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Abstract— This work presents the development of a full body 
sensor-based motion tracking system that functions through 
wearable inertial sensors. The system is comprised of a total of 
ten wearable sensors and maps the player's motions to an on-
screen character in real-time. A hierarchical skeletal model was 
implemented that allows players to navigate and interact with the 
virtual world without the need of a hand-held controller.   To 
demonstrate the capabilities of the system, a simple virtual reality 
game was created.   As a wearable system, the ability for the us-
ers to engage in activities while not being tied to a camera system, 
or being forced indoors presents a significant opportunity for 
mobile entertainment, augmented reality and interactive systems 
that use the body as a significant form of input.  This paper out-
lines the key developments necessary to implement such a system. 

Keywords Sensors; motion capture; active games; exergames; 
wearable sensors 

I.  INTRODUCTION  
A body area sensor network (BASN) is a network of sen-

sors that are used to determine the current state, or changes of 
state, of an individual. The network is comprised of various 
sensors that are typically worn on the body, though in special 
cases they may also be implanted within the body. The type, 
distribution and number of sensors included vary depending on 
the specific application requirements. 

 
Figure 1. A theoretical body area sensor network. 

Each sensor in the network, sometimes referred to as a 
node, measures information regarding a particular state of the 
wearer. This information may then be passed on to a central 
transmitter also located on the body. This transmitter relays all 
of the sensors' data to the main processing device. Depending 
on the design of the network and sensors, this central transmit-
ter may be implemented as part of the central processing sys-
tem, for example Bluetooth and a mobile device.  The basic 

design of a theoretical BASN can be seen in Figure 1, which 
shows the different components and how information is trans-
ferred. The main processing device handles the principal calcu-
lations and manipulation of the data in accordance with the 
needs of the application. For much more in depth discussions 
on BASNs and their various components outside the scope of 
this writing, the reader can refer to [1] and [2]. 

A. Body Area Sensors 
Technological advances in the last few decades have vastly 

improved the feasibility of BASNs. Sensors have become much 
smaller with the development of technologies like Micro-
Electro-Mechanical Systems (MEMS), allowing for sensors to 
be much less encumbering when worn. Wireless technologies 
have allowed for many of the systems to communicate wire-
lessly and operate on batteries, permitting larger areas of opera-
tion and easier wearability. Improvements to processing speed 
have led to faster data handling, allowing real-time applications 
to be explored. Meanwhile, the rise of devices such as smart 
phones has permitted the main processing device to become 
portable, allowing for a wider range of potential applications. 

There are a huge number of potential sensors that can be in-
corporated into a BASN. These can roughly be divided into 
two principal categories. The first category is physiological 
sensors, which detect the state of and changes in physiological 
properties.  The second category is biomechanical sensors that 
monitor the physical changes such as motion. 

1) Physiological Sensors 
While not exhaustive, examples of physiological sensors 

include: 

Heart Rate Sensor: Heart rate sensors detect a subject's 
heart rate in beats per minute, as well as heart rate variability. 
This is accomplished through chest/wrist bands, finger clips or 
electrodes. Heart rate is used to detect factors like exertion lev-
el [3][4], frustration [5] and engagement in an activity [6]. 

Galvanic Skin Response Sensor (GSR): The electrical 
properties of the skin vary depending on the sweat level and the 
associated eccrine glands [7]. These levels will vary depending 
on an individual's level of stress or frustration. A galvanic skin 
sensor on the finger or palm can be used to estimate the change 
in these emotional states [8][9].  

Electromyography (EMG): When muscles contract they 
produce measurable electrical potentials across the surface of 
the skin. These potentials can be measured by placing elec-
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trodes on the skin's surface near the desired muscle. These sen-
sors can be used for measuring voluntary contractions for pur-
poseful input, or involuntary contractions to measure frustra-
tion or stress [5][10]. 

Brain Computer Interfaces (BCI): Similar to muscles, the 
brain emits detectible signals while working. Systems that de-
tect these signals using electrodes or other techniques can be 
applied to record a wide range of signals for either explicit user 
control [11][12][13] or simple detection purposes [14]. 

Respiration Sensor: Respiration sensors often make use of a 
chest band. The chest band expands with the chest to measure 
both respiration rate as well as volume. These sensors may be 
used for either a passive or active control schemes [10][15]. 

2) Biomechanical Sensors 
The second category of body sensors are the biomechanical 

sensors, which are the type of sensor that is used throughout 
this work. They are used to measure the physical position and 
movements of an individual. Three of these sensors are of key 
significance for this work: 

Accelerometers: An accelerometer measures any accelera-
tion that occurs along the device's axis. Because of this, 3-axis 
accelerometers are often used to allow accelerations to be 
measured in any direction. This is accomplished by placing 
three accelerometers in an orthogonal configuration and is now 
a standard design in most modern accelerometer sets. Accel-
erometers are able to provide information on their angle of in-
clination with respect to the downwards direction by sensing 
the acceleration due to gravity. Unfortunately they are unable 
to distinguish between this gravitational force and actual accel-
erations [17]. While double integration may be performed to 
obtain positional information, noise makes this extremely diffi-
cult and imprecise, even with extensive filtering [18]. 

