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Abstract—In recent years, water pollution incidents happen
frequently, causing serious disasters and society impact. It is
advocated that water quality monitoring sensors shall be de-
ployed in water distribution systems to realize the real-time
pollution detection such that we can effectively detect the water
pollution event to reduce the risk. However, how to deploy
water quality sensors in water distribution systems (WDS) is
a non-trivial and challenging task. Sensors placement in WDS
is characterized by its extremely high computation complexity,
uncertainty because of large-scale water distribution system and
dynamic water demand by consumers. Aiming to minimize the
average time of detection over all contamination events by placing
a limited number of sensors into the water network, we have
developed a co-evolution optimization algorithm, which using
multiple populations to evolve simultaneously. Results indicate
that our proposed algorithm performs better comparing to
genetic algorithm and particle swarm algorithm.

I. INTRODUCTION

Recently accidental and intentional contamination of a water

distribution system occurs frequently. Sudden water pollution

incident, malicious attacks on the water distribution systems

causes significant economic losses and bad social influence. In

order to prevent major disasters and losses, which is caused by

water contaminant incidents, installing water quality sensors

in WDS to monitor contaminant event is necessary and valid.

However, given a limited number of sensors, how to deploy

them effectively is a challenging task because of the large-

scale size of urban water network and varied water demand.

Previous studies have generally proposed many optimization

models and algorithms for sensor deployment in the drinking

WDS. There are three main methods to solve the problem

of optimal sensor placement: (1)expert opinion, which use

the opinion of engineer who engaged in water supply and

drainage engineering to arrange the monitoring sensors [1].

(2) empirically-based method, which refers to the ranking

of potential sensor locations based expert information(for

example, data from geographical information system) [2]. (3)

optimization methods, such as simulation-optimization model,

which couples simulation model with optimization algorithm.

Among these methods, optimization methods are the most

advocated and investigated ones [3].

In the battle of the water sensor networks(BWSN), ostfeld

et [4] have collected and compared 15 different approaches

for sensor deployment, most researchers focus on optimization

methods such as mixed-integer programming [5], heuristic-

based algorithms [6] and genetic algorithm [7]. Although these

methods can find near optimal sensor layouts, there are still

some problems. One of the most noteworthy problems is the

computational efficiency. On the one hand, WDS is a complex

system with large scale network nodes, on the other hand,

many meta-heuristic algorithm require a high computational

resources. Consequently, how to balance the accuracy and

efficiency is a key problem.

As one of the most powerful tools for solving optimization

problems, co-evolution has attract many researchers’ attention-

s. Co-evolution provides a framework to implement search

heuristics that are more efficient than those canonical evo-

lutionary algorithms. By keeping and adjusting the diversity,

co-evolutionary can maintain the balance of exploration and

exploitation well. To the best of our knowledge, we firstly

introduce co-evolution optimization algorithm solving sensors

placement in drinking WDS.

In this paper, we aim to minimize the average detecting

time over all contamination events, and propose a co-evolution

algorithm, which using multiple particle swarms to find opti-

mal sensors layouts scheme simultaneously. Results indicate

that the proposed algorithm can quickly find the solution

comparing to traditional heuristic approaches and deliver a

high performance.

The remainder of this paper is organized as follows: Section

II gives the related work on sensor placement in WDS and co-

evolution algorithms. Section III address system model and

mathematical formulation. Section IV presents our proposed

co-evolutionary optimization algorithm. Section V discusses

the simulation and the results. Section VI concludes the paper

with a summary of this study.

II. RELATED WORK

A. Sensor placement problem

In the past several years, there has been a large number

of papers on sensor placement for WDS, Hart and Murray [2]

have reviewed more than 90 papers related to this optimization

problem. In essence, sensor placement problem is related

to the well-known p-median problems or covering problems

for facility location. For the p-median problems in WDS,

the number of sensors are fixed, the objective of arranging

the sensors is to minimize the impacts over all contaminant

incidents. For the covering problems, the cost of sensors is

mainly concerned.

Several design objectives are used for sensor placement,

such as minimizing the detection time, public health impacts,

maximizing the likelihood of detecting contamination inci-
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Guan et al. [7] first proposed simulation-optimization model

and developed an improved genetic algorithm (IGA) to find the

optimal design of water sensor placement in WDS, simulation

shows the model and algorithm are effective in solving this

problem. Li et al [8] applied the non-dominated sorting genetic

algorithm to solve the optimization problem.

Although heuristic algorithms are adapted to solve sensors

placement in WDS, their performance deteriorate as the num-

ber of dimensions increases, new search schemes or algorithms

are urgent in need to accelerate the search speed. In the paper,

co-evolution algorithm is proposed and designed to solve the

problem because of its natural search ability.

B. Co-evolution Optimization

In biology, co-evolution is “the change of a biological object

triggered by the change of a related object”. In other words,

when changes in at least two species genetic compositions

reciprocally affect each others evolution, co-evolution has

occurred [9].

