
Digital Facial Augmentation for Interactive
Entertainment

Naoto Hieda and Jeremy R. Cooperstock
Centre for Intelligent Machines

McGill University
Montreal, Quebec, Canada

Email: {nhieda, jer}@cim.mcgill.ca

Abstract—Digital projection technology allows for effective
and entertaining spatial augmented reality applications. Lever-
aging the capabilities of reasonably accurate object tracking
using commodity cameras and/or depth sensors to determine the
3D position and pose of objects in real time, it is possible to
project dynamic graphical content on arbitrary surfaces, such as
a person’s face. Coupling these capabilities with a simple drawing
application, participants can have the experience of “painting” on
someone’s face, or even on their own, by observing the projection
in a mirror. Similarly, integrating 2D rigid-body, fluid and gravity
simulation, one may interact with virtual objects projected on
their own face or body.

Keywords—projection mapping; augmented reality.

I. INTRODUCTION

Fig. 1. A tattoo-like pattern projected on a face.

Drawing on a face, in the form of “make-up”, represents
an important element of entertainment. It offers playful, ludic
benefits, e.g., face painting to transform a child into an animal,
and even has cultural associations, for example with aboriginal
art used in ceremonies. Although such drawing has tradition-
ally relied on the physical application of paint, it is possible to
map digital textures to the face using a combination of video
projection and face tracking technologies. Significantly, this
approach need not be limited to the application of one-shot
face painting, i.e., projection of a static texture, but can be
used to project time-varying, dynamic contents on the face,
often producing compelling aesthetic results [1], [2]. These
examples, however, are designed for art performance. We are
unaware of other systems that consider the possibilities of

interaction with the projected face. This paper describes our
exploration of the potential of face projection technology for
interactive applications, illustrated by several examples we
developed for entertainment purposes.

II. LITERATURE REVIEW

Spatial augmented reality often involves real-time object
tracking and projection of “spatially aware” contents onto a
tabletop or wall surface [3]. Extending this approach as a
public installation, MobiSpray employs interactive components
for artistic effect, transforming a smartphone into a virtual
spray can to draw on building facades or monuments [4].
Similar effects have been achieved in accurately mapping video
contents onto a human body or face, using depth cameras or
motion capture systems for face tracking [1], [2]. Although the
motivation for projection onto the face is obvious given that
it is the most prominent part of the body, there are significant
technical challenges posed by latency, the uniqueness of each
individual, and the deformability of the human face. Using
the recent face-tracking algorithm of Cai et al. [5], which
accounts for such deformation, we developed an interactive
facial projection mapping system that allows for “painting” and
interacting with physical simulations, all projected on peoples’
faces.

In the remainder of this section, we review object tracking
methods, video projection systems, and artistic and entertain-
ment applications of these technologies.

A. Object Tracking

Object tracking for augmented reality systems typically
requires locating and tracking the objects of interest, and
overlaying contents on their physical surfaces by projection,
preferably in real-time. Common methods include depth cam-
eras and motion-capture systems.

Depth Camera: Using a projector-camera pair, one-shot
structured light [6] can obtain the depth image in real-time
and is thus able to update the 3D model. Commodity depth
cameras are based on the one-shot technique, with a projector
replaced by a laser emitter for robust geometry acquisition.
Nonetheless, the output is limited to a set of 3D points, which
does not directly provide the information of the objects in the
scene (e.g., the pose or label of an object). Such information
is often desired for systems that warp video contents using the
position and orientation of the target and accurately project on
its surface. When a depth camera is used, the target pose is

INTETAIN 2015, June 10-12, Torino, Italy
Copyright © 2015 ICST
DOI 10.4108/icst.intetain.2015.259444



only acquired by fitting a pre-modeled 3D mesh to the scanned
depth image using methods such as iterative closest point
and particle filtering. However, this method is computationally
expensive and ill-posed, requiring use of GPU acceleration to
be tractable [7]. To address the challenges for human tracking,
Cai et al. [5] developed a face-tracking algorithm that works
with a commodity depth camera, the Microsoft Kinect, and
takes account of individuality and deformation.

