Robot Devastation: Using DIY Low-Cost Platforms
for Multiplayer Interaction in an Augmented Reality
Game

David Estevez, Juan G. Victores, Santiago Morante, Carlos Balaguer
Robotics Lab research Group
Universidad Carlos III de Madrid
Email: {destevez, jgcvicto, smorante, balaguer} @ing.uc3m.es

Abstract—We present Robot Devastation, a multiplayer aug-
mented reality game using low-cost robots. Players can assemble
their low-cost robotic platforms and connect them to the central
server, commanding them through their home PCs. Several low-
cost platforms were developed and tested inside the game.

Keywords—augmented reality, diy, low-cost, multiplayer inter-
action, robots, game

I. INTRODUCTION

An increasing trend in educational and hobby robotics has
been seen in the past years. Kits for building Do-It Yourself
(DIY) robots are now common, and low-cost electronic boards
have spread in last years. These educational or hobbyist kits
usually leverage from open source licenses, in order to ease the
use and development of these products, and also increase the
interest of people in electronics, mechanics and programming.
Within this context, Robot Devastation is an open source
game where DIY robotic developments are integrated as real-
world ‘avatars’ of the players. The idea is to integrate real
user-made robots with this Augmented Reality (AR) game,
through the use of fiducial elements (e.g. AR markers). These
robotic platforms can interact in a common virtual space and
be controlled from off-the-self devices (a mockup is shown in
Fig. 1).

Azuma et al. presented the most common applications
of existing AR systems in [l]. Among them, we can find
medical applications, including training and aid for surgery or
applications in manufacturing and repairing such as live view
of 3D schematics and instructions on top of the actual objects.
The last application described in the aforehead mentioned work
is entertainment and gaming, which is the topic this paper is
focused in.

Later, in [2], Azuma et al. updated this list of applications
of AR introducing three new applications: outdoor and mobile
AR systems; collaborative AR, very useful in environments
such as meetings or collaborative product design and com-
mercial applications, like sports broadcasting or advertising.

In this work we present Robot Devastation (Fig. 4), a
robot combat game that uses teleoperated robots as avatars
for the players. This aspect distinguishes it from most of
the AR games, which are purely virtual, meaning that all
entities controlled by the player do not correspond to any

Fig. 1.
seen on the screen represent the players’ own robots.

Robot Devastation gameplay mockup from smartphone. The robots

real world object or are passive elements such as markers or
instruments (e.g. a “magic wand”). This way all the dangerous
or expensive elements of the robot combat can be virtual, and
added to the real world using the augmentation capabilities of
AR. The architecture of our game allows seamless integration
of low-cost robotic platforms in this multiplayer First-Person
Shooter (FPS). Interaction occurs within an Augmented Reality
environment where gaming elements such as weapons and
ammunition, as well as menus and guidelines, are superposed
on the stream of images that arrive with the robot’s perspective.

II. STATE OF THE ART

One of the widespread applications of AR are games and
entertainment systems. For the purpose of studying them in this
work, they are classified as research AR games and commercial
AR games. Research AR have as their main goal researching
the possible applications of AR concepts to gaming. On the
other hand, the main objective of commercial AR games is to
be released to the general public to obtain an economic profit.
The later group is becoming very popular lately, as the cost
of the hardware required to implement them is decreasing, but
few information or technical data is often known about them.

INTETAIN 2015, June 10-12, Torino, Italy
Copyright © 2015 ICST
DOI 10.4108/icst.intetain.2015.259753

A. Research Games

Research games are games made as a proof of concept
for an AR development, usually with no intention of reaching
an end user. One of the first examples of these kind of games
was developed by Ohshima et al., called AR2 Hockey [3]. AR2
Hockey is a collaborative game were two players play a real-
time, interactive game of air hockey. The puck is virtual, and
the players can see it through their Head-Mounted Displays
(HMD), and hit it using either real or virtual strikers.

AR Quake [4] is an adaptation of the classic Quake game.
In this version, the player is equipped with a HMD and a
prop gun with haptic feedback simulating the gun recoil, and
he is allowed to move freely outdoors. The game character
is controlled through his movements in the real world, which
has been previously mapped and used as a base to generate
the game virtual environment.

