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Abstract—Most nature-inspired algorithms simulate intelligent 
behaviors of animals and insects that can move spontaneously 
and independently. As another species of biology, the survival 
wisdom of plants has been neglected to some extent until now. 
This paper presents a novel plant-inspired algorithm which is 
called root growth optimizer (RGO). RGO simulates the 
adaptive growth behaviors of plant roots, e.g. self-similar 
propagation, to optimize continuous space search. In the 
process, different roots implement different strategies 
according to their biological roles, so as to cooperate as a whole. 
Seven well-known benchmark functions are used to validate its 
optimization effect. We compared RGO with other existing 
animal-inspired algorithm including artificial bee colony 
algorithm and particle swarm optimizer. The experimental 
results show that RGO outperforms other algorithms on most 
benchmark functions.  
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I. INTRODUCTION 
In recent years, many heuristic algorithms inspired by 

collective intelligent behaviors of insects and animals were 
proposed to solve complex optimization problems. For 
example, ant colony optimizer (ACO) simulates foraging 
behaviors of ants[1]. Particle swarm optimizer (PSO) 
simulates swarm behaviors of birds and fish[2][3]. Bacterial 
colony optimizer (BCO)[4] and bacterial colony foraging 
optimizer (BCFO)[5] simulate typical behaviors of bacteria 
during their lifecycle. Artificial bee colony (ABC) 
algorithm simulates foraging behaviors of a swarm of bees[6]. 
Comparing with traditional mathematical methods, these 
heuristic algorithms have shown substantial advantages 
when treating on complex, multimodal and irregular 
problems.  

The above-mentioned bio-inspired optimization 
algorithms all imitate animal’s behaviors. As another 
species of biology, however, plant has gotten little attention 
in the field[7]. Compared with animals, plant seems 
insensitive to external information, dull to take actions, and 
far away from intelligence. But, in some biologists’ opinion, 
plant can also be regarded as “intelligent organisms”[8][9]. 
During the growth process, plant shows considerable 
plasticity in its morphology and physiology in response to 
the variability of environments[10]. For example, plant’s root 
can cope with the prevailing conditions in soil environments, 
such as avoiding obstacles and exploring nutrient-rich 
patches of water zones by its hydrotropism, chemotropism, 
gravitropism, and so on[11]. In a root system, its architecture 
is well known to be a major determinant of root functions in 
acquiring soil resources[12][13]. Because most root systems 
have the characteristics of self-similarity and are considered 
as approximate fractal objects over a finite range of 
scales[14] (As shown in Figure 1), fractal geometry has been 
widely used to assess the architecture and distribution of a 
root system in soil[15][16].  

There is a close correlation between the architecture and 
propagation strategies of roots as botanists have discovered. 
During the growing process, root can perceive their external 
physical environments and implements different strategies. 
If there are enough resources, it will produce many lateral 
roots at the same time of elongating forward. Otherwise, 
few lateral roots are produced. Over time, the similar 
propagation occurs at different positions in variant scales. 
As a result, the whole root system will cover the most 
profitable area with a self-similar architecture. 

With the nature-designed growth strategy, it is easy for 
them to find the best position of water and nutrition in soil. 
Inspired by the root growth behaviors of plants, this paper 
presents a new algorithm named root growth optimization 
(RGO) algorithm.  

 
Figure 1. The self-similarity architecture of a root system 

The remainder of this paper is organized as follows. 
Section 2 models the root growth process. Section 3 
presents the root growth optimization algorithm. 
Experiment and results are given in section 4. Section 5 
discusses some unique characteristics of RGO, and section 6 

outlines the conclusions.  