Marker Tracking: Color cameras are suitable for object
tracking in real-time applications, exploiting fiducials [3] or an
optical model of the object surface [8] to estimate the relative
pose between the projector and target. Although many systems
project contents on planar or quadratic surfaces using ho-
mography or quadratic parameterization to warp the contents,
these typically assume a fairly simple surface structure. To
achieve projection on more complex structures, motion capture
systems are often used. These employs IR or near-IR LEDs to
illuminate retro-reflective markers attached to the target. Using
multiple IR-sensitive cameras, the marker positions can then
be triangulated to obtain the 3D position information. Since
the target pose can be inferred from the marker positions,
projection on any target is possible when the target is a rigid
body and its surface geometry is known, for example, a face
[2]. Similarly, structured lighting can be integrated to a marker-
tracking system by affixing photosensors to the target and
locating the photosensors by decoding the received codewords
[9], [10].

B. Video Projection Systems

Video projection is popular for use in virtual reality immer-
sive display environments, because it is more easily scalable
than fixed-size liquid-crystal displays (LCDs). Moreover, it is
possible to combine multiple projectors with blending tech-
niques, and illuminate multiple surfaces simultaneously [11].
Gamma correction of overlapping projected regions and sur-
face color compensation can be achieved simultaneously, mak-
ing use of raw camera images of the projected output, captured
at different shutter speeds [12].

In augmented reality research, one of the earliest video
projection applications unconstrained by a tabletop is known
as an object-adaptive display, introduced by Raskar et al. [3].
With a handheld device consisting of a calibrated projector-
camera pair, the camera captures a fiducial, or piecode, similar
to a piechart segmented by different colors, in a physical
environment so that the label and pose of the fiducial can be
determined. Since the projector is calibrated to the camera, the
fiducial in the projector image plane is estimated, and video
texture can be projected on the physical surface. Lee et al. [9]
used a fixed projector, and photosensors affixed to an object to
reliably locate the object pose for video projection, described
as marker tracking in Section II-A.

Unlike most CAVE-like systems that treat the environment
as a screen on which the users focus, the IllumiRoom [13]
demonstrated projection around the periphery of a television
screen, i.e., the walls and furniture. In this way, the projection
is not intended to attract the users’ focus, but to achieve an
optical illusion or enhance the user experience. To acquire the
3D geometry surrounding the television, a Kinect is calibrated
to the projector by gray-coded structured lighting. The point

cloud captured by the Kinect is then warped to the projector
coordinates for video mapping.

C. Artistic and Entertainment Applications

As opposed to interactive virtual and augmented reality
systems, artists have also made extensive use of projection-
mapping techniques for art installations, often non-interactive.
A common example is that of projector mapping onto promi-
nent building facades such as the Sagrada Familia, Tokyo Sta-
tion, and the Sydney Opera House, to change the appearance
of their texture or shape.

MobiSpray [4], noted above, couples projection mapping
with user interaction, allowing users to optically paint build-
ing facades by projection controlled by smartphones. Facial
recognition [14] by a video camera combined with a Kinect
was used to track the performer’s face in order to support facial
projection mapping, with unrestricted motion, in Bell’s music
video “Chase No Face” [1]. This tracking approach relies only
on a 2D RGB stream, i.e., color images, and uses depth data
for mesh recovery but not for tracking. Since the face detection
is performed on a 2D image, the number of vertices it obtains
of the face mesh is limited (in this case, to 66), whereas the
method by Cai et al. using a Kinect point cloud and the iterative
closest point algorithm outputs a finer mesh (121 vertices) [5].
The more detailed mesh provided by the latter approach is
better suited to supporting complex textures, which can be
distorted when projected onto the face.

Facial projection mapping can be categorized into two
approaches: texture-mapping the entire face, or facial augmen-
tation of selected features. The former is intended to change
the appearance of the entire face, for example, overlaying
an animal face instead. This requires measurement of the
spectral reflectance of the face texture, and compensating for
the original texture in the projected image [15]. This is non-
trivial, since the projection target may move constantly. To
simplify the problem, white foundation makeup may be applied
to the face [16], [2], but this is infeasible for interactive systems
in exhibitions. Alternatively, face masks can be worn, but these
have the undesirable effect of hiding the face, which eliminates
its individuality.

Augmenting the face, in contrast, involves the addition
of projected local features over the original face texture. For
instance, a cheek color can be exaggerated, or a virtual tattoo
can be mapped. This approach is more feasible since the
projected texture can be perceived correctly without color
compensation.