Gyroscopes: While accelerometers detect linear accelera-
tions, gyroscopes are used to detect angular velocities. Unfor-
tunately, gyroscopes lack the capability to determine their ab-
solute orientation. While accelerometers suffer most from noise 
in their readings, even the best quality gyroscopes suffer from 
drift issues [18]. Drift results in small angular velocities being 
reported even when the device is stationary. Over time this drift 
will accumulate and can become a significant issue. Gyro-
scopes are especially adept at accurately detecting quick rota-
tions rather than long slow rotations. 

Magnetometers: Magnetometers are sensitive to magnetic 
fields and are often used to discern the direction of the Earth's 
local magnetic field. A magnetometer can use the Earth's mag-
netic field as a reference direction in the same way an accel-
erometer uses the directional force of gravity. The Earth's mag-
netic field is weak and can be easily disrupted or overpowered 
by nearby metallic objects or electronics and so care must be 
taken when using magnetometers [18].  A magnetometer is 
helpful to eliminate the effects of drift in a gyroscope. 

When accelerometers, gyroscopes and magnetometers are 
used together they are often collectively referred to as an iner-
tial measurement unit (IMU). This is due to the way in which 
they operate, by making use of the physical laws of mass and 
inertia to determine their motions and orientation. Combining 

their output data to obtain a better measure than any one indi-
vidual sensor is the topic of sensor fusion. 

II. BODY AREA SENSOR NETWORK APPLICATIONS 
All of these different sensors can be used in countless com-

binations, with the sensors selected to best meet the needs of 
the application. Health care systems are being examined as a 
very useful space for BASNs. They can allow for remote moni-
toring of patients [16][19], fall detection in the elderly [20], and 
better physiotherapy treatments [21]. Some military applica-
tions are being examined [22][23], as well as professional 
sports training [24], general exercise promotion [25][26][27], 
and security authentication and information sharing [2]. In this 
work we choose to design our system around an entertainment 
and gaming application. However, our methods and findings 
are equally applicable to any of the other areas where BASNs 
may be useful. 

There are currently few studies that have looked at using 
IMU sensors as the primary mode of interaction for gaming. 
Some commercial products like the Nintendo Wii and 
Playstation Move make use of biomechanical sensors for 
gameplay, but only through hand-held controllers with multi-
ple buttons. Dance games are a popular implementation con-
sideration for IMU-based input systems. 

A. Dance Games 
The sensor network for active play (SNAP) system made 

use of four accelerometers located on the wrists and knees to 
determine a player's pose [17][28][29]. Incorporating the 
whole body in this way allowed them to avoid the cheating 
issues seen with the Wii, where players can simulate full body 
motions with simple wrist flicks. The SNAP system could 
sense the inclination angle of the four accelerometers. By 
comparing these readings to previously trained reference pos-
es, the system could determine if a player was matching the 
desired pose at the right time. 

Dance games are one of the most popular types of active 
game, both in research and commercially. Charbonneau et al. 
[30] argue that dance game popularity stems from the low 
barrier to entry and most people's willingness to try them. 
Their work follows closely to that of the SNAP system. They 
created their own version of a dance game using four worn 
Wiimotes on the ankles and wrists. Other dance based games 
[31][32] also use IMU sensors in some capacity. 

These dancing works are entirely based on either static pos-
es or characteristic biomechanical signals. They do not func-
tion on a continuous basis, which involves tracking the play-
er's motions over time. Since the player is supposed to make a 
certain pose in beat with the music, the dancing program must 
only check that they are in that particular pose at a specific 
moment in time. This is significantly easier than determining 
what action or gesture a player performed at any given time 
from a multitude of possible options.  Moreover, this is far less 
computationally intensive than a real-time mapping of the 
body to a virtual avatar. 



B. Non-Dance Games 

There have been some non-dance-based games developed 
that use worn IMUs as well. Wu et al. [33] created a virtual 
game of Quidditch, a sport from the Harry Potter universe. 
They used two IMU sensors on the player's arm, as well as one 
on both their prop broom and club. The player steered by mov-
ing their held broomstick and used their arm and club to attack 
incoming balls. To increase immersion the setup used multiple 
screens to project the view on multiple sides of the player. 
However, they do not give many specific details on the sensor 
based interactions or gameplay. 

Both Zintus-art et al. [34] and Mortazovi et al. [35] created 
games that use a single sensor attached to the player's ear or 
foot respectively. In [34] they used an accelerometer to deter-
mine if the player was running, walking, jumping, or leaning. 
These actions controlled an on-screen dog character and the 
player's goal was to avoid oncoming obstacles. Though a very 
simple setup, they achieved very high recognition accuracy 
results at almost 99%, with recognition times under a second. 
Meanwhile, [35] used an accelerometer and pressure sensor 
combination to control actions in a soccer game. Though the 
player still made use of a standard controller for some inputs, 
the worn sensor was involved in the running, passing and 
shooting actions. They also put significant consideration into 
protecting the system from being cheated in the same way as 
the Wii. 