---------------------------------- 
* Corresponding author. Address: 413 Computer Building, Central South University, Changsha, Hunan, 410083, China. E-mail address: xxhe@csu.edu.cn 

INISCom 2015, March 02-04, Tokyo, Japan
Copyright © 2015 ICST
DOI 10.4108/icst.iniscom.2015.258990



II. ARTIFICIAL ROOT GROWTH 
2.1. Basic Concept 

In the artificial model, an objective function is treated as 
the growing environments of plant roots, and the initial 
roots are considered as a homogeneous biomass[17]. Each 
root apex stands for a feasible solution of the problem. All 
roots try to adjust their growing directions and propagation 
strategies in order to search for the optimal growing 
conditions, which feed back to improve root growth further. 

In growing process, all the root apices can select their 
growth strategies composed of the following three basic 
actions: 

1) Each root apex may elongate forward (or sideways) 
in the substrate. 

2) Each root apex may produce daughter root apices. 
3) Each root apex may cease to function as above, and 

become an ordinary piece of root mass. 
In a word, a root apex may regrow itself, produce new 

roots, or stop growing for some reason. 
According to fitness values, the whole root mass are 

divided into three groups. The group with the best fitness 
values is called main roots. The group with the worst fitness 
values is called aging roots. The rest of root mass is called 
lateral roots. In these three groups, except for aging roots 
that will stop growing in the next generation, main roots and 
lateral roots implement different growth strategies. 

2.2. The Growth Strategy of Main Roots: Monopodial 
Branching 

According to monopodial branching strategy, a main 
root itself regrows to form an axis firstly, and then 
branching roots appear in the lateral position. As a result, 
the growth strategy contains three operators: 

1) Regrowing 

This operator means that a root apex regrows towards a 
local best position where there are better water and nutrient 
conditions. The operator is formulated as the following 
expression. 
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where  is  the original position of the ith root apex, 

and  is the new position. l  is the local learning constant. 
rand() is a random number with uniform distribution in 
[0,1].   is the local best position in the generation. 
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2) Branching 

This operator means that a root apex produces some new 
apices around it. The number of new root apices is 
calculated as follows. 
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where and  are the  best and the worst fitness 

value in the generation, respectively. is the fitness value 

of the original root apex.  and  are the maximal 
branching number and the minimal branching number 
which are pre-set. 
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The positions of new root apices surround the original 
root apex with Gauss distribution . The standard 
deviation 
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where and i are the maximal iteration number and 

current iteration number, respectively. 
maxi

iniσ  is the initial 
standard deviation depending on the value of searching 
range, and finσ  is the final standard deviation determined 
by expected accuracy standard in the program. 

3) Inhibition mechanism of plant hormones 

Because new propagated root apices may be classified 
into the main root group with high probability in the next 
generation if the area are really nutrient-rich enough, and all 
main roots will elongate and propagate again, the number of 
roots in this area may increase explosively, which we called 
as “root number explosion”. 

Root number explosion is absolutely harmful to the 
adaptability of plants. From the view of optimization, it will 
make the algorithm plunge into local optimum. In fact, this 
phenomenon is rarely seen from natural plant roots because 
plant hormones play an important role in the growth process.  

Generally, plant hormones can improve growth speed of 
plant organisms. However, if some plant organism grows 
too quickly, one of plant hormones may increase rapidly 
and the balance between all plant hormones will be broken, 
then the growth will be inhibited[18].  

To simulate the inhibition mechanism of plant hormones 
in the model, we will calculate the local standard deviation 

)( flocalσ  of new propagating apices, and then get rid of 
some apices according to the calculating results by greedy 
principle. The operator is implemented as formula (4). 
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Where  is the number of root apices which should be 
removed, and 

iw−

α is a control parameter. 
From formula (4) we can know that the smaller 

)( flocalσ  is, the more root apices will be removed in the 
next generation. On the one hand, rapid local increase of 
roots is controlled in this way so that root number explosion 
can be avoided. On the other hand, essential diversity can be 
kept to prevent the algorithm from pre-maturity. 