III. IMPLEMENTING A FACIAL AUGMENTATION SYSTEM

In this section, we describe our initial efforts to develop
a facial augmentation approach by adding local features. The
system uses a depth camera to track the motion of an indi-
vidual, wearing goggles. Other participants use a digital tablet
to draw pictures that are streamed to the video renderer and
projected on the physical face by means of a calibrated short-
throw projector. Thus, the participants can see their drawings
appear on someone’s face in real time through projection
mapping, without requiring any extra devices. The individual
whose face is “drawn upon” can observe the projection through
a mirror.



Goggles with
IR LEDs

Participant
Mirror Kinect

Chair Short-throw
projector

Table

PC

Projection

Fig. 2. Side view of the first prototype.

Fig. 3. Tablet interface. On the left half of the image, a participant with the
goggles is shown. On the right half, stickers are displayed along with pen
color selection buttons.

Before projection mapping, the hardware must be cali-
brated (Section III-A), and a 3D representation of the face, with
goggles, must be acquired, with the depth camera operated in
a color image acquisition mode. The data is segmented by
eliminating points that are more than 30 cm from the markers,
since these are guaranteed to be outside of the confines of the
face, and a 3D mesh is formed by Delaunay triangulation [17].
The depth camera is then operated in IR image acquisition
mode, thereby tracking the IR LED markers (Section III-B).
To compensate for the latency of the system, a prediction filter
estimates the position of the user’s face (Section III-C). Once
the marker coordinates are estimated, the pose of the face is
computed by least-squares fitting [18]. The 3D mesh with an
updated pose is rendered in the projector framebuffer, with
texture as specified by the drawing application (Section III-D).

A. Calibrating the Hardware

Our first prototype consists of a 1024×768 pixel resolution
short-throw projector, goggles with markers, a mirror, a Mi-
crosoft Kinect for Xbox 360 depth camera, a tablet device
and a PC connected to a WiFi network, as illustrated in
Figure 2. Four wide-viewing-angle IR LED markers are affixed

Fig. 4. A photo taken during the demonstration at International Collegiate
Virtual Reality Contest 2014.

to the goggles, allowing the participant’s face to be tracked
by the depth camera. Although the Kinect SDK provides a
face-tracking library, the use of goggles is also necessary to
protect the individual’s eyes from the bright projection light.
Otherwise, masking of the texture in the vicinity of the eyes
would be necessary.

As a preliminary step, the projector and depth camera are
calibrated to obtain the intrinsic and extrinsic camera param-
eters necessary to align the projection. Intrinsic calibration
of the projector is performed by ProCamCalib [19], using
a 1032 × 776 pixel resolution PointGrey Flea2 camera as a
reference to find the focal length and lens distortion coeffi-
cients of the projector. Next, the depth camera is calibrated
with the projector by gray-code structured lighting [6] to find
pixel correspondences. The relative pose between the projector
and camera is estimated by Levenberg-Marquardt fitting, using
the OpenCV camera calibration [20] API. Let Mi denote a
3D point output by the depth camera. The reprojected 2D
coordinate mi of the point Mi on the projector image plane
is

mi = K E Mi (1)

where the intrinsic matrix K is known, and the extrinsic matrix
has six unknowns for rotation and translation. The reprojection
error is

‖mi −mi
′‖2 = ‖K E Mi −mi

′‖2 (2)

where mi
′ is the projector pixel that has the same codeword

as a depth camera pixel that corresponds to Mi. Given a set
of points, the fitting problem is to minimize the summation∑

i

‖K E Mi −mi
′‖2. (3)

B. Depth Camera Marker Tracking

Marker tracking is often achieved by using two or more
calibrated cameras, for example, a motion capture system;
however, it requires multiple cameras and calibration, which



(a) Leap Motion hand tracking. (b) A red sphere rendered close to
the fingertip.

(c) Rigid-body simulation. (d) Fluid simulation for virtual
tears and blood.

