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Abstract—Commercial off-the-shelf gaming devices (e.g. such as 
Kinect) are demonstrating to have a great potential beyond their 
initial service purpose. In particular, when integrated within the 
environment or as part of smart objects, peripheral COTS for 
gaming may facilitate the definition of novel interaction methods, 
particularly applicable to smart spaces service concepts. In this 
direction, this paper describes a system prototype that makes 
possible to deliver multimodal interaction with the media contents 
in a Virtual Window. Using a Kinect device, the Interactive 
Window itself adjusts the video clipping to the real time 
perspective of the user – who can freely move within the sensor 
coverage are. On the clipped video, the user is able to select 
objects by pointing at meaningful image sections and to initiate 
actions related to them. Voice orders may also complete the 
interaction when necessary. Although implemented for smart 
spaces, the service concept can also be applied to learning, remote 
control processes or teleconference.  

Keywords-multimodal interaction; virtual windows; deictic 
interaction; smart spaces; smart objects. 

I.  INTRODUCTION 
Systems equipped with multimodal interaction offer the 

possibility of interfacing with them through a combination of 
natural modes of communication, which may include speech, 
body gestures, handwriting, graphics or gaze. This mixing 
should be closer to the effective human-to-human 
communication, but the creation of satisfactory models that 
handle the inputs in an integrated way is still an open challenge 
[1]. Nowadays, thanks to commercial off-the-shelf technologies, 
in particular to gaming peripheral devices such as Microsoft 
Kinect (first version launched in November 2010), it is possible 
to implement new concepts of interaction that may enhance our 
relationship with daily-life spaces. For example, in our previous 
works, we have prototyped a Kinect-enabled Virtual Window 
[2]; the Window is responsive to the viewer’s perspective 
(which is inferred from her/his head, body pose and 
movements) and delivers a realistic window feeling by clipping 
a video stream. Users have satisfactorily evaluated the 
perception obtained when different layers of processing are 
added to Kinect’s raw measurements.  

We have also explored deictic interaction in smart spaces. 
The pointing gesture is universally used as a way to denote or 
attract interest towards an item. In [3], it is described how to 
make a space sensitive to 3D pointing directives to command 
the space’s objects. The system combines the input from two 

Kinect devices to track the user and retrieve her joints spots for 
positional analysis. To demonstrate its applicability, the system 
has been prepared to control rows of ceiling lamps; user tests 
show that 90% of interactions are successful when the user is 
inside the optimal Kinects’ coverage area. 

On the technology developed for these two systems, we 
have built and prototyped a concept to provide enhanced 
interactivity to the Virtual Window. Apart from the pose, we 
aim at making this Interactive Virtual Window responsive to 
pointing gestures to indicate the viewer’s interest towards a 
part/object in the scene (selection process), at the same time that 
speech control is used to activate specific actions related to the 
pointed item (action process) if needed. The idea of combining 
pointing and speech for interaction is not new; the proposed 
system aims at exploring it as new services enabler for smart 
spaces. The paper contextualizes this research and provides a 
description of the system architecture and its components. 

II. STATE OF THE ART 
Kinect device integrates a low-cost depth sensor, an RGB 

camera and a multi-array microphone to facilitate full-body 3D 
motion capture and facial and voice recognition. Kinect 2.0, 
released in 2014, tracks up to 25 joints per person and six 
complete skeletons simultaneously. Among its improvements 
against version 1.0, it delivers higher depth fidelity, provides 
major stability for body tracking and works in a wider field of 
view, being its effective distance coverage area from 40 cm to 
4.5 meters (Figure 1).  