These works are still far from tracking full body poses and 
motions. They all use a low number of sensors, giving them a 
limited amount of information on the player. While their mo-
tion/action recognition methods are suitable and perform well 
for the requirements of their designed games, they likely 
would not scale well for much more complex applications than 
what they have presented. 

III. RELATED WORK 

Outside of the entertainment space there have been several 
papers examining the prospect of more detailed motion and 
position tracking of an individual through the use of worn 
IMU sensors. Previously, body motion tracking has been pri-
marily accomplished through optical means due to its high 
level of precision. This has been further bolstered by the de-
velopment of Microsoft's Kinect system. Though the Kinect 
lacks the precision of advanced multi-camera systems, it al-
lows for easy motion tracking at a more economical cost. The-
se optical systems have major limitations though, as they re-
quire constant line of sight of the subject and self-occlusion 
can be problematic. Camera-based systems also suffer when 
there are poor lighting conditions, require the user to stay 
within a very stringent operational area and typically are opti-
mized for indoor use only. 

Motion tracking with IMU sensors is becoming more feasi-
ble for the same reasons as BASNs. Elaborate and precise 
camera setups are very expensive and similar accuracies could 

potentially be achieved using a distributed network of IMU 
sensors across the body. While IMU systems do not currently 
perform at the same level of precision as optical systems [36], 
there are many situations where they could still thrive. They 
may be beneficial where extremely high levels of precision are 
not required, where cost is a major factor (such as in consumer 
products), or where the limitations of a camera system are 
major concerns; especially outdoors. 

The motion capture with accelerometers (MOCA) system 
[37] used accelerometers to detect arm inclination and also 
made use of very simple gesture recognition. The system 
comprised only a single accelerometer and their gesture 
recognition was based on the current inclination angle rather 
than dynamic motion-based gestures. They used this recogni-
tion to allow users to navigate a virtual world using their wrist 
orientation. 

Zhang et al. [38][39] tracked arm motions using a pair of 
sensors containing an accelerometer, gyroscope and magne-
tometer on the upper arm and forearm. In addition to deter-
mining the orientation of the arm through their sensor fusion 
algorithm and an unscented Kalman filter, they also imposed 
geometrical constraints on the system. These involved biome-
chanical factors such as the lack of adduction/abduction 
movement in the elbow. This helped them to constrain noise 
and estimation errors in their readings. Their results were very 
successful compared to the accuracy of an optical tracking 
system. Similar IMU tracking experiments were also conduct-
ed in both [40] and [41]. 

Body tracking suits were proposed in [42] and [43], with 
multiple sensors positioned at various points across the body. 
The former work tested a single instance of their iNEMO sen-
sors, comprised of an accelerometer, gyroscope and magne-
tometer, against commercial inertial sensors like those by 
Xsens [44]. Though the iNEMO sensor had lower precision, it 
still performed well for a significantly smaller cost investment. 
iNEMO M1 sensors were then used to build a partial full-body 
tracking suit in [45]. Five sensors were used to track the orien-
tations of the forearm, upper arm, torso, thigh and shin on the 
right side of the user's body. The orientation of these limbs is 
displayed on a skeletal model in real time. 

While this system operates similarly to the one we devel-
oped, there are several important differences. We expand the 
sensor network to include the full body using ten sensors, ra-
ther than only the right side with five sensors. In Section IV 
we detail a much simpler alternative, easy-to-perform, method 
of calibration to determine the user's reference frame, which 
can be redone to update the calibration as necessary. We also 
have a fully functional skeletal hierarchical model, allowing 
for real-world like motions by the on-screen character. While 
we discuss our skeletal model more in Section IV, in essence 
the model in [45] anchors the character at the torso, whereas 
ours does so at the feet. This allows our character to easily 
walk and maneuver around the environment, whereas theirs is 



pinned and suspended in the air. 

IV. AN IMU MOTION TRACKING  SYSTEM 

The proposed system uses the sensors to track the pose and 
motions of an individual. In order to accomplish this, specially 
designed cases were created to hold the sensors using a 3D 
printer. Attaching Velcro straps to the cases allowed them to 
be easily secured to the body. A case with a sensor inside can 
be seen in Figure 2. In total, ten sensors make up the system. 
By securing a sensor to a body segment, hereafter referred to 
as a "bone", the changes in orientation of the bone would be 
equivalent to the changes in orientation of the attached sensor. 
The ten bones selected were the left and right upper arms, 
forearms, thighs, and shins, as well as the torso and pelvis. 

 
Figure 2. IMU sensor in its 3D printed case w/ Velcro strap. 

One sensor is assigned to each bone and each sensor is pro-
grammed to operate on its own specific frequency. The posi-
tions of the sensors and the corresponding frequency channels 
can be seen in Figure 3. Having a specific sensor channel at-
tached to a predetermined bone allowed the system to easily 
map the orientation information to the virtual avatar skeleton. 
For example, the sensor operating on frequency channel 13 
must always be attached to the pelvis, as the system will at-
tribute the orientation data received on that channel to the pel-
vic bone within the system. 

             
Figure 3. Placement and operating channels of the sensors with the 

character model created for the motion tracking game. 