Fig. 5. Photos of the improved face projection system. In Figure 5a and 5b, finger tracking methods are integrated to possibly assist drawing on the own face.
In Figure 5c and 5d, 2D physics engines are applied to render virtual objects.

may not be feasible for demonstrations. Instead of a stereo
camera setup, we use a depth camera to track a rigid-body
object, combining IR and depth images. Since the LED
markers of the object appear as blobs in an IR intensity
image of the depth camera, these markers can be extracted
by the OpenCV blob tracker, which not only returns the 2D
blob coordinates (x, y) but also labels the blobs based on
the previous coordinates. 2D coordinates of the LEDs can be
located in the IR image since the LED emission intensity is
greater than IR patterns projected by the depth camera; on
the other hand, the depth values around the LEDs cannot
be measured. To locate the 3D positions of the LED from
the depth image, the depth values of surrounding pixels are
averaged, assuming the region surrounding an LED is planar.
Our implementation samples the four corners of the bounding
box of the blob, and the average depth value is assigned as a
the marker depth. Finally, the 2D coordinates and depth values
are converted to 3D world coordinates using the focal length
of the depth camera. These 3D coordinates are smoothed by
Kalman filtering. Then, the pose of the rigid-body object,
i.e., the rotation matrix and translation vector, compared to
the initial pose is estimated by least-squares fitting [18] so
that the face mesh can be transformed to the current position
and orientation. The rotation matrix and translation vector are
smoothed by the Kalman filter, and their velocities are used
for a prediction filter as explained in the following section.

C. Prediction Filter

Various sources contribute to the overall system latency.
These include the Kinect sensor framerate (33 ms at 30 Hz),
the OpenGL refresh rate (17 ms at 60 Hz), the minimum
projector latency (also 17 ms at 60 Hz), processing delay,
communication time, USB overhead, and operating system
scheduling. We used a 4-wheel robot with LED markers to
measure the latency. The robot drove at constant velocity,
and the marker tracking method in Section III-B was used to
project a line between two markers, aligned perpendicular to
the direction of motion. By measuring the distance between
the physical markers and the projected line, latency was
determined to be approximately 150 ms.

Fortunately, knowledge of the target object velocity and

the system latency can be used to estimate the actual target
position using the same prediction step of the Kalman filter,
thereby compensating for this latency.

The position estimate is obtained by naively assuming a
constant velocity

pk+∆t = pk + vk ∆t, (4)

and the prediction filter is applied to the Euler angles as well

Θk+∆t = Θk + Ωk ∆t, (5)

where Θ and Ω are vectors of Euler angles and angular
velocities, respectively.

For periods of movement at constant velocity, experimental
measurements indicated an impressive reduction in the average
projected error from 42 pixels to 8 pixels, measured in the
direction of user motion.

D. User Interaction

Participants wear the goggles containing IR LEDs. A small
transparent region in front of the eyes allows the participants to
view themselves in a mirror. A static picture of the participant
with the goggles is captured by the depth camera during the
3D scanning (Figure 3) and displayed on a tablet interface.
Using the tablet, other individuals can virtually draw on the
participant’s face, choosing either static or dynamic pen colors.
Additional predefined graphical stickers, such as filled circles
and manga-style eyes, can be added to the drawing.

The coordinates of the pen and stickers are sent to a Node.js
server running on a main PC through a Websocket. Then, the
Node.js server proxies the data by Open Sound Control (OSC)
messages [21] to the renderer, which reproduces the drawing
on the tablet.

IV. ENHANCEMENTS FOR EFFECTIVE INTERACTIVE
ENTERTAINMENT

The system was tested by over 100 attendees at an in-
ternational virtual reality venue (Figure 4), from which our
observations of user behavior led to the formulation of various
improvements.



Fig. 6. Specular reflection shading. Highlights can be seen on the cheek and jaw, and move across the face according to the head orientation.

Fig. 7. Metal reflection shading. Similar to the specular reflection example, surface areas whose normals are parallel to the incident direction of light, i.e., similar
to the optical axis of the camera that captured the photos above, are highlighted.

Fig. 8. Parallax rendering. The projected lines are visible through a mirror, and can be interpreted as parallel line segments extending from the face.

First, drawing on the tablet device can be replaced by aerial
gestures or tracing on the face by a physical brush. For this
purpose, the enhanced system makes use of a hand-tracking
sensor, the Leap Motion device. This frees the participants
from having to focus their visual attention on the tablet
interface, allowing them to see changes in the projection itself,
instantly, while drawing. In addition, the individuals whose
faces are augmented can also benefit from this capability,
viewing themselves in the mirror while drawing (Fig. 5a).
Doing so with the tablet interface was challenging at best.