Monkey Bridge [S] demonstrates how autonomous agents
can be integrated in AR games. In this indoor, two-player
game, two autonomous virtual characters have to cross a bridge
over virtual water. Each player, in turns, adds new sections
of the bridge using fiducial markers, helping those virtual
characters to cross to the other side of the table, without falling
into the virtual water.

Augmented Reality has been also applied to already ex-
isting table games such as Monopoly [6], to detect the game
board and tiles, as well as the player’s pawns. Their system
follows the game flow, and offers both visual enhancements
and a tangible interface to interact with the game by means of
the different pawns.

Knoerlein et al. developed an AR ping pong game for
two players [7]. The virtual ball was presented on top of the
real table by means of a HMD, and the users received haptic
feedback using a modified table tennis bat whenever they hit
the ball.

Oda et al. presented in [8] a multiplayer AR racing game.
One player had the role of the driver, and the other players
could interact with the racing car by adding waypoints and
obstacles to the virtual track, which was overlaid on top of
fiducial markers. Therefore, several cameras captured the real
world, and several displays showed the augmented world to the
players. The racing car was controlled by means of a passive
device that used fiducial markers to track its orientation, and
worked similarly to a driving wheel.

Markerless AR games also exist, such as Ewok Rampage
[9], that uses Parallel Tracking and Mapping (PTAM) to
register the virtual objects over the real world. This game can
be played both outdoors and indoors over any flat surface of
the real world, and consists in several enemies that appear
randomly running towards the player, who has to destroy them.

Other approaches to markerless AR use structured light
sensors to detect the environment and light projectors to
superimpose virtual elements on the real world, eliminating
the need for a display to perceive those virtual elements.
Such approaches have been applied to enhance the gaming
experience of existing games by projecting additional elements
surrounding the game screen [10], or completely immersing the
player in a virtual world projected on top of his room [11]. In

Game server Players' PCs DIY Robots

Fig. 2.
elements

The system architecture of Robot Devastation with its three main

the later game the player, equipped with a prop gun, has to
destroy virtual enemies and avoid traps.

B. Commercial Games

The appearance of more powerful mobile devices such as
smartphones and portable game consoles and the fact that
most of them incorporate a camera, have raised the amount
of commercial AR games available in the market in the last
years. As these games are commercial developments, the vast
majority of them do not have any publication explaining them
or their inner workings apart from their commercial webpage.

Some examples of these games, that usually require one
or more fiducial markers to make the augmentation, are Inviz-
imals', AR defender?, Wonderbook® or AR Games®*. The most
similar AR game developments to the presented work are the
Parrot Drone quadcopter® and Sphero [12] games. These games
allow a the user to teleoperate the robots from a mobile device,
that lays enemies or waypoints (depending on the game) on
top of the video stream obtained from the on-board camera.
However, these games are usually simple and single or two
player games with no multiplayer agenda.

III. SYSTEM ARCHITECTURE

The system architecture of Robot Devastation is composed
of three main elements: the teleoperated robot, the computer
used by the player to control the robot and the game server
(Fig. 2).

The current version requires that all these elements are in
the same Local Area Network (LAN). In this section these
elements will be described in detail.

A. Robot

The main element of Robot Devastation is the robot, which
is teleoperated, and acts as an avatar for the player. There
should be at least one robot per player, and the minimal
robot configuration includes four main elements. A camera
is required in order to obtain what the robot is seeing, along

Uhttp://invizimals.eu.playstation.com/
Zhttp://www.ardefender.com/
3http://wonderbook.eu.playstation.com/
4http://www.nintendo.com/3ds/ar-cards
Shttp://ardrone2.parrot.com/usa/apps/

http://invizimals.eu.playstation.com/
http://www.ardefender.com/
http://wonderbook.eu.playstation.com/
http://www.nintendo.com/3ds/ar-cards
http://ardrone2.parrot.com/usa/apps/

with a barebone PC or board for processing and sending the
video stream. For communicating with the PC in charge of the
robot control, a Wi-Fi link is needed. Finally, the robot should
have some way of achieving locomotion.

Two prototypes with different types of movement were
developed. The first one is a robot with a pan-tilt mechanism
for the camera, that cannot move around the combat zone and
simulates a gun turret. The other, a mobile robot with a fixed
camera, that simulates a combat vehicle.

