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Abstract—The energy crisis and global warming call for a new
industrial revolution in production and distribution of renewable
energy. Distributed power generation will be well developed in
the new smart electricity distribution grid, in which robust power
distribution will be the key technology. In this paper, we present
a new vehicle-to-grid (V2G) network for energy transfer, in
which distributed renewable energy helps the power grid balance
demand and supply. Plug-in hybrid electric vehicles (PHEVs) will
act as transporters of electricity for distributed renewable energy
dispatching. We formulate and analyze the V2G network within
the theoretical framework of complex network. We also employ
the generalized synchronization method to study the dynamic
behavior of V2G networks. Furthermore, we develop a new price-
based energy control method to stimulate the PHEV’s behavior
of charging and discharging. Simulation results indicate that the
V2G network can achieve synchronization and each region is
able to balance energy supply and demand through price-based
control.

Index Terms—Vehicle-to-grid networks, industrial smart grid,
demand response management, energy control, renewable ener-
gy, complex networks, synchronization, plug-in hybrid electric
vehicles, dynamic pricing.

I. INTRODUCTION

A smarter power grid is urgently needed to deal with the
predominating situation when there is a shortage of electricity.
In the new smart grid, distributed generation of electricity
and plug-in hybrid electric vehicles (PHEVs) will be well
developed. Renewable electricity generation technology is not
sufficiently mature yet since power resources are unevenly
distributed, power generation is subjected to disturbance, and
the capacity is unstable.

Exploiting renewable energy in the smart grid poses several
challenges. The first is to develop a hybrid power system which
includes wind and solar thermal energy [1]. The second is to
design a distributed system in the smart grid for renewable
energy dispatching [2], [3]. Besides, vehicles that can connect
to the grid, called gridable vehicles (GVs), have been proposed
as the medium to transport power between the renewable
energy plants and the power grid in order to reduce cost
and emissions [4]. Moreover, the technology of vehicle-to-
grid (V2G) [5] has enhanced the energy interaction between
the PHEVs and power grid, which leads to a situation where

PHEVs can be both consumers and suppliers in the smart grid,
and eventually constitute the back-up power supply [6], [7].

It is envisioned that PHEVs will play a more important
role in the smart grid than energy storage. The understanding
of PHEVs mobility has been a fundamental question and
challenging issue. On the other side, Complex network theory
has been a powerful tool for describing and analyzing complex
environments. The complex network theory has been widely
used in many fields, such as the World-Wide-Web, the Internet,
wireless networks, power networks and literature index sys-
tems [8]-[11], to structure and analyze various complex prob-
lems. The synchronization analysis method is efficient when
studying the dynamic behavior of complex networks. There are
three main kinds of synchronization: identical synchronization,
phase synchronization and generalized synchronization [12].
The most popular class is identical synchronization which has
been used to improve the utilization of frequency resources in
wireless mesh networks [13].

In this paper, we develop a paradigm of V2G network in the
smart grid for two purposes. The first is to view the PHEVs
as the carriers of renewable energy in the smart grid. The
second is to conduct the price-based synchronization control
in order to achieve energy demand-supply balance among
different regions. We have three major contributions in this
paper.

1) We exploit the complex network theory to model and
analyze the features and dynamic behaviors of the V2G
network. The model is flexible and may be extended for
many practical scenarios.

2) Generalized synchronization is leveraged as a control
method to manage energy dispatching, by which the
V2G network will reach a balance state.

3) Energy transportation by PHEVs is a viable solution
with low loss and flexible control. The solution enables
the smart grid to maximize the use of geographical
resources and promote the development of distributed
energy generation.

The rest of this paper is organized as follows. Section II
introduces the new paradigm of the V2G network with mobile
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Fig. 1: The V2G network.

PHEVs. Section III presents the system model, in which the
energy topology network and the activation function are given.
In Section IV, the method of generalized synchronization is
discussed. After that, the simulations are conducted in Section
V. The conclusion is finally drawn in Section VI.

II. THE V2G NETWORK

As the demand for electricity is significantly increasing
every year, traditional power supply is vulnerable as it is
heavily dependent on the centralized control of the power
grid. However, since medium-to-small size renewable energy
generation plants have appeared throughout the world recent-
ly, distributed renewable energy has been considered as the
promising solution for balancing energy supply and demand.

The V2G network is formed by the cooperation among
distributed generation facilities, local batteries and PHEVs,
which interacts with the power grid. Fig.1 shows the V2G
architecture and its main components. The V2G network is
modeled as a graph. Each geographic region in the V2G
network is represented as a node in the graph. The energy
distribution among regions is usually uneven. Some of the
regions are equipped with renewable generation equipments.
For instance, region A has a wind generation plant and region
B has been installed with a photovoltaic unit. The layout of
the renewable plants depends on the benefits of both the local
resources and the electricity demand. In addition, the whole
area is powered by the main power grid. The local batteries
of each region are viewed as containers for energy storage.
The source of the energy can be from the renewable energy
power plants or/and from PHEVs discharging, and should be
used according to the local energy demand. The mobility of
the PHEVs is leveraged as the bridge connecting the power
equipments in different regions into a complete energy system.