The coordinates of the user’s index fingertip are extracted
and linearly mapped to the texture coordinate (0 ≤ x < 1024,
0 ≤ y < 768) of the face projection. To give feedback to
the user, a cross-hair cursor is rendered at the corresponding
current position on the texture. Although the finger path is
continuously connected by a single line, we vary its alpha
according to the velocity of the hand. Rapid hand motions, for
example, while the user is searching for the cursor, result in a
mostly transparent line, whereas slow drawing gestures result

in more opaque lines.

Second, the requirement to wear goggles, which hide the
user’s eyes, was seen as a significant shortcoming. Fortunately,
if the face is not occluded, e.g., by an accessory such as
goggles, effective face tracking is possible directly by the
Kinect for Windows SDK [5], without requiring the use of
any optical markers. The face-tracking SDK generates a 3D
face mesh, whose vertices are sent to our rendering applica-
tion through Open Sound Control (OSC) messages [21]. The
renderer then maps a texture on the mesh (Figure 9), setting the
OpenGL projection matrix and modelview matrix according to
the projector intrinsics and extrinsics, respectively. Finally, the
rendered result is projected on the physical face.

Third, 2D physics engines are integrated so that the in-
dividual can interact with virtual objects on the face. One
example uses a 2D physics engine [22], and a circle rigid-body
polygon is generated every two frames around the forehead
(Figure 5c). On the edge of the jaw, a virtual edge is defined



Fig. 9. An example of a texture-mapped mesh with overlaid wireframe.

which bounces polygons. The physics is simulated on a 2D
plane that is mapped to the face mesh. Although the 2D plane
is independent of the world coordinate system of the depth
camera, the gravitational force of the physics engine is rotated
in real time to correspond to the world. That is to say, when
a head is rotated θ degrees about z axis, which is the axis the
nose is pointing, the gravity is rotated −θ degrees. Thus, the
participant can tilt the head to drop the polygons from the jaw.
Note that two black circles are overlaid on the eye positions
of the final texture to avoid projection on eyes.

Another example, a GPU-based 2D fluid simulator [23] is
integrated. In Figure 5d, blue and red fluid is generated on the
eyes and forehead to map virtual tears and blood, respectively.
As in the previous example, the gravitational force is mapped
to the world coordinate system. In this example, a virtual
obstacle is defined on the nose instead of the jaw, so that fluid
can branch at the nose.

Fourth, a primitive example of parallax rendering is tested,
by defining a virtual line segment from the face vertices
towards the facing direction. As shown in Figure 8, the lines,
which are projected on the face, rotate to follow the head.
From a viewpoint close to the projector, the lines can be
seen with a parallax effect. By suitable placement of a mirror,
the participant can also enjoy the effect, and can control
the orientation of the line by rotating their head. Through
an optical illusion, the lines can be thought as virtual line
segments fixed to the face, and with appropriate curvature, a
virtual “hairy face” can be simulated.

Fifth, relighting is demonstrated using Unity3D built-in
shaders. Since the face geometry is known, a virtual light
source and virtual face material can be defined to simulate the
reflection. In one example, the projected face texture simulates
specular reflection highlights on the cheek and jaw (Figures 6
and 7). This is achieved by placing a virtual, directional light
source close to the sensor. Another example shows metallic
reflection by physically based shading.

Finally, a simple fingertip detection algorithm is imple-
mented. The algorithm is a simplified version of the method

Tablet DeviceLeap Motion

Pen Coordinate
(OSC Message)

ProjectionDepth Sensing

RGB/Depth Stream

Head
Pose

Renderer

Projector

Participant Face

Kinect

Kinect SDK

PC

Fig. 10. A flowchart of the system.

by Harrison et al. [24]. First, the skeletal joint of the head
tracked by the Kinect for Windows SDK is projected on a
depth map, and a 200× 200 pixel region of interest surrounds
the projected position (Figure 11a). A Sobel map is calculated
along the x-axis (Figure 11b), as appropriate to identify a
vertically oriented finger. Next, the algorithm searches along
the x-axis for a convex structure of sufficient size, identified
as an array of 30 pixels that transition from negative to zero to
positive values. If such a convex structure continues along the
y-axis, i.e., corresponding to the edges of the finger, the pixels
found are labeled as a finger, and the top of the continuous
structure is extracted as a fingertip (Figure 11c). In Figure 5b,
a detected fingertip is rendered as a red sphere, and projected
on the face.