These robots run a small program that connects to the
player’s PC and sends the video stream from the camera while
it waits for high-level movement commands (move forwards,
move backwards, turn left and turn right). When a movement
command arrives, it executes the actions required to perform
that command (solving the inverse kinematics of the robot if
needed, for instance).

B. Player’s PC

The game is played by means of a PC that is connected
both to the game server and the robot. This PC displays the
augmented robot view on its screen, and waits for user input
to control the robot.

An augmented view of the robot’s point of view is shown
on the display, in which the other robots are marked as targets
similarly to a fighter aircraft Head-Up Display (HUD). The
robot can shoot virtually, and this shooting is reflected on the
user’s display according to the type of ammunition/weapon
used in the game.

Whenever a target player is hit, its PC sends a message to
the server notifying it has inflicted some amount of damage to
a player. If the robot suffers enough damage, the game is over
for that player, and the server broadcasts this information to
the remaining players.

C. Game Server

All the information related to the current game is managed
in a central server. This server communicates with the different
players, synchronizing the information that each of them keeps
about the state of the other players (e.g. health, score, etc).

Each player logs in at the beginning of each game, selecting
the team in which his robot will be. Then, the server listens to
the messages sent by robots when they hit their robot targets.
The health stored is updated by the server for the player that
was shot, and the new state of the player that received damage
is broadcasted to all the players.

The server is also in charge of logging out a player when
it receives a logout request, and informing the players when a
robot has lost all its health points and, therefore, has lost the
game.

IV. SOFTWARE IMPLEMENTATION

Details of the current software implementation of the
game® will be explained in this section. The software is divided
into three main parts, one for each of the three main elements

Currently hosted at https:/github.com/asrob-uc3m/robotDevastation

Keyboard ER ST, Shooting

event action
l Server I—P REIe|[SI&S—» | Reload Ammo

At ach Update Server

Players' PCs

Video Stream

Fig. 3. The game is based on events that are passed to handler functions in
charge of executing the different actions.

in the game’s architecture: the robot, the player’s PC and the
game server.

Since this implementation was a proof of concept of the
game, and there was no intention of creating a final product
at this point, a game engine such as Unity or Unreal Engine
was not used. A much lower level graphics library, SDL, was
selected for the (2D) graphics and user input, and YARP [13]
was chosen for the communications and video streaming.

The firmware on the robot is very simple, and it is in charge
of capturing the frames from the camera and sending them to
the player’s PC using a YARP port. Another YARP port listens
for high-level movement commands such as “move forward”
or “turn left”, and then these command are interpreted by the
firmware, which then executes the actions needed to perform
them. For example, for a differential drive mobile robot, a
“move forward” command would activate the two motors to
propel the robot forward, whereas a “turn left” command
would result in the two motors turning in opposite directions
to make the robot turn.

The game server is also simple, since it just stores the
information about all the players (such as name, id, team,
health, score, etc) and updates it according to the game events.
Communications are also managed by YARP ports, and a
basic API with login (adds a player to the server storage),
logout (removes a player from the server storage) and rargetHit
(modifies the health of a player) commands was implemented.

Most of the computing work is done at player’s PC,
which runs the most complicated piece of software. The
player’s PC software is event-based. Some modules, such as
the input module or the network module can trigger events and
notify other software that an event has occurred. The notified
component then acts accordingly to these events. Fig. 3 shows
this event-based implementation.

The game flow is controlled with a state machine that first
logs in the player in the server in the selected team. When
all the players are ready, the game starts, and the program
listens to the user’s keyboard input (obtained through SDL). If
a key is pressed, it will trigger an event that will either send a
movement command to the robot, shoot wherever the scope is
pointing at, or reloading the weapons. If a target is hit, it will
notify the server in order to update the information about the
damaged robot.

Since the combat is virtual, elements that are not in the
real world must be added to the original image, such as

https://github.com/asrob-uc3m/robotDevastation

target marks (with target name and health bar), and firing
trails from the bullets or laser weapons. Explosions or other
effects when a robot is hit could also be added, although they
are not implemented in the current version. Augmentation is
completed by adding sound effects for the different actions
such as shooting and reloading. The robots have attached QR
codes used as fiducial markers, and they are tracked in order
to locate and register the different elements of the augmented
reality. In the future the game will not need those QR codes,
as a markerless AR game is aimed for. Other elements, such
as information about the state of the game, and heath and
ammunition of the player, are also displayed on the screen
(Fig. 4).