A robot character model was created using the open-source 
software Blender and is shown in Figure 3. The model con-
sisted of all of the sensor-mapped bones, as well as the hands 

and feet. A head was omitted so as to not obstruct camera 
view, as detailed later in this section. The model is imported 
into the Unity game engine [46] in order to write scripts and 
animate the character based off of the sensor data. Each of the 
bones is modeled as a separate object to allow greater control 
of their individual positions and orientations. Though the 
hands and feet were also separate objects, for our purposes 
they were rigid and moved and rotated in conjunction with 
their parent bone (for example, the shin). 

A. 5.2 Bone Orientation Mapping 

Upon startup, each sensor generates its own global refer-
ence frame. All of its reported quaternion orientations repre-
sent rotations with respect to that initial reference frame. Fig-
ure 4 shows the initial startup frame generated by a sensor, its 
orientation once it has been secured to the right upper arm, and 
the initial orientation of the upper arm model in Unity's coor-
dinate system. The orientation reported by the sensor in panel 
b) has undergone a 90 degree rotation about the y-axis. The 
sensor's global frame differs from Unity's. Unity has the z-axis 
going into the screen, whereas the sensor generates its z-axis 
upwards. Effectively, this means having to account for Unity 
having a left- handed coordinate system as opposed to the sen-
sor's right-handed system. If this quaternion rotation is applied 
to the character's arm, not only will this cause the model's arm 
to rotate away from its starting position, which currently 
matches the user's, it will also not rotate in the way the sensor 
is indicating due to the different definitions of the axes. 

 
Figure 4. a) Global orientation of sensor on device startup. b) Sen-

sor on the right upper arm with its global reference frame. c) Charac-
ter’s arm orientation in Unity's axis frame. 

In order to map the player's motions to the character, we 
had to resolve these two issues. First, we convert the quaterni-
on from the sensor's global frame to the Unity frame in order 
for the rotation directions to match correctly. Secondly, we 
offset the quaternion so that the orientation of the character's 
bones matches those of the user at the start of the program.  

B. Coordinate System Transfer 

The two different coordinate frames are seen in Figure 4, 
under the constraint that at sensor startup we make the x-axes 
parallel. Under this constraint, Unity's z-axis goes into the 
computer screen, corresponding to the sensor's y-axis. Similar-
ly, Unity's vertical y-axis corresponds to the sensor's z-axis. 
This provides the basic mapping for our system, with our y 
and z values simply being swapped. 



Due to the change in system handedness however, all of our 
rotations would currently be going in the incorrect direction 
within Unity`s left handed frame. Right-handed systems rotate 
around an axis in a counter-clockwise direction, where left-
handed systems rotate in a clockwise manner. Simply, all that 
is required is we change any rotation value of θ to -θ in order 
to ensure proper rotation direction. Here we take advantage of 
the even/odd nature of the sine and cosine functions. The neg-
ative can be pulled outside of the sine function, while simply 
eliminating the negative in the cosine function. Therefore, the 
final mapping from raw sensor quaternion q0 to the Unity re-
mapped quaternion q0' is given by 

𝑞0 = �𝑞𝑤 , 𝑞𝑥, 𝑞𝑦 , 𝑞𝑧�    
𝑞0′ = (𝑞𝑤 ,−𝑞𝑥 ,−𝑞𝑧 ,−𝑞𝑦)          (1) 

For easier readability we have omitted the i, j, k bases, since 
it is implicit based on their position in the 4-vector. For the 
remainder of our discussions, when talking about a raw qua-
ternion from the sensor we will use q and when referring to the 
remapped version we will use q'. 

C. Initial Quaternion Offset 

Now that we have solved the coordinate system discrepancy 
we need a way for the orientation of the onscreen character's 
bone to properly match that of the player's. To accomplish 
this, when starting the program we have the player stand in the 
matching attention pose of the character, shown in Figure 3. 
At this point in time we know that the player and character are 
in the exact same position. A series of rotations in quaternion 
form can be represented by a sequence of multiplications. If 
we define q0' to be a sensor's quaternion output at this attention 
pose and qt' to be any other valid orientation at a later time t, 
then there exists another rotation, q1', that takes q0' to qt'. More 
formally, we have: 

𝑞𝑡′ = 𝑞1′𝑞0′           (2) 

This rotation, q1', is the rotation we want our bones to use 
for their orientation. 

We are not interested in any rotations the sensor underwent 
to get to the starting attention pose. Since the player and char-
acter are in the same pose at the start of the system, we only 
want to rotate the bone the amount corresponding to the play-
er's movements after having started the system. On system 
startup we record the first quaternion output by each sensor, 
q0'. At any later time t, we want our model's bone to therefore 
rotate by: 

𝑞1′ = 𝑞𝑡′𝑞0′∗    (3)  
where * refers to the complex conjugate of the quaternion q'0.  

This resets the starting orientation of each sensor to be its 
orientation relative to when the system started, rather than 
when the sensor was turned on. An alternative way of looking 
at this is the removal of the rotations that occurred before 
starting the system, q0', from the total rotation reported at a 
later time, qt'. 