2.3. The Growth Strategy of Lateral Roots: Sympodial 
Branching 

In sympodial branching mode, the root apex produces a 
new branching apex at the lateral position instead of 
regrowing along the original direction, and the new 
branching apex grows into an axis by replacing the original 
one. The new branching apex may locate at a random 
position around the original root with a random angle β . 
This strategy is formulated as follows.  
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where rand() is a random number with uniform distribution 
in [0,1]. β  is calculated as follows. 

i
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where iλ  is a random vector. 

III. ROOT GROWTH OPTIMIZATION ALGORITHM 
Root growth mechanism offers a wonderful inspiration 

for proposing a new optimization algorithm. It can be seen 
that the artificial root growth model has described the 
original appearance of natural plant roots with few 
assumptions. Corresponding algorithm is elaborately 
designed based on the above model. 

The psudo code of RGO is listed in table 1. 

TABLE 1. PSEUDO CODE OF RGO 

1. Initialize the positions of root apices  
2. Evaluate the fitness values of root apices 
3. While not meet the terminal condition 
4.    Divide the root apices into main roots, lateral roots and aging roots 
5.    For each main root apex  

Regrow with the root regrowing operator 
Branch with the root branching operator 
Evaluate the fitness value of new root apices 

         Calculate the deviations, implement  inhibition mechanism of plant hormones 
End for 

6.    For each lateral root apex 
Produce a new apex replacing the original one 

End for 
7.    Rank root apices and label elite roots 
8. End while 
9. Postprocess results 

 

IV. EXPERIMENTS AND RESULTS 
In order to test the performance of RGO algorithm, PSO 

algorithm and ABC algorithm, which are inspired by the 
behaviors of animals and popularly used, are employed for 
comparison. In the experiments, seven benchmark functions 
are used to test its effectiveness.  

 
4.1. Experiment Sets and Benchmark Functions 

The seven classic benchmark functions are widely 
adopted by other researchers to test their algorithms in many 
works[19]. Among these functions, sphere is a unimodal 
function with separable variables which is easy to solve. 
Schwefel 1.2 and Rosenbrock are unimodal functions with 
non-separable variables. Rosenbrock function has a narrow 
valley sloping gently from local optima to the global 
optimum, thus can be treated as a multimodal function. 
Rastrigin and Schwefel are multimodal functions with 
separable variables. Ackley and Griewank are multimodal 

functions with non-separable variables. They all have a 
large number of local optima to make it difficult to reach the 
global optimum. 

In this paper, all functions use their standard ranges and 
variable data. The experiments compare the performance 
using all accuracies of algorithms for a fixed number of 
function evaluations. The max evaluation count is 10,000. 
Experiments have been carried out using Matlab 7.0 on a 
standard 2.5GHZ desktop computer. All parameters in PSO 
and ABC are set as their original values. The population 
size of four algorithms is 50. In order to do meaningful 
statistical analysis, each algorithm runs for 20 times and the 
mean value and standard deviation value are taken as final 
results. In RGO, the number of root apices in main root 
group is thirty percent of the selected root apices in each 
generation.  and  are set 3.0 and 1.0, respectively. maxs mins
α and l are all set 1.0. All the benchmark functions are 
listed in Table 2. 

TABLE 2. TEST FUNCTIONS 

Name Function Limits 
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4.2. Experiment Results and Analysis 

The mean fitness values and standard deviation values 
obtained by the four algorithms with 2, 15, 30 and 50 
dimensions are listed in Table 3, Table 4, Table 5 and Table 
6. Best values obtained on each function are marked as bold.  

As can be seen in Table 3, with dimension of 2, ABC 
performs better than others on function f1, f1, f4, f5 and f6. 
PSO fail to hit the best results in this round. Though RGO 
only gets the best results on function f3 and f7, it gets 

satisfactory accuracy on other functions. From Table 4, we 
can see that RGO runs much better than ABC and PSO. It 
gets the best results on most functions except f3 and f5. From 
Table 5 and Table 6, we can see that most of the best results 
are obtained by RGO. Especially in Table 6, it hits all the 
best results of multimodal functions, which show that RGO 
outperforms other algorithms obviously in terms of 
accuracy on high dimension functions. 
 