Although such fingertip detection enables a natural inter-
face for facial augmentation, the detection accuracy is limited
by the depth resolution of the depth camera. Using commodity
hardware, the difference between fingers and the face surface
is often not detected. In such cases, both “touch detection” as
well as finger detection itself, are not sufficiently robust for
this approach to projected face drawing. Furthermore, given
the convex structure of the nose, it is sometimes incorrectly
detected as a fingertip. More problematically, fingers placed
on the face can disrupt the face-tracking algorithm. With the
current setup, it is therefore helpful to ensure that the head is
stable during interactions when the face is partially occluded.

A flowchart of the tracking, projection and user interaction
is shown in Figure 10.

More recently, the proposed system was presented at Laval
Virtual 2015, a public exhibition of virtual reality and aug-
mented reality technologies (Figure 12). Among the effects
proposed above, fluid simulation was combined with Leap
Motion hand tracking to support the ability to draw virtually
on one’s own face. This setup proved successful in that
most participants were able to recognize the correspondence
between their finger motion and the fluid simulation on the
face.



(a) A depth map of a face and a hand. (b) A Sobel map. (c) A detected fingertip.

Fig. 11. Fingertip detection.

Fig. 12. SharedFace during a demonstration at Laval Virtual 2015.

V. CONCLUSIONS

We presented an interactive projection system that maps
drawing and virtual objects on an individual’s face. Given user
feedback on the first prototype of facial projection mapping
with markers, we designed a markerless face projection system.
With the second prototype, participants do not need to wear
devices in order to experience the system. The initial system
required use of a pen display device for drawing on a face.
We then integrated a hand-tracking sensor to improve the
interaction experience for the individuals whose faces are
“drawn upon”, allowing them to draw on their own faces
while viewing the results in a mirror. For this purpose, we
implemented a simple fingertip-detection algorithm; however,
the limitations of commodity depth sensors and our simplified
assumptions of finger geometry limit the robustness of this
approach.

To illustrate other application examples, we employed 2D
physics engines for rigid-body and fluid simulation. These
allow the individuals to tilt their heads to control virtual objects
on the face. We also implemented re-lighting shaders to sim-
ulate virtual skin materials such that facial highlights change
according to head position and orientation. Finally, we de-

scribed a primitive parallax rendering example to demonstrate
the possibility of integrating 3D rendering. More sophisticated
augmented reality applications can be built with 3D bullet
physics simulation exploiting a face 3D geometry to interact
with virtual objects as well as face re-lighting and parallax
effects from the previous examples.

Although we explored several animation effects for the
SharedFace system, we have not yet studied human perception
and reaction to such effects. For entertainment purposes, the
system can be extended to support multiple participants, for
example, allowing two individuals, facing one another or
sharing a mirror, to draw on each other’s face simultaneously.

ACKNOWLEDGMENTS

We gratefully thank Dr. Yuki Hashimoto of the University
of Tsukuba for granting us the use of his equipment for the
first prototype, Dr. Akihiko Shirai of the Kanagawa Institute
of Technology for valuable advice, and Mr. Daniel Biléu for
designing the tattoo-like pattern.

REFERENCES

[1] Chase No Face / BELL http://vimeo.com/26649425.
[2] Omote: Real-time Face Tracking and Projection Mapping http://vimeo.

com/103425574.
[3] R. Raskar, J. van Baar, P. Beardsley, T. Willwacher, S. Rao,

and C. Forlines, “ilamps: Geometrically aware and self-configuring
projectors,” in ACM SIGGRAPH 2006 Courses, ser. SIGGRAPH
’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1185657.1185802

[4] J. Scheible and T. Ojala, “Mobispray: Mobile phone as virtual
spray can for painting big anytime anywhere on anything,” in
ACM SIGGRAPH 2009 Art Gallery, ser. SIGGRAPH ’09. New
York, NY, USA: ACM, 2009, pp. 5:1–5:10. [Online]. Available:
http://doi.acm.org/10.1145/1667265.1667271

[5] Q. Cai, D. Gallup, C. Zhang, and Z. Zhang, “3d deformable
face tracking with a commodity depth camera,” in Computer
Vision ECCV 2010, ser. Lecture Notes in Computer Science,
K. Daniilidis, P. Maragos, and N. Paragios, Eds. Springer Berlin
Heidelberg, 2010, vol. 6313, pp. 229–242. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-15558-1 17



[6] J. Salvi, J. Pags, and J. Batlle, “Pattern codification strategies in
structured light systems,” Pattern Recognition, vol. 37, no. 4, pp.
827 – 849, 2004, agent Based Computer Vision. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320303003303

[7] C. Choi and H. Christensen, “Rgb-d object tracking: A particle filter
approach on gpu,” in Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on, Nov 2013, pp. 1084–1091.