One more additional offset is required for each bone. When 
importing the character from the 3D modeling program to the 
game engine, the bones obtain a rotational offset. Even though 
the character is in the proper pose each bone is not in its zero 
rotation orientation. Therefore, when assigning a bone the total 
rotation given by Equation 3, the result is incorrect by this 
imported offset amount. This rotation is a simple 90 degree 
rotation around the x-axis and is the same for every bone. We 
want this rotation included in our calculation so that the bone 
starts in the proper attention pose orientation before rotating to 
match the player. So, the final quaternion that represents the 
total rotation we wish our bone to have is therefore given by 

𝑞1′ = 𝑞𝑡′ 𝑞0′∗ 𝑞𝐼    (4) 

This method of obtaining the matching orientation has in-
herent benefits and weaknesses. When attaching the sensors to 
the player's body, extreme care is not required as to the sen-
sor's exact orientation with respect to the body part. These 
potential orientation differences when securing the sensor are 
eliminated from the calculation since all rotations are relative 
to the initial starting orientation. The main factor determining 
tracking accuracy is how closely the user matches the pose of 
the character at startup. While there will certainly be some 
small discrepancies between the user and the character, the 
differences are likely very small with such a basic and natural 
pose. It is important however, that once running, the sensors 
do not slip or move relative to their attached bone. Slipping of 
a sensor will cause a discrepancy in the orientation of the 
character's bone relative to that of the player. While the actual 
manifestation may be different, all marker-based systems will 
suffer accuracy issues from sensor slipping as well. 

D. Calibration 

It is necessary to avoid a very strong reliance on the startup 
position of the sensors. Since the direction of the x and y axes 
are dependent on the orientation of the sensor at startup, if the 
x-axes of the sensor and screen are not precisely aligned the 
rotations will not match. This can occur if the player is not 
orthogonally positioned at startup.  One example of when this 
error would manifest is if the player steps forward. This 
should be a rotation around the x-axis, but if the x-axes are 
misaligned the character will step off at an angle instead. 

Another concern is that the sensors drift about their vertical 
axes. Both of these issues result in the character's on-screen 
motion not exactly matching that of the player due to axes 
misalignments. To remedy these issues, we implemented a 
simple calibration routine to rotate the x and y axes of the sen-
sors into their proper positions. 

To do this the player stands in two successive poses, shown 
in Figure 5. The first is the initial attention pose and the se-
cond is a modified T-pose. While performing these poses the 
player should be facing the play screen as squarely as possible. 
The player has several seconds to transition between each pose 
when prompted by the system. 



 
Figure 5. Two poses for performing the calibration routine. 

The modified T-pose was designed to have all of the bones 
and sensors undergo a rotation when transitioning from the 
attention pose.  This allows each sensor to b individually cali-
brated.  Between these two poses the player stays confined 
within a plane that is parallel to that of the play screen. This 
means that there is no movement by any of the bones towards 
or away from the screen. Therefore, the rotational axis be-
tween these two poses points directly towards the screen (is 
perpendicular in theory) for all the bones. 

We will denote the sensor's reading in the attention pose by 
qA' and the reading in the modified T-pose by qT'. We start 
with a simple downwards unit vector (in quaternion form) in 
the Unity frame, given by v0 = (0,0,-1,0). 

To determine which axis the sensor rotated around between 
the attention and modified T-poses we can write use: 

𝑣1 = (𝑞𝑇′ 𝑞𝐴′∗)𝑣0(𝑞𝑇′ 𝑞𝐴′∗)∗                                                          
= 𝑞𝑇′ 𝑞𝐴′∗𝑣0𝑞𝐴′ 𝑞𝑇′∗    (5)  

Here, v1 is the new vector resulting from rotating the initial 
orientation v0 through the same rotation the sensor underwent 
from the attention pose to the modified T-pose. 

With the axis of rotation for all of the bones being from the 
player to the screen direction, this corresponds to the z-axis of 
Unity's frame. This ideally would also correspond to the y-axis 
of the sensor's frame, though due to the aforementioned issues 
this may not be precisely correct. Instead, the sensor will re-
port this as a rotation around a combination of the x and y axes 
rather than purely the y-axis. This is shown in Figure 6. 

Determining the rotation angle, γ, between the ideal and 
current sensor reference frames is done by taking the cross 
product between our v1 and v0 vectors. Since we are using the 
remapped frame quaternion, this gives us a vector located en-
tirely in the xz-plane. Note that our vectors are switched into 
the classic three term form and also since we are in a left-
handed system the cross product is taken appropriately. 

𝑣3 =  𝑣1 × 𝑣0   (6) 

From this we are able to determine our angle of drift (γ) us-

ing trigonometry. 
𝛾 = atan �𝑣3𝑥

𝑣3𝑧
�   (7) 

This is true for the right side of the body and the torso. The 
left side of the body is rotating in the reverse direction, thus 
giving a cross product vector pointing in the opposite direc-
tion. We therefore must add an additional π to the drift angle 
for the bones on the left side. 