All the communications between the player’s PC and the
game server, or between it and the robot are implemented
using YARP ports. An event on the player’s PC is triggered
by incoming information from the server to process and act
according to that information (e.g. the player’s robot was hit
by another robot and its health has decreased).

V. EXAMPLES OF THE ROBOTS

The following low-cost robot platforms were built inside
the Robotics Society of the University. The platforms were
tested within Robot Devastation (Fig. 5).

A. Gun Turret

In order to test the game easily, discarding the effect of the
movement of the robot in our tests, a robot that cannot move
was designed, as if it were a gun turret. This robot, shown in
Fig. 5 in the left part, has a pan-tilt mechanism actuated by
two hobby servos. Through this mechanism, even though the
robot is static, it can still look around to search other robots
and aim at them.

On top of the pan-tilt mechanism there is a Minoru 3D we-
bcam. The servos are controlled with an Arduino Nano board
(an ATmega328P-based micro-controller development board),
which communicates with a Raspberry Pi (a ARMI1-based
single-board computer with 512 MB of RAM and running at
700 MHz) in order to receive the movement commands. A
Wi-Fi dongle and a LiPo battery are required to make it work
wirelessly.

B. ECRO

To exploit the full possibilities of the game, and also to
make it more entertaining, a mobile platform, named ECRO,
was tested (central robot in Fig. 5).

ECRO is a wheeled platform [14] with two 12 V motors,
two motor controllers, an Arduino Mini board to interface the
motor controllers with the PC and a netbook PC that sits on
top of the robot. The motors are powered from 12 V lead-
acid batteries, whereas the netbook is powered by its stock
LiPo battery. The webcam of the netbook is used as the robot
camera.

C. RDI

The second mobile platform is the RD1 robot, right robot
in Fig. 5, a cheap robot that can be 3D printed. It has two

Fig. 4. Screenshots of Robot Devastation gameplay. The resolution of the
images the players see is directly given by the robot webcam specifications.

hobby servos modified for continuous rotation and a Rasp-
berry Pi board with a Wi-Fi dongle for video streaming and
communications with the player’s PC. It also has a webcam
to obtain the video stream, and is powered with AA batteries
(for the motors) and a LiPo battery for the Raspberry Pi.

VI. CURRENT STATUS AND TESTING

The proposed system was implemented and tested (several
video examples’). All three robots were assembled and a few
games were played. An actual gameplay screenshot can be
seen in Fig. 4.

During the testing, some issues were identified. The video
stream started to blur with fast maneuvers, an expected (and
probably unavoidable) result, as average webcams are not
prepared to capture video with fast movements. Moreover,
depending on the orientation of the robots, sometimes the QR
markers were not detected, so the robot could not hit its target
even though the player could see the robot on the screen. This
is a source of frustration for the player, specially when he loses
the game due to this issues.

Despite this minor challenges to be tackled, some good
results can be highlighted. Almost no delay was observed
between commands, robot actions and visual feedback, which
is important for teleoperating the robot. Also, the modular
design of the game allows to add easily new robots (e.g.
hexapods, humanoids, etc) as long as they have a camera and

"http://youtu.be/MShjf_EqwQg?list=PLOE72403A6C94309E

http://youtu.be/MShjf_EqwQg?list=PL0E72403A6C94309E

Fig. 5. Robot platforms tested with Robot Devastation: Gun turret is shown on the left, ECRO is the one in the middle image, and RDI is the platform on the

right.

some way to stream video. It has also possible to extend the
game by adding virtual elements such as weapons, HUDs,
bonus, etc.

Beyond the current state, some short-term goals can be
pointed out. The first one is using a game engine to display
more professional-looking graphics. Using a game engine
would also probably simplify the software implementation, as
many aspects of the game, such as input management will
be already implemented and optimized. The other one is to
eliminate the need for fiducial markers using, for instance,
either visual features, stereo vision or Parallel Tracking and
Mapping (PTAM) to track the robots and register them in 3D.

A smartphone version of Robot Devastation is additionally
planned as a future development. In this scenario, a robot
without camera can be used. As previously seen in Fig. 1,
the user directly sees the environment with AR through the
smartphone, and the robot’s perspective is not used.