[8] S. Audet, M. Okutomi, and M. Tanaka, “Augmenting moving planar
surfaces robustly with video projection and direct image alignment,”
Virtual Reality, vol. 17, no. 2, pp. 157–168, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10055-012-0210-9

[9] J. C. Lee, P. H. Dietz, D. Maynes-Aminzade, R. Raskar, and
S. E. Hudson, “Automatic projector calibration with embedded light
sensors,” in Proceedings of the 17th Annual ACM Symposium on
User Interface Software and Technology, ser. UIST ’04. New
York, NY, USA: ACM, 2004, pp. 123–126. [Online]. Available:
http://doi.acm.org/10.1145/1029632.1029653

[10] J. Lee, S. Hudson, and P. Dietz, “Hybrid infrared and visible light
projection for location tracking,” in Proceedings of the 20th Annual
ACM Symposium on User Interface Software and Technology, ser.
UIST ’07. New York, NY, USA: ACM, 2007, pp. 57–60. [Online].
Available: http://doi.acm.org/10.1145/1294211.1294222

[11] I. Garcia-Dorado and J. Cooperstock, “Fully automatic multi-projector
calibration with an uncalibrated camera,” in Computer Vision and Pat-
tern Recognition Workshops (CVPRW), 2011 IEEE Computer Society
Conference on, June 2011, pp. 29–36.

[12] N. Hashimoto, K. Honda, M. Sato, and M. Sato, “Making
an immersive projection environment with our living room,” in
Proceedings of the 8th International Conference on Virtual Reality
Continuum and Its Applications in Industry, ser. VRCAI ’09. New
York, NY, USA: ACM, 2009, pp. 83–87. [Online]. Available:
http://doi.acm.org/10.1145/1670252.1670271

[13] B. R. Jones, H. Benko, E. Ofek, and A. D. Wilson,
“Illumiroom: Peripheral projected illusions for interactive experiences,”
in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’13. New York,
NY, USA: ACM, 2013, pp. 869–878. [Online]. Available:
http://doi.acm.org/10.1145/2470654.2466112

[14] P. Lucey, J. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews,
“The extended cohn-kanade dataset (ck+): A complete dataset for
action unit and emotion-specified expression,” in Computer Vision
and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer
Society Conference on, June 2010, pp. 94–101.

[15] K. Fujii, M. Grossberg, and S. Nayar, “A projector-camera system
with real-time photometric adaptation for dynamic environments,” in
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, vol. 1, June 2005, pp. 814–821 vol.
1.

[16] Human Face Video Mapping by Oskar and Gaspar http://vimeo.com/
39697056.

[17] P. Bourke, “Efficient triangulation algorithm suitable for terrain mod-
elling,” in Proc. Pan Pacific Computer Conf, 1989.

[18] K. Arun, T. Huang, and S. Blostein, “Least-squares fitting of two
3-d point sets,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. PAMI-9, no. 5, pp. 698–700, Sept 1987.

[19] S. Audet and M. Okutomi, “A user-friendly method to geometrically
calibrate projector-camera systems,” in Computer Vision and Pattern
Recognition Workshops, 2009. CVPR Workshops 2009. IEEE Computer
Society Conference on, June 2009, pp. 47–54.

[20] Camera Calibration and 3D Reconstruction http://docs.opencv.org/
modules/calib3d/doc/camera calibration and 3d reconstruction.html.

[21] Opensoundcontrol.org http://opensoundcontrol.org.
[22] Box2D — A 2D Physics Engine for Games box2d.org.
[23] GPU Gems - Chapter 38. Fast Fluid Dynamics Simulation on the GPU

http://http.developer.nvidia.com/GPUGems/gpugems ch38.html.
[24] C. Harrison, H. Benko, and A. D. Wilson, “Omnitouch: Wearable

multitouch interaction everywhere,” in Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology, ser.
UIST ’11. New York, NY, USA: ACM, 2011, pp. 441–450. [Online].
Available: http://doi.acm.org/10.1145/2047196.2047255