Now that drift has been computed for each sensor, it can be 
used to adjust the remapping to properly align the different 
reference frames using the previously determined mapping 
between the raw sensor quaternions and the Unity quaternions 
in Equation 1. Post-calibration, this mapping around is rotated 
about the vertical axis so the sensor's reported y-axis properly 
aligns with Unity's z-axis. Using the standard rotation equa-
tions, the new calibrated mapping, qcal, is given by, 

𝑞𝑐𝑎𝑙 = (𝑞𝑤 ,−�𝑞𝑥 cos(−𝛾) + 𝑞𝑦 sin(−𝛾)�,      
            −𝑞𝑧 ,−(−𝑞𝑥 sin(−𝛾) + 𝑞𝑦 cos(−𝛾)))         (8) 

where q is the sensors computed quaternion output. 

This calibration procedure can be repeated at a later time to 
determine an updated value for γ, should the sensors drift too 
much during play, or the cases slip on the body. This calibra-
tion method does not align the frames perfectly since it is de-
pendent on the player rotating around the axis perpendicular to 
the screen. However, informal testing showed that any differ-
ences from the ideal were not perceptible to users. It also has 
the benefit of being very simple and quick to perform, requir-
ing less than fifteen seconds on the part of the user. 

 
Figure 6. The rotation axis between the attention pose and T-pose 

in both Unity's and sensor's reference frames. 

It is worth noting that the pelvis and attached sensor do not 
undergo any significant rotation between the two calibration 
poses. Unfortunately no simple pose results in a significant 
rotation of the pelvis area, and so this rotation was left out of 
the calibration. Since all the sensors drift in a reasonably simi-
lar manner, the drift angle determined for the torso can be used 
as an approximation for the pelvis. While not ideal, the pelvis 
rarely undergoes rotation about either of the horizontal axes. 
Since rotations about the vertical axis are not affected by drift 
issues, any drift in the pelvis readings would be significantly 
less noticeable than it would be for any of the other bones.  
This issue suggests that a pelvic sensor may be removed for a 



placement elsewhere on the body that may provide more bene-
fit to the system. 

E. System  Overview 

With the actual details of the mapping and tracking mathe-
matics explained, a more detailed sequence of the steps the 
system undergoes is beneficial to better understand both how 
the system works, as well as the experience of the player. The 
first step is to start all of the sensors (turn them on).  The play-
er then secures all of the sensors to the appropriate bones, as 
shown in Figure 3, and then starts the game in Unity. On start-
up the player is prompted to stand in the attention pose, as 
seen in Figure 5. At the end of an on-screen countdown (we 
used 4 second durations) the current reading of each sensor is 
sampled. The user is then prompted to move to and hold the 
modified T-pose. At the end of the countdown the reading of 
each sensor is again sampled. These two quaternion values are 
used to obtain the offset angle for each bone/sensor pair, 
which in turn is used to obtain the remapping between the sen-
sor and program reference frames using Equation 8. 

The user is then instructed to return to the attention pose, 
which matches that of the player's robotic character. At the 
end of the countdown each sensor is again sampled.  These 
quaternion values are used as the initial offset, q0', for each 
bone. This eliminates all prior rotations so that the bones 
properly match the rotations made by the player, as was dis-
cussed for Equation 2. 

Once this initial offset is recorded the system begins to map 
the player's movements onto those of the on-screen avatar. At 
each update a new quaternion is read in from each sensor. This 
value is used as qt in Equation 4, in order to determine the new 
value for q1. Note that since this is after completing the cali-
bration routine, the q's in equation 2 & 3, become qcal, the 
fully remapped coordinate system from Equation 8. The qua-
ternion q1 and the rotation that it represents is then used to set 
the current rotation of the corresponding bone of the game 
avatar. Note that on each update we are rotating the bone from 
its initial, zero rotation point, rather than its last known rota-
tion value. 

This sequence allows for each of the on-screen character's 
bones to properly match the orientation of the player in real 
time. However, this process only matches the orientations of 
the bones, which remain separate objects rotating around their 
origin points. There is currently no system that is keeping the 
character together. For example, the thigh and shin rotate 
around their respective origin points, but nothing translates the 
shin bone when the thigh bone rotates in order to keep them 
attached at the knee joint. Therefore, in order for the on-screen 
character to actually replicate the pose of the player, we need 
to model a hierarchical skeletal system for the bones and body 
to stay in one, appropriately connected, piece. 

F. Skeletal Model 

Initially the default system in Unity took care of positioning 
all the bones. Unity has its own system built in that can allow 
it to keep track of the bones and make sure they stay attached. 
However, by allowing Unity to manage this, we were losing 
control of several factors, including the order that the bones 
were updated. This led to poorer performance and a lower 
quality tracking result. Therefore, a specific skeletal model to 
handle the positioning of all the bones need to be created. 

1) Bone Base and Tip Positions 

The position of a bone's base, pb, refers to the point in space 
which it naturally rotates around. For example, the forearm's 
base is the elbow, the upper arm's base is the shoulder, and so 
on. The bone's tip, pt, is the position where the next bone at-
taches. For the upper arm this would be the elbow and for the 
thigh this would be the knee. We will define a bone's length 
vector, L, to refer to the vector which points from the bone's 
base position to the tip of the bone. At any later time, with the 
bone's orientation q1

cal, we can calculate the tip position as: 

𝑝𝑡 = 𝑝𝑏 + 𝑞1𝑐𝑎𝑙 𝐿�⃗  𝑞1𝑐𝑎𝑙∗            (9) 

This is the q1
cal, given by Equation 2, and not 3, as the im-

ported offset is already included in the calculation through the 
recording of the length vector at its initial position. Given that 
all the bones are connected, the position of the tip of one bone 
will be the base position of the next bone. Using this, positions 
of the bones are sequentially calculated from one to the next in 
a chain, updating all of their positions appropriately.   