In the field of intelligent computation, co-evolutionary al-

gorithm is widely studied and a rich of authors have proposed

many heuristic algorithm in the frame of co-evolution.

Potter and De Jong [10] have firstly proposed cooperative

co-evolution to tackle complex problems with many dimen-

sions, this method employs the divide-and-conquer technique,

and divide an original problem into smaller problems with

fewer parameters. Yao et al. [11] proposed a new version of

co-evolution algorithm with random grouping and adaptive

weighting with which they successfully solved benchmark

functions with up to 1000 dimensions. By coupling hydraulic

simulation model(EPANET) with co-evolutionary optimiza-

tion, we first adapt co-evolutionary algorithm to water sensor

placement problem in WDS.

III. MATHEMATICAL MODEL

A. System model

In this section, we give a detailed description of the system

model. A water distribution network shown as Fig 1 modeled

as a graph G = (V,E). E is a set of edges representing

pipes, V is a set of vertices, or nodes, where pipes meet.

Vertices can represent sources, such as reservoirs or tanks,

where water introduced, and sink(demand point) where water

is consumed. Each pipe connects two vertices vi and vj and

is usually denoted(vi, vj).
General speaking, the flow patterns varies as the water

demand changes, in this paper, we consider contaminant risks

under a fixed flow pattern, where we require the direction of

the flow on each edge. If there is a positive flow fij along the

edge e = (vi, vj) , then fij = 1, otherwise fij = 0. Water

cannot flow in both directions of a pipe.

In water distribution network, an attack δi means conserva-

tive contaminants, which will not react with other substances

in the network, are injected at node i from the start time tib to

the end time tie with the mass fraction Mi, Mi is a real vector

which represents contaminant mass loading. The contaminant

will gradually diluted with the current, its propagation speed

Fig. 1. system model

in accordance with average flow velocity; Each contaminant

event means an attack on one node of the water network. A
denotes the set of contaminant scenarios against which one

sensor layout consisting of p sensors is intended to protect.

We assume that a fixed budget of p sensors are deployed

at any junction in a water distribution network, however, the

sensors are not allowed to be installed on piles because the

water quality simulation software (EPANET) which we used in

experiment cannot provide this information. We also assume

that each sensor can detect any minimum concentration of

contaminant and a general alarm is raised when contaminant

is first detected by a sensor.

B. Mathematical model

The purpose of placement of water sensors in WDS is to

detect contamination events efficiently such that the risk for

the population exposure to contaminants is reduced. In this

paper, our formulation models the placement of p sensors

on a set P ⊆ V vertices, X ∈ P , X(j) mean the ith
sensor in Xth scheme of sensor placement. we use the

expected time of detection for all the contaminant event A
as optimization objective. For a contamination event A(i) ,

the time of detection by sensor X(j) is the elapsed time

tX(j) from the start of the contamination event to the first

identified presence of a nonzero contaminant concentration.

Given a fixed number of p sensors, the time of first detection

is described as follows:

td = min
j=1,...,p

{tX(j)}

equation (1) represent the objective of minimizing the

expected value by computing over the all the contaminant

events.

f = min
1

V

V∑

i=1

td (1)

where f denotes the mathematical expectation of the min-

imum detection time td. Because each contamination event

involves a single injection, which may occur at any network

node, so the number of all contamination events is V , if one



Fig. 2. The frame of co-evolutionary for sensor placement

contaminant event is not detected by any sensor, then td is

equal to the simulation time.

tX(j) is calculated by EPANET simulator. For purposes of

evaluation, contaminant concentrations were evaluated using a

5-min time step.

IV. CO-EVOLUTIONARY OPTIMIZATION FOR SENSOR

PLACEMENT(COSP)

Co-evolutionary optimization is a framework that multiple

populations cooperate to find the optimal solutions, In the

paper, we use multiple particle swarms to search different areas

in the solution space. The framework is shown as figure 2 :

The work flow of the COSP consists of the following stages:

1) Set up the maximum iteration and the first iteration

iter ← 0;

2) Generate original population P(iter) made up of m
initial individuals, then divide the population into

several subgroups in the form of P(iter)={P1(iter),
P2(iter),..., Pn(iter)}, n is an integral number of

subgroup, initialize the population speed V (t).
3) Calculate each individual fitness function Fj(j =

1, 2, ...,m/n) by EPANET in each subgroup Pi(t)(i =
1, 2, ..., n).

4) Execute independent evolution among each group

P (iter)={P1(iter), P2(iter), ..., Pn(iter)};

a) Independently initialize evolutionary counter t ← 1
and make an evaluation of each individual in each

subgroup using EPANET;

b) sort the individual based the fitness value, record

the global best individual as gBest and local best

individual pBest ;

c) Update each particle’s speed using the eqation

Vi(t+1) = Vi(t)+C1 ∗ rand ∗ (pBest−Pi(t))+
C2 ∗ rand ∗ (gBest− Pi(t));

d) Update each particle’s velocity according to the

equation Pi(t+ 1) = Pi(t) + Vi(t+ 1) ;

e) t = t + 1, t is equal to a pre-defined threshold ρ,

stop evolving.