The device is being increasingly used as a tool for 
interaction research. It is inexpensive, portable and has a great 
potential to gather features, poses and gestures of moving 
people in its area of sight. In particular, a review of the device 
performance for pointing tasks, which are used in this work, can 
be found at [4]. In [5], Kinect facilitates interacting with objects 
in a virtual 3D space by pointing. The pointing vector is 
obtained from paired elbow-hand joints positions, and object 
selection is derived from the movements of a hand-mounted 3D 
mouse. Authors find that variations over the posture (sitting vs. 
standing) may influence the pointing detection accuracy due to 
fatigue. The same corporal reference points are used for creating 
the pointing vector in [6]. In this occasion, the system enables 
the selection and management of a smart TV. In [7], the human 
pointing gestures are interpreted to catch the attention of a 
robot: the robot goes toward a target location that is indicated by 
the user. This position is also estimated through a Kinect sensor.  

INTETAIN 2015, June 10-12, Torino, Italy
Copyright © 2015 ICST
DOI 10.4108/icst.intetain.2015.259498



Different Kinect-detectable gestures are configured in [8] to 
interact with 3D medical images. Pointing is one of the 
recognized ones; in this case the pointing vector is obtained as a 
combination of the users’ eye location and the position of the 
index finger’s tip. The problem of hand self-occlusion (when 
the user’s body position hinders the identification of the hand 
reference points) is considered at [9]; the work explains a 
method for compensation when the shoulder is detected but the 
hand occluded. In [10], Kinect depth camera is used to detect 
the coordinates of a subject's right hand to enable the user to 
perform posterior manipulation of the position of a cursor. 
NUICursorTools [11] is a toolkit that provides cursor 
transformation functions for diverse input modalities. It aims at 
offering a device agnostic solution to eliminate inherent 
limitations of human motor control in mid-air, in particular 
undesirable jitter from continuous hand tremor. Through this 
tool, it is possible to create a pointer on a wall-sized display that 
can be controlled via a markerless motion tracking sensor, such 
as a Kinect device.  

Hand pointing is compared to gaze pointing for 3D virtual 
environments in [10] – gaze tracking is also available through 
Kinect’s API. Authors reach the conclusion that each pointing 
technique has different performance in terms of accuracy and 
fatigue, thus these facts should be taken into account when 
including pointing at interaction method. Regarding combined 
speech-pointing interaction, research dates back to the 80s, with 
the Put That There demonstration system. For example, [12] 
shows that speech-pointing interaction is preferred by the users 
for target selection when compared to dwell time and shake 
hand movement.  

Obviously, Kinect has been widely used to detect corporal 
gestures in video games [13], although the pointing action is not 
widely exploited. An example is [14], a system that tracks the 
user’s pose and gaze direction to control the famous “Candy 
Crush” game: corporal gesture is used for interaction, while 
targets are selected using gaze pointing. The movements of the 
arm indicate actions inside the game, but do not drive any 
pointing gesture. This is similar to [15], a single-player game 
that uses the angle of the player’s torso in relation to the ground 
to help a virtual avatar keep balance in a wobbling world.  

A comparative analysis of modern gaming input devices is 
available at [16]: users were asked to perform a shooting task 
and performance measurements with four devices. Results show 
that the mouse is still the best tool, while the game controller 
remains in a close second position. The performance of the 3D 
input devices (Move and Kinect) was significantly worse. How 
older adults react to motion-based games is researched at [17]. 
A comparative test youngsters vs. elderly was designed to 
measure the user’s performance while accomplishing three 
different tasks: pointing (the speed at which a person can move 
a pointer to a target), steering (the speed at which a person can 
move a pointer along a path without colliding with the path’s 
borders) and pursuit tracking (the ability to move a pointer so as 
to accurately match the location of a moving target). Tasks were 
carried out by using Kinect, Move, Mouse and GamePad. 
Conclusion shows that elderly are capable to efficiently use and 
enjoy motion-based game controls. 

On this review of Kinect-enabled pointing methods and its 
uses within interaction, next Section presents an interaction 
system that exploits multimodality in an Interactive Virtual 
Window. 