In addition to better control how and when the character 
gets updated, the skeletal model gives an easy way to allow 
the character to "walk" in the virtual world. This is not some-
thing that other works like [46] have done. They instead have 
their virtual character suspended in space, with the pelvis be-
ing an immobile point from which all bone positions are calcu-
lated. For them, walking entails sliding the feet on the ground, 
and crouching brings the feet up to the body, rather than low-
ering the body down to the feet. 

2) Skeletal Walking Design 

Knowing the lengths and orientations of both the thigh and 
shin bones of each leg the tip of the shin bone corresponds to 
the position of the foot. Therefore, the shin bone tip with the 
lower vertical position is treated as the foot that is "planted" on 
the ground. When a foot is planted it isn't moving and the rest 
of the body is rotated around this planted foot. 

The system sets a condition that checks the height of the 
two feet. Whichever foot (i.e. shin bone tip) has the lower po-
sition remains fixed in the game space. Equation 8 is used for 
setting the proceeding bone's base position, based on the cur-
rent bone's tip position. Since the planted foot's tip remains 
stationary, the opposite procedure is invoked and uses this 
bone's base position as the next bone's tip position. Effective-



ly, this calculates the chain from the foot back up to the pelvis, 
rather than from the pelvis down to the foot. This is simply 
reversing the base and tip positions. For the planted leg we use 
the following: 

𝑝𝑏 = 𝑝𝑡 − 𝑞1
𝑐𝑎𝑙 �⃗� 𝑞1

𝑐𝑎𝑙∗              (10) 

Once the pelvis' position has been calculated from the 
planted foot the rest of the remaining bones may be calculated 
in the original base-to-tip manner using Equation 8. 

Calculating the lower position of the two feet works well in 
theory. In practice there is noise on the sensor outputs. When 
standing on both feet, the selection of which foot was consid-
ered planted often quickly jumped back and forth, causing 
perceptible jitter in the on-screen character. To remedy this, 
we added a distance, ε, that the non-planted foot must be be-
low the planted foot in order for the program to switch which 
one was considered planted. After some trial and error, ε = 
0.0005 Unity units was selected. 

This correction would cause the player to slowly, but steadi-
ly, move downwards as each step would cause them to drop by 
another 0.0005 units on the vertical axis. To prevent this, on 
each frame update, the planted foot and hence rest of the body 
are moved half of the distance back to the ground plane height 
of y=0. This allows for a smooth transition back to the ground 
plane that is too small for users to notice but prevents the 
gradual sinking of the avatar. 

This skeletal system allows the user to perform a wide range 
of actions such as walking, crouching, kicking and leaning. 
However, the system does have its limitations in its current 
form. Since we do not have any sensors on the feet we cannot 
detect ankle angles and are essentially ignoring the presence of 
the player's foot, which is obviously not a completely accurate 
representation. For any motions where the feet both stay close 
to the ground the system will sometimes struggle to determine 
the correct planted foot due to noise on the sensors. As a result 
of the constraint that one foot is always planted to the ground, 
the system looses that ability to display jumps. However, with 
the raw acceleration information, it should be possible to recti-
fy this and use a jump animation to proxy the absolute jump-
ing action.  Nevertheless, the system works well for the vast 
majority of common actions, such as walking, kicking and 
crouching. It allows the user to navigate and perform their 
desired actions by using their own body, as opposed to the 
button presses of a controller or keyboard. 

G. Game Design 

To further demonstrate the capabilities of this system, a 
simple game was created around the robotic character. A vir-
tual environment was created, again using Blender, for the 
modeling and Unity for the game engine shown in Figure 7. In 
addition to being more visually appealing with a surrounding 
environment, a target was created in front of the character. The 
player's goal was to shoot the target using the robot's wrist 

mounted laser. To do this they had to have their right arm 
straight and pointed directly at the target. 

 
Figure 7. Gameplay area in Unity, as well as the character standing 

in the middle of the room. 

To determine if this condition was met, every bone was giv-
en a directional vector that pointed along the bone's length. 
This is very similar to the length vector, L, used in Equation 8. 
Both the forearm and upper arm start with initial direction 
vectors of vo = (0,0,-1,0)  This vector follows from the player 
starting in the attention pose, with their arms at their sides 
pointing straight down. At a later time the pointing vector for 
the forearm, vf, and upper arm, vu, can be determined by 

𝑣𝑓1 = 𝑞𝑓1𝑐𝑎𝑙  𝑣𝑓0 𝑞𝑓1𝑐𝑎𝑙∗       (11) 
𝑣𝑢1 = 𝑞𝑢1𝑐𝑎𝑙  𝑣𝑢0 𝑞𝑢1𝑐𝑎𝑙∗   (12) 

We determine if the arm is straight, with no significant bend 
at the elbow, by taking the dot product between vf1 and vu1. 
The value of the dot product above a threshold (we use 0.95) 
we classify the arm as straight. 