TABLE 3. RESULTS ON BENCHMARK FUNCTIONS WITH DIMENSION OF 2 

Function  ABC RGO PSO 

Mean 4.36985E-16 5.36985E-12 3.58450E-18 
1f  Std 3.96588E-16 8.36521E-12 2.24525E-18 

Mean 2.97552E-02 4.85401E-02 2.26545E-05 
2f  Std 5.86344E-03 4.32110E-02 1.98977E-05 

Mean 3.45686E-02 8.36520E-02 5.37582E-03 
3f  

Std 2.98749E-02 5.02560E-02 3.00621E-03 
Mean 5.98720E-02 3.25811E-02 0.00000E+00 

4f  Std 2.58729E-03 6.32862E-02 0.00000E+00 
Mean 3.65401E-03 7.32085E-01 4.54567E-05 

5f
 Std 2.36895E-04 3.56212E-01 2.33454E-05 

Mean 3.48756E+02 4.32565E-01 2.35681E-01 
6f

 Std 2.36598E+01 5.32651E-01 3.37654E-01 
Mean 5.34686E+04 3.56824E+01 7.84526E-02 

7f
 Std 3.45685E+04 4.85014E+01 4.36521E-02 

 

TABLE 4. RESULTS ON BENCHMARK FUNCTIONS WITH DIMENSION OF 15 

Function  ABC RGO PSO 

Mean 6.35214E-07 5.25686E-03 5.23100E-09 
1f  

Std 3.25410E-08 4.66007E-03 2.35644E-09 



Mean 6.00254E-02 6.53240E-02 3.25874E-05 
2f  Std 3.85662E-02 4.38965E-02 2.01452E-06 

Mean 3.26587E-01 3.59856E-01 2.45012E-02 
3f  

Std 4.56254E-01 8.69854E-02 4.69580E-02 
Mean 3.85410E+01 4.25632E+02 7.25845E-01 

4f  Std 6.32544E+00 6.35210E+02 3.26222E-02 
Mean 5.14298E+00 4.78695E+00 2.32654E+00 

5f
 Std 3.04875E+00 2.03655E+00 5.14201E+00 

Mean 6.32512E+02 4.85320E+01 2.65894E+01 
6f

 Std 5.78522E+02 4.02563E+01 7.69855E+01 
Mean 2.30120E-01 5.36627E+02 8.23540E-02 

7f
 Std 3.99851E-01 3.76952E+01 1.36555E-02 

 

TABLE 5. RESULTS ON BENCHMARK FUNCTIONS WITH DIMENSION OF 30 

Function  ABC RGO PSO 

Mean 6.13416E-03 3.52642E-02 5.36952E-04 
1f  Std 1.13337E-02 2.35262E-02 3.01410E-04 

Mean 2.58658E+02 8.86454E-01 5.88652E-02 
2f  Std 5.87078E+01 4.26532E-01 4.32125E-02 

Mean 1.23425E+02 1.32566E+01 2.87021E-01 
3f  

Std 2.42345E+02 2.36141E+01 4.63528E-01 
Mean 2.77214E+01 3.65998E+01 5.75625E-01 

4f  Std 8.58644E+00 4.87530E-02 6.35211E-01 
Mean 2.02340E+03 2.36452E+02 2.36325E+01 

5f
 Std 3.14094E+02 3.75632E+02 1.25635E+00 

Mean 3.58766E+04 5.39892E+01       3.83236E+00 
6f

 Std 2.85430E+03 5.56320E+01       7.92856E-01 
Mean 4.35621E-01 4.85789E+00      2.82235E-01 

7f
 Std 1.26020E-01 5.356521E-01      3.01241E-01 

 