III. SYSTEM DESCRIPTION 
The proposed system integrates the Virtual Window concept 

described in [2], which translates a moving observer point of 
view into video clipping to simulate the resulting perspective, 
with two additional interaction components: a) a pointing 
detector, that estimates the coordinates in the image the user is 
pointing at; and b) a window-related grammar speech 
recognizer, in order to make possible for a user to show interest 
against meaningful items in the scene and trigger 
actions/services related to them. This Section describes the 
general system architecture. 

A. Service approach 
The Virtual Window concept aims at providing a decorative 

element that offers a realistic window effect to be integrated 
within working spaces, hospitals, hotels, etc., in general within 
spaces with limitations regarding their orientation or views. In 
practice, the Virtual Window system components include a 
display (or a set of displays), a Kinect sensor and the necessary 
computation resources to manage and adapt videos to the user 
pose. Continuing our previous work, the system presented in 
this paper is equipped with the logic needed to estimate which 
coordinates within the image the user is pointing at, in order to 
facilitate interaction and enable new services.  

The displayed images in the Virtual Window are the result 
of geometrical transformations (basically clipping and image 
interpolation) on a pre-recorded 2D video frames. The 
performed clipping is capable of emulating the perspective 
changes for the target user, thus the transformations applied are 
dependent on the real time pose of the individual with respect to 
the sensor. The system can be shown in action at [18].  

In order to facilitating 2D deictic interaction, the system uses 
the position of the user’s joints delivered by Kinect to estimate 
the pointing vector, as described at Section IV.A. In case that 
the pointed coordinates are part of a marker embedded in the 
video and in case the user maintains the pointing pose for some 
seconds (dwell time, 3-5 seconds), the Virtual Window provides 
augmented information associated to that specific marker.  

 

Figure 1. System prototype. 



 
Figure 2. System components. 

 

Additionally, the system integrates the recognition of voice 
commands to trigger actions related to the marker activated by 
the pointing action (Figure 1). Kinect is responsible of grabbing 
the user’s voice through its microphone array and a specific 
grammar built from the scene is available for the user to 
disambiguate the choice when multiple action options are 
available for the same object. E.g. when pointing at a car, the 
viewer will be able to opt between e.g. traffic information and 
boarded pollution sensors through voice commands. 

B. Overall architecture 
Figure 2 shows the overall architecture of the system. The 

video player decodes the input video file to obtain the complete 
raw frames that are trimmed in the video crop module 
depending on the user’s point of view, and then rendered in the 
display device. Additionally, each trimmed video frame is 
processed in the markers detection module to dynamically 
recognize pre-established patterns and create virtual objects to 
represent those markers along with the trimmed video frame.  

The user tracking module processes the Kinect’s body frame 
source to recognize and track the user’s head and arm and 
submit those data to the estimation modules to estimate both the 
user’s point of view and the pointing vector. The former is used, 
as mentioned above, by the video crop module to trim the video 
frame according to the user’s subjective point of view, whereas 
the latter detects whether the user is pointing to a visible marker 
in the region of video frame that is being displayed. Markers are 
defined within the marker detection module. This information is 
used by the actions compiler module to trigger actions linked to 
the pointing of the user at the markers, e.g. creating virtual 
2D/3D objects related to the markers or superimposing data. 

Finally, the speech recognition module processes the 
Kinect’s audio source and, depending on the grammar that is 
currently loaded, sends the recognized voice command to the 
actions compiler, in order to perform the action linked to that 
speech command. Both the performed actions and the visible 
markers are defined by the application context, which 

dynamically changes the loaded grammar into the speech 
recognizer to define the commands that can be interpreted. 

IV. KEY ARCHITECTURE MODULES 
After the review of the general architecture, we following 

comment on the two modules that make possible, in practice, 
the Virtual Window to be interactive: the pointing estimation 
and the video marker detection components. 