VII. CONCLUSION

Robot Devastation is a multiplayer augmented reality game
in the format of a First-Person Shooter. The players’ avatar are
low-cost Do-It Yourself teleoperated robots. Potential players
can build their own robots, and connect to the main server.
The architecture of the game allows seamless integration of
these platforms.

Augmented reality is a powerful technology for gaming,
since it allows the game creators to combine virtual and real
world elements, maximizing the interaction between the player
and the game, or between the players.

Even though the robots were built with a low budget in
mind, they still have a good performance. There is not a
significant delay between commands and actions, which could
affect to the comfort of the player when teleoperating the robot,
and the video stream quality is, in general, acceptable. Issues
appear in the video stream when the robot executes a fast
maneuver, but that is a common problem when using average
webcams.

ACKNOWLEDGMENT

This work was supported by ARCADIA DPI2010-
21047-C02-01, funded by CICYT, and RoboCity2030-II-CM
(S2009/DPI-1559), funded by Comunidad de Madrid and EU.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

REFERENCES

R. T. Azuma et al., “A survey of augmented reality,” Presence, vol. 6,
no. 4, pp. 355-385, 1997.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Macln-
tyre, “Recent advances in augmented reality,” Computer Graphics and
Applications, IEEE, vol. 21, no. 6, pp. 34-47, 2001.

T. Ohshima, K. Satoh, H. Yamamoto, and H. Tamura, “Ar 2 hockey: A
case study of collaborative augmented reality,” in Virtual Reality Annual
International Symposium, 1998. Proceedings., IEEE 1998. 1EEE, 1998,
pp. 268-275.

W. Piekarski and B. Thomas, “Arquake: the outdoor augmented reality
gaming system,” Communications of the ACM, vol. 45, no. 1, pp. 36-38,
2002.

1. Barakonyi and D. Schmalstieg, “Augmented reality agents in the
development pipeline of computer entertainment,” in Entertainment
Computing-ICEC 2005. Springer, 2005, pp. 345-356.

E. Molla and V. Lepetit, “Augmented reality for board games,” in
Mixed and Augmented Reality (ISMAR), 2010 9th IEEE International
Symposium on. 1EEE, 2010, pp. 253-254.

B. Knoerlein, G. Székely, and M. Harders, “Visuo-haptic collaborative
augmented reality ping-pong,” in Proceedings of the international
conference on Advances in computer entertainment technology. ACM,
2007, pp. 91-94.

0. Oda, L. J. Lister, S. White, and S. Feiner, “Developing an augmented
reality racing game,” in Proceedings of the 2nd international conference
on INtelligent TEchnologies for interactive enterTAINment. — ICST
(Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering), 2008, p. 2.

G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in Mixed and Augmented Reality, 2007. ISMAR 2007. 6th
IEEE and ACM International Symposium on. 1EEE, 2007, pp. 225—
234.

B. R. Jones, H. Benko, E. Ofek, and A. D. Wilson, “Illumiroom: pe-
ripheral projected illusions for interactive experiences,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2013, pp. 869-878.

B. Jones, R. Sodhi, M. Murdock, R. Mehra, H. Benko, A. Wilson,
E. Ofek, B. Maclntyre, N. Raghuvanshi, and L. Shapira, “Roomalive:
magical experiences enabled by scalable, adaptive projector-camera
units,” in Proceedings of the 27th annual ACM symposium on User
interface software and technology. ACM, 2014, pp. 637-644.

J. Carroll and F. Polo, “Augmented reality gaming with sphero,” in ACM
SIGGRAPH 2013 Mobile. ACM, 2013, p. 17.

P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot
genes,” Robotics and Autonomous systems, vol. 56, no. 1, pp. 29-45,
2008.

J. G. Victores, S. Morante, M. Gonzélez-Fierro, and C. Balaguer,
“Augmented reality and social interaction platform through multirobot
design,” in Robocity2030 11th Workshop Robots Sociales, 2013, pp.
131-143.

	Introduction
	State Of The Art
	Research Games
	Commercial Games

	System Architecture
	Robot
	Player's PC
	Game Server

	Software Implementation
	Examples Of The Robots
	Gun Turret
	ECRO
	RD1

	Current Status And Testing
	Conclusion
	References