TABLE 6. RESULTS ON BENCHMARK FUNCTIONS WITH DIMENSION OF 50 

Function  ABC RGO PSO 

Mean 3.56423E-02 6.14524E-04 4.68297E-04 
1f  Std 2.36545E-02 5.32009E-04 3.90120E-04 

Mean 2.68953E+00 1.98755E-01 4.78011E-03 
2f  Std 1.36899E-01 2.36523E-01 2.52479E-03 

Mean 3.44532E+01 4.36025E-01 3.81927E-02 
3f  

Std 6.89530E+00 2.88152E-01 2.73918E-02 
Mean 3.56203E+01 4.26523E-01 3.46829E-01 

4f  Std 3.63215E+00 3.84677E-01 2.73915E-01 
Mean 3.25891E+01 8.65419E+02 3.61748E+00 

5f
 Std 8.36254E+00 7.35621E+01 4.62376E+00 

Mean 5.39911E+01 3.82761E+02 2.36250E+01 
6f

 Std 2.32562E+01 2.73102E+02 3.08943E+01 
Mean 5.36215E+00 1.36550E+00 4.73945E-01 

7f
 Std 2.20147E+00 2.54899E+00 6.18723E-01 

 
In view of the above comparison, we can see RGO is a 

very promising algorithm. It has very strong optimizing 
ability on test functions. When the dimension of functions 
increases, RGO shows more advantages than other 
evolutionary algorithms. 

V. DISCUSSIONS 
5.1. Local Learning  

In RGO, the formula (1) is similar in form to the 
iteration formula of PSO, which can be expressed as follows. 
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where c1 and c2 are local learning factor and social 
learning factor. Compared with formula (7), the elongation 
of main root apex is adjusted only by the original position 
and local learning factor. Social learning factor and global 
best fitness value will have little influence on the behaviors 
of a main root apex. The reason contains two aspects. 
Firstly, as far as natural plant is concerned, there is no proof 
that a root apex can get global information which may be far 
away from it, while local information can be acquired 
though hydrotropism, chemotropism and gravitropism etc. 
Secondly, there is no evidence that the real global optimum 
must locates near the temporary global optimum in 
multimodal problems. So, the temporary global optimum is 
not worthy for all root apices to follow in RGO algorithm.  

5.2. Self-similarity  

In early years, biologists have already found that root 
systems have self-similarity and were considered as 
approximate fractal objects over a finite range of scales[14~15]. 
Until now, the architectural characteristic of root systems 
has been drawing much researchers’ attention[20]. 

In RGO, it can be seen from formula (2) and (3) that 
when a main root apex has a good fitness value, it will be 
vigorous for propagation. According to formula (3), along 
with main roots elongating into the soil, the positions of 
their new-born daughter root apices comply with the same 
distribution law at different time points, except that 
distribution range becomes smaller and smaller. In the 
meanwhile, new-born roots may become main roots in the 
next generation and propagate in the same way. With this 
pattern, approximate fractal architecture with self-similarity 
characteristics will be shaped.  

As far as optimization is concerned, it can be confirm 
that the self-similar propagation is profitable for roots to 
exploit resource-rich areas rapidly. As a novel search 
technique, the correlation between self-similar propagation 
and searching in multimodal continuous space remains to be 
an interesting problem which will be investigated in the near 
future work. 

VI. CONCLUSIONS 
Root Growth Optimization (RGO) algorithm, based on 

the root growth behavior of plants, is present in this paper. 
Seven benchmark functions were used to validate its 
efficiency, and the results were compared with PSO and 
ABC. The comparing results show that RGO outperforms 
PSO and ABC on most of benchmark functions in different 
dimensions. Moreover, RGO is potentially more powerful 
than PSO and ABC on functions with high dimensions.  

A further extension to the current RGO algorithm may 
lead to even more effective optimization algorithms for 
solving high-dimension or multi-objective problems. 
Therefore, future research efforts will be focused on finding 

new methods to improve our proposed algorithm and 
applying the algorithm to solve practical engineering 
problems.  
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