A. Pointing estimation component 
The pointing estimation component is in charge of 

estimating the 2D coordinates the user is pointing at. Kinect 
device provides the user’s arm joints positions which enable to 
calculate the pointing vector that, once projected into the target 
2D plane, will deliver the desired coordinates (Figure 3). In the 
Interactive Virtual Window, the target 2D plane will be the 
display infrastructure that serves to simulate the window.  

The pointing estimation logic handles multiple coordinate 
systems. First of all, the Kinect camera captures the user’s joints 
positions referred to the camera coordinate system (Figure 4-a). 
The user’s arm pointing vector is estimated from the shoulder 
joint position and hand-tip position delivered by Kinect. Both 
positions will be transformed to Kinect coordinate system (also 
called “skeleton coordinate”, Figure 4-b), which is the 3D 
coordinate system defined by the Kinect SDK. Its origin is 
located at the center of the IR sensor on the Kinect device. 
Although both camera and Kinect coordinate systems are right-
handed, the first one is rotated around Z axis for 180 degrees 
with respect to the second. 

When a real scene is reconstructed, the resulting 3D 
coordinates are relative to a certain point at the scene. So, to 
perform the subsequent transformation, a calibration pattern-
based coordinate system (Figure 4-c) is needed; this new 
coordinate system will have its origin in the calibration pattern 
(calibration is mandatory). The transformation between the 
coordinates referenced to Kinect coordinate system to the 
calibration pattern-based coordinate system needs to use a 
rotation matrix and a translation vector extracted during a 



previous calibration process. This stage of the process includes 
the use of a new reference system, called the global coordinate 
system (Figure 4-d). It is employed to reference the points to the 
real 3D space and makes possible to position objects in the 
room. The transformation to this global coordinate system is 
calculated by making a rotation of axis and a translation, which 
corresponds to the distance between the origins of both 
coordinate systems (in the global coordinate system). 

 
Figure 3. Pointing estimation. 

At the fourth transformation, the system needs to project the 
pointing vector, referred to the global coordinate system, to the 
target projection plane. This plane has a predefined coordinates 
in the global coordinate system, concretely it is null in Z. The 
projection result will deliver the coordinates (xpG, ypG). 

 
Figure 4. Scheme with the relations to the coordinates transformations between 

the existing coordinate systems. 

In order to perform Kinect camera calibration, we have used 
Calibration toolbox for Matlab [19], following the process 
described at [2][3]. The resulting parameters are divided within 
two groups, intrinsic and extrinsic parameters. Extrinsic 
parameters estimate the location and the orientation of the 
camera in the real space; they are obtained from the camera 
intrinsic parameters. Intrinsic parameters (e.g. principal axis, 
optical center and focal distance) are related to the internal 
geometry and the optical features of the camera and remain 
constant if the features and relative positions of the optics and 
the imaging sensor do not vary. With respect to the calibration 
pattern, we have used a chessboard of 5x5 60 mm-sided 
squares. Kinect camera has taken 21 images with the 
operational calibration pattern in different positions and poses, 
in order to extract the camera intrinsic parameters.  

B. Video marker detection module and display management 
Another key aspect of the Interactive Virtual Window is 

how to deal with the automatic recognition and classification of 
objects in the video the user is looking at. This problem has 
been widely handled from different approaches in diverse fields 
such as traffic monitoring [20], surveillance [21] or Augmented 
Reality [22]. E.g. in [23] it is applied a biologically inspired 
model of visual object recognition to satisfactorily categorize 

multiple objects in natural images, although the system is not 
real-time. Both [24] and [25] describe different approaches to 
the problem of object class recognition in photographs, 
validating their models through different image databases. In 
[26], a method is proposed for object recognition and 
classification on a real-time video stream, with the limitation 
that only the moving targets are taken into consideration.  

In this first version of the Interactive Virtual Window, we 
have chosen a simple but functional approach to detect and 
classify object types in video streaming. As the Window 
initially uses a pre-recorded video, we have opted for a manual 
configuration of the markers in a pre-visualization stage. 
Although this work is tedious, it allows to define with great 
accuracy whatever object or area in the video, avoiding 
misrecognition problems. This is important at this stage of the 
prototyping, as our next goal is to validate user experience, thus 
we have to keep error sources under control. 

