM) algorithm that computes a series
of regularized linear approximations to the non-linear problem.
Let J be the Jacobian of f(p), the LM at each iteration solves
the linear least squares problem defined as:

(JTJ + λDTD)δ = −JT f, (5)

where D is a non-negative diagonal matrix and λ is used
as regularization term. Then the update of p is computed by:

p← p+ δ if ‖f(p+ δ)‖ < ‖f(x)‖ . (6)

The Matrix Hλ = JTJ + λDTD is known as the aug-
mented Hessian matrix.

To solve this problem with a large photo collection of a
cultural heritage building, we propose to use the multicore
bundle adjustment proposed in [23]. This approach shows that
inexact step Levenberg-Marquardt can be implemented without
storing any Hessian or Jacobian matrices into memory. This
allows us to exploit hardware parrallelism and to obtain good
balance between speed and accuracy.

Once the sparse 3D model is reconstructed, the most inter-
esting architectural details are manually identified by cultural
heritage experts. Figure 2 shows an example of a 3D model and
some of the selected details (San Giorgio’s Church in Modena
- Italy). Since each image of the collection has associated its
set of camera parameters and the 3D location where the photo
is taken (estimated with the structure from motion step), we
can use them to obtain the absolute pose of query images and
highlight relevant architectural details.

VI. EXPERIMENTAL RESULTS

To test our system we evaluate its performance on two
different problems: comparing the proposed image descriptor
based on covariance of local features with a large variety
of visual descriptors based on BoW and evaluating the user
experience in real scenarios. To evaluate the core functionality
of the retrieval algorithm, we acquire and publicly release a
new and challenging dataset that revolves around the romanic
cathedral of Modena. It features 743 high quality images
capturing different views and different architectural details of
the cathedral, fully annotated with 10 different possible queries
taking into account the whole structure or individual details.
The dataset also contains 20 sample query images taken from
Google that can be used to reproduce the described results (see
examples in Figure VI).

The first component of our method we experimentally
evaluate is the retrieval algorithm. To show its superior per-
formance, we compare our descriptor to several recent visual
descriptors extracted by the implementation proposed by [24]:
Color Moments, generalized color moments up to the second
order, giving a 27-dimensional shift-invariant descriptor; RGB
Histograms, a combination of three histograms based on the
R, G, and B channels; RG Histograms; Hue Histograms;
Opponent Histograms; Transformed Color Histograms, RGB
histograms obtained by normalizing the pixel value distribu-
tions, that achieve scale-invariance and shift-invariance with



Fig. 3. Random samples from the Modena Cathedral dataset.

TABLE I.
COMPARISON BETWEEN DIFFERENT DESCRIPTORS EMPLOYED IN OUR EVALUATION.

Descriptor Precision@1 Precision@3 Precision@5 MAP
Our Descriptor pCov-SIFT 0.800 0.717 0.600 0.362
RGB SIFT 0.750 0.650 0.570 0.281
Opponent SIFT 0.750 0.600 0.500 0.266
SIFT 0.750 0.617 0.550 0.268
RG SIFT 0.650 0.483 0.420 0.235
C-SIFT 0.600 0.567 0.430 0.236
HSV-SIFT 0.560 0.483 0.440 0.203
Transformed Color Histograms 0.500 0.283 0.300 0.187
Hue SIFT 0.450 0.350 0.260 0.129
Opponent Histograms 0.300 0.233 0.210 0.109
RGB Histograms 0.300 0.217 0.190 0.112
Color Moments 0.200 0.150 0.170 0.115
RG Histograms 0.150 0.133 0.140 0.098
Hue Histograms 0.100 0.100 0.100 0.088

respect to light intensity; SIFT; RGB-SIFT; RG-SIFT; HSV-
SIFT; Hue-SIFT; Opponent-SIFT and C-SIFT, obtained using
a C-invariant color space which eliminates the remaining
intensity information from the opponent channels.

In all cases, to sparsely sample the keypoints in the images
we adopt the Harris-Laplace keypoint detector. Since all these
are local descriptors, a Bag of Words approach is employed to
obtain a global description of the image in order to perform
the retrieval phase. Using this approach, a 4096-dimensional
codebook is built and used to compute the codes of both
dataset images and the query ones. The requirement of a
codebook is indeed a liability in this context, since is has two
major drawbacks: the first one is the time required to compute
it, which in the worst case has been of more than 260000
seconds (more than 3 days) on an Intel i7 3.0 GHz CPU. This
preprocessing step must be taken for each descriptor type and
due to the O(ndki) complexity of the clustering step, which
does not depend on the number of images, cannot be shortened
without decreasing the precision of the procedure. Our method
does not require the computation of a codebook prior to being
able to employ the descriptor, effectively saving significant
time. On the other hand, being tied to a codebook computed
on a particular dataset inevitably leads to being dependent
from the training data. Hence, our algorithm is better suited to
generalizing than any of the different descriptors it is compared

to.

Evaluating our method, we show its performance and we
compare it against the aforementioned techniques in terms of
Precision@1, Precision@3, Precision@5 and Mean Average
Precision. These metrics respectively show the precision of the
first k, with k ∈ {1, 3, 5}, top ranked images and the overall
precision. As the results in Table I show, the usage of the
covariance of SIFT descriptors leads to the best results. While
other SIFT-based approaches can achieve good performance,
it clearly emerges how relying only on color information is
not sufficient to perform an effective retrieval. This is mainly
due to the complexity of the setting we are dealing with,
where most of the architectural details share the same color
patterns. Indeed this is the reason why most of the descriptors
based on color histograms show very poor performances.
Computing the gradient information using the SIFT descriptor
on different color spaces can achieve slightly better results than
relying only on grayscale information. Nonetheless, using our
pCov descriptor, which does not rely on color information,
can achieve better results than any of the SIFT-based BoW
descriptors, whether they use color or not.

On a second note, since our system is innovative, it requires
a usability validation step. This evaluation should aim at estab-
lishing how the users respond to this new kind of technology,
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Fig. 4. Results of the user experience evaluation, where the question “Express
how much did you enjoy using the tool” has been answered.

in terms of how they enjoy it, how natural does the interaction
feel and how effective the tourists deem the application to
be. With these objectives in mind, we staged a preliminary
evaluation that involved 5 people of different sex and ages
(20-40 years old). Each one of them has been provided with a
prototype of our system and has been accompanied in a small
tour of Modena, focusing on the cathedral. Here, the tourist
had the occasion to test our system. After the visit we asked
them to respond to the question “Express how much did you
enjoy using the tool” using a Likert scale with scores from
1 (lower) to 5 (higher). The results of this interrogation, that
can be seen in Figure 4, validate the proposed system. In fact,
80% of the users evaluated the system as enjoyable (score of
4 or more).

VII. CONCLUSION

In this paper we presented a system that provides the
user with a new way to interact with cultural heritage sites.
Benefiting by egocentric paradigm our solution can propose
to the user a detailed view of an historical building and allow
the visitor to browse through architectural details. The system
consists of two main components: the retrieval of similar
images and the user’s absolute localization. To deal with the
retrieval task in this unconstrained scenario, we propose a fast
visual descriptor based on the covariance of local SIFT features
extracted from an image. Our pCov descriptor achieves better
performance than its Bag of Words competitors, without the
need of a precomputed visual vocabulary. This increases its
generality and lowers the computational requirements, making
it well suited for wearable and embedded applications. To
locate the visitor with regard to the building he is looking at,
a 3D model, automatically generated using a structure from
motion algorithm, combined with the results of the retrieval
phase is employed. This allows the proposal of a set of relevant
details visible from the user’s current position.
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