5) Information exchange among the sub-populations. By

replacing the worst individual in the subgroups with the

global best individual gbest, every subgroup can share

the best information of the whole population, thus search

speed is accelerated.

6) Stop evolving the whole population when results fit

with ending conditions, otherwise, renew independently

iteration counter iter ← iter + 1 and turn to step (4).

V. EXPERIMENT SIMULATION AND ANALYSIS

A. Parameters settings of WDS and algorithm

This paper uses a standard test network [4]. This network

consists of 127 nodes, including two tanks, two sources and

171 pipes. The hydraulic time step is 10 minutes, and the

water quality time step is 5 minutes. The total simulation time

is 34 hours. A nonreactive contaminant is introduced into the

network at any node at the beginning of the simulation and

the mass loading of 300mg/L.

To verify the effectiveness of our proposed algorithm, we

compared COSP with genetic algorithm and particle swarm al-

gorithm under the same conditions. Table I lists the parameter

settings of the three algorithms

TABLE I
PARAMETER SETTINGS

Algorithm parameters individuals iteration

GA Pc=0.95, Pm=0.1, Roulette Selection 200 100

PSO W=1, C1=C2=1 200 100

COSP W=1, C1=C2=1 20× 10 100

For the purpose of a fair evaluation of the three algorithms,

we perform the same number of the evaluation on the fitness

function. For the GA and PSO, the population consist of

200 individuals and evolve 100 generations, the evaluation

times equal to 200×100, for COSP algorithm, the population

is divided into 20 subgroups and each subgroup consists of

10 individuals, the subgroups evolve concurrently, after 10

generation of evolutions, all subgroups communicate with

each other by coping the global best individual gbest, every

subgroup independently evolves 100 times, so the sum of the

evaluation times is 20× 10× 10× 10 times.

B. Results

The curve of fitness value of the three algorithm is shown as

figure 3, we can see that the curve of COSP decrease quickly,

which mean COSP has a quick exploration in the search space.

The GA behaves worst among the three algorithms.

Figure 4 shows the optimal sensor layouts found by the

three algorithms. We find that the result vary considerably ,



Fig. 3. The fitness curve of three algorithms

Fig. 4. optimal sensors layouts found by three algorithms

however, the layouts by COSP give a minimum expectation

of detect time comparing to the other algorithm, we believe

that the contaminant risk is much less under the protection by

sensor layouts of COSP.

C. Discussion

1) Discussion for different numbers of sensors: To explain

the scalability of COSP and study the effect of different

number of sensors, we assume that the number of sensors

range from 10 to 50.

From the figure 5, We can find that the expected time

of detection for all the contaminant events decreases as the

number of the sensors increase, which is consistent with our

commonsense.
2) Discussion for co-evolutionary algorithms:
For co-evolutionary algorithms, there are two critical issues

(1) how many subgroups are suitable for the optimization

problem , (2) how to set the frequency of communication

among subgroups. To find the fittest size of subgroup, We

divide the whole population into 5, 10, 20, 25 subgroups

which consist of 40, 20, 10, 8 individuals, the total number of

individuals is 200.

Fig. 5. expected time of detection VS the number of sensors

Fig. 6. the expected time of detection VS the number of subgroups

From the figure 6, we can see that the expected time of

detection decrease as the number of subgroup increase, it

means that more subgroups and less individuals will enhance

the performance of the Co-evolutionary algorithm, however,

for the demand of fully exchange information among the

individuals, the size of subgroup cannot be too small.

The frequency of communication is much critical for co-

evolutionary algorithm, if the interval time between two suc-

cessional communication is too short, extra computation over-

head will increase. In this paper, aiming to get the appropriate

frequency among subgroups, we set 5, 10, 20, 50 generation as

the frequency, which means the subgroups evolve 5, 10, 20, 50

generations respectively, then all the subgroups communicates

by importing the global individual gbest .

From figure 7 , we can see that the subgroups exchange the

information with 10 generations independently evolution can

achieve the best result .

VI. CONCLUSION

In this paper, we present a co-evolutionary optimization

algorithm to solve the sensor placement problem. First, On the



Fig. 7. the expected time of detection VS communication frequency

basis of the works of pioneer contributors, we give a detailed

description of optimization model. Second, to verify the ef-

fectiveness of the algorithm, We compare the co-evolutionary

algorithm to genetic algorithm and particle swarm algorithm.

Results shows that our approach behaves better than the other

algorithms.

we also made a discussion on the stability and the parame-

ters of our approach. However, a lot of work still remains to

be done for sensor placement in water distribution systems.

For example, multi-objective optimization , and multiple flow

patterns for the problem should be considered in the future

study.
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