 
Figure 5. Definition and real-time visualization of video markers. 

Thus, to define a marker it is necessary to specify both the 
coordinates of the polygon that enclose the marker and the 
frames in which the shape is valid, as it is depicted in the upper 
part of Figure 5. This allows us to have multiple markers that 
can change not only the position but also shape along the time. 
The definition of those markers is stored in an XML file, 
following the sample structure showed in Figure 6. The root 
node of the XML file, called <markers>, has as many <marker> 
child nodes as there are video markers. Each of those <marker> 
nodes has a compulsory attribute, called tag, which uniquely 
identifies that marker. It also has one or more <frames> child 
nodes, to specify all the different positions and time intervals of 
each marker. The child nodes <from> and <to> inside the 
<frames> node indicate the indices of the start and end frames 
where the marker is valid following the shape defined in the 
child node <polygon>. The shape is defined as a collection of 
two-dimensional coordinates representing the vertices that 
compose the polygon. Once the video markers are defined, the 
user can interact with them in real time. As is it shown in the 
bottom part of Figure 5, depending on the user’s point of view, 
the active markers will differ.  

Moreover, we need to know if the user is really pointing at 
any of those markers. That involves a fifth coordinate 
transformation between the global coordinate system and the 
video frame coordinate system (pixels). On one hand, the user is 
pointing at a point in the wall that has global coordinates (xpG, 
ypG). Knowing the global coordinates of the left upper corner of 
the screen playing the video (xsG, ysG), the coordinates of the 
given point using the screen coordinate system (xpS, ypS) can be 
calculated. The relationship between the pixels of the cropped 



video frame that is being visualized and their screen coordinates 
is known. Thus, it is now feasible to calculate which pixel in the 
video frame is the point the user is pointing at. Finally, we can 
check if that pixel belongs to any of the markers defined in the 
XML file, and trigger the corresponding action. 

 

Figure 6. XML file sample for video markers definition. 

V. CONCLUSIONS 
The proposed system aims at delivering a real multimodal 

interaction linked to a Virtual Window. Still a prototype with 
limited functionalities, the concept is applicable to different 
service scenarios, which may include learning, remote control 
or monitoring, and teleconference. Regarding technical aspects, 
the automatic and real time recognition of interaction markers in 
the video streams (both recorded or live) can be significantly 
improved to ensure service diversity (i.e. to facilitate the 
inclusion of new videos or streaming). Another fundamental 
issue is the construction of a sound user experience; to do so, it 
is necessary to carry out dedicated user studies in which the 
interaction concept and the technology performance can be 
evaluated. That is our next goal, to analyze how the user feels 
when using the Interactive Virtual Window concept, in order to 
study aspects such as fatigue, control feeling and acceptance. 
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<markers> 
 <marker tag="WEATHER"> 
  <frames> 
   <from>1</from> 
   <to>M</to> 
   <polygon>xw1, yw1, xw2, yw2, xw3, yw3, 
xw4, yw4</polygon> 
  </frames> 
  <frames> 
   <from>M+1</from> 
   <to>N</to> 
   <polygon>xw1', yw1', xw2', yw2', xw3', 
yw3', xw4', yw4'</polygon> 
  </frames> 
 </marker> 
 <marker tag="TRAFFIC"> 
  <frames> 
   <from>1</from> 
   <to>M</to> 
   <polygon>xt1, yt1, xt2, yt2, xt3, yt3, 
xt4, yt4, xt5, yt5</polygon> 
  </frames> 
 </marker> 
 <marker tag="BOAT"> 
  <frames> 
   <from>M+1</from> 
   <to>N</to> 
   <polygon>xb1, yb1, xb2, yb2, xb3, 
yb3</polygon> 
  </frames> 