Similarly to determine if the arm is pointed at the target, the 
vector from the upper arm base position (the shoulder), pu, to 
the target's center, pt is used. This vector vt is normalized 
(Eq.12) so that the target's distance from the character is irrel-
evant, since interest is solely in the direction. 

𝑣𝑡 = (𝑝𝑡−𝑝𝑏)
‖𝑝𝑡−𝑝𝑏‖

    (13) 
We then take the dot product between this target vector and 

the pointing vector of the upper arm, though using the forearm 
would be equally valid. If the result is above a certain thresh-
old (we used a threshold of 0.975) the arm was considered to 
be aiming at the target. 

When both of these conditions are met, we know that the 
player has a straight arm and that it is pointed at the target. We 
then trigger the "hit" condition, which fires the player's laser, 
has the target explode into several pieces, and plays an ac-
companying audio clip. A few seconds after the target has 
been destroyed a new one is generated in a random position in 
front of the player for them to shoot. After three successful 
hits the targets begin to move to increase the challenge level. 

H. Oculus Rift Integration 

The initial game play used a 3rd person over-the-shoulder 
perspective. However, it was found that this was not the most 
effective use of the system. Looking at the character on the 
screen, the player would frequently have difficulty aiming at 



the target due to the 1:1 motion mapping. The player was not 
aiming at the target on the screen, but instead was trying to 
judge where the target would be from the robot's perspective. 
This issue unintentionally increased the difficulty of hitting the 
target, in a way that was somewhat frustrating for the player. 

To help resolve both of these issues an Oculus Rift (Devel-
opment Kit 1) [47] was incorporated into the system. The Rift 
is a head mounted display that features both head tracking and 
full 3D depth perception by having a separate image presented 
to each eye. This device was integrated into the game project 
and the virtual camera was moved atop the character model to 
generate a first person perspective. This is why the final char-
acter model in Figure 3 has no head. The geometry of the 
modeled head interfered with the camera view through clip-
ping and obstruction issues once the camera was moved to this 
first-person perspective. The virtual camera was also tracked 
to the movements of the player's torso. This allowed any mo-
tions the player made to cause the camera view move and shift 
the in-game perspective appropriately. 

 
Figure 8.A user playing the game with the Oculus Rift. 

While no formal testing was performed to compare the two 
game perspectives, it was very apparent that using the first 
person view made hitting the target appreciably easier and less 
frustrating. Players were able to point their arm at the target 
much more quickly and with much less adjusting when trying 
to find the "trigger spot". They also appeared more relaxed, 
moving more naturally and with their whole body rather than 
standing rigid while concentrating on only their shooting arm. 

An additional effect of incorporating the Rift was a height-
ened level of immersion within the game. Being immersed in 
the fully 3D virtual world with accurate head and full body 
(less the hands and feet) tracking added significantly to both 
the game itself, as well as to the perceived novelty of the body 
tracking. Figure 8 shows a joint image of a user playing the 
game with the Rift, adjacent to the in-game view. 

V. LIMITATIONS AND ISSUES 
There were some downsides to incorporating the Rift into 

the game. The entire virtual scene had to be scaled down in 
order to prevent the player from feeling like they were massive 
in size. The much closer view of the character also made the 
noise and jitter in the sensor more apparent. Smoothing the 
quaternion values between their current and previous values 
reduced the jitter, though it did not eliminate it entirely. 

Some issues were encountered with the update rate of sen-
sor information. Small stutters in the game of about half a se-
cond in length occurred when the system was waiting to get a 
reading from a sensor. This would cause the character to mo-
mentarily freeze, and even more jarringly caused pauses in the 
display update for the Rift. It is not entirely clear why this 
occurred, as the update rate of the sensors should be sufficient 
to avoid this. It may be that the library used to access the USB 
ports [48] within Unity was not well optimized to handle that 
many USB connections at one time, which could cause these 
hiccups.  To help with this, the handling of reading sensor data 
was moved to a separate CPU thread.  

VI. SUMMARY 
This work presents the necessary elements required to im-

plement a full body motion capture system from IMU sensors.  
This work improves on other work by using a 10 sensor net-
work measuring the entire body as opposed to 5 sensor sys-
tems that are capturing only the upper body.  This allows the 
system to account for moving by walking in the virtual space 
through use of a novel anchoring system that allows the orien-
tations and motion changes to be locked to a fixed foot on the 
ground. The wireless IMU-based sensor network holds strong 
potential for motion tracking applications. In particular, the 
system shows great promise for interacting while using head 
mounted displays and in mobile outdoor situations.  While we 
did not quantitatively test the system due to time constraints, it 
performed well in the active game we developed and was well 
suited for combining with a virtual reality environment. While 
the drift of the sensors was an issue, this was mitigated by the 
development of a calibration routine. Meanwhile, the hierar-
chical skeletal model allowed for controller-free navigation of 
the virtual world but jumping is not truly accurate. While there 
are still areas which could be improved, the current system as 
presented here is a strong functional foundation upon which to 
build upon in the future. 
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