A. Energy Distribution by PHEVs

Smart grid is a complex dynamic system. For instance, the
amount of available renewable energy, energy requirements
and the number of PHEVs and their battery status are all

Fig. 2: The energy flow between region A and region B.

changing from time to time in different locations. The V2G
network should have a flexible structure that adapts to these
changes. Without an appropriate dispatching strategy, unex-
pected situations may happen. In some regions, renewable
energy may be abundant but the local batteries are over
charged. Newly generated renewable energy will then be
wasted if there is no storage left. In some other regions, local
batteries have stored energy less than the demand. A peak
period of energy demand will then create a high peak of power
distribution, leading to the instability of grid.

The theory of complex network synchronization is intended
to drive all nodes in the network to realize their synchronous
work. The region that maintains a high electricity storage tends
to move energy to a region in shortage, and hence achieves
storage balance with the other regions. As depicted in Fig. 2,
region A sets a lower price than region B. This will cause
PHEVs in region A to charge more energy than region B.
However, region B adopts the opposite strategy so that PHEVs
will discharge energy. Then, the PHEVs moving from region
A to region B will bring an amount of electricity to region
B, and at the same time the PHEVs that flow in the opposite
direction will consume electricity in region A. The eventual
consequence is that energy in region A will be equivalently
transported to region B with the PHEVs’ mobility. In the next
section, we will build up an analytical model for the V2G
network with PHEVs’ mobility and energy control.

III. SYSTEM MODEL

A. Complex Network Structure

The V2G network is viewed as a graph that consists of N d-
ifferent linearly coupled nodes. Each node represents the local
batteries in one region. There are two main factors that connect
to the energy states of local batteries: the internal state and the
external state. The internal state indicates the fluctuation of the
supply of renewable energy. The external state indicates the
travel of the PHEVs and the battery consumption of one trip.
Thus, the energy topology network is based on the general
expression of complex network which is given by

.
xi = f(xi(t), ni, βi) + C

N∑
j=1

ajiΓxj(t)− L
N∑
j=1

bjiΓxj(t), (1)

where xi(t) = (xi1(t), xi2(t), · · · , xim(t))T ∈ Rm is the m-
dimension state vector of node i at time t (i = 1, 2, · · · , N ).
The state vector is desfined to represent the local energy state.
f() : Rm → Rm is a continuously differentiable activation
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function with two parameters ni and βi. Here, ni is the total
number of PHEVs that are plugged in charging stations in
region i and βi is a constant related to original state. C and L
indicate the coupling strength. The first parameter is related to
the flow of PHEVs, thus, C = 1. The second parameter is the
mean value of energy consumption loss in one trip, L = loss.
The last two items in (1) are related to the external state. The
configuration matrix A = (aij)N×N ∈ RN×N is the statistics
of traffic flows between nodes, which follows the rule: if there
is a direct connection from node i to node j(i ̸= j), the
parameter of aij is k, i.e., aij = k when there are k PHEVs
departing from i to j during one time span after t. Otherwise,
if there are no PHEV passed by, the parameter is zero, i.e.,
aij = 0. The diagonal elements of matrix A are defined as
aii = −

∑N
j=1,j ̸=i aij , which is the total number of leaving

PHEVs. For matrix B, bij = aij , i ̸= j, while bii denotes the
number of trips where both the start and the end places are
region i. Both matrix A and matrix B are coupling matrixes
in (1). They are the asymmetrical matrixes. In this paper, we
consider three-dimensional vector state (i.e., m = 3) with Γ

the interval coupling matrix defined by Γ =

 0 0 0
0 1 0
0 0 0

.

B. Activation Function

The activation function is constructed by the principle of
energy conservation. There are three interactional factors that
represent the energy state of the local batteries. The first is
the energy level of the local batteries, xi1, which reflects the
energy demand and supply balance in the region i. Generally,
the demand and supply balance is the state when electric
facilities are running on the best efficiency state. In this paper,
we employ a ratio η, and consider the situation in which the
system will achieve its demand-supply balance on η of the
maximum load capability. The initial state of xi1, xi1(0) , can
be written as

xi1(0) = ηLoad maxi∆t− Load ti, (2)

Load ti =

∫ β

α

Loadi(t)dt− Batteryi, (3)

∆t = β − α, (4)

where Load rei is the total load in region i, which includes the
real-time load Loadi(t) and battery storage. The time slot is
∆t from α to β. The maximum load capability is represented
as Load maxi. Therefore, xi1(0) is the difference between the
total load and the ideal load.

The second factor, xi2, is the total energy of PHEVs in
region i. The third factor xi3 is the target state of charge
(SOC) in region i. Region i calculates the target SOC based
on the load demand. The target SOC is reached by setting an
appropriate price to control PHEVs behavior of charging or
discharging. In other words, by setting a target SOC, we can
balance the electricity demand in region i. For example, when
region i has redundant energy, a higher SOC can reduce the

local price to attract PHEVs to charge more energy. Thus, xi3

will be increased by k times of xi1. The ratio k is a positive
value. We describe xi3 by

xi3 = xi3 + kxi1. (5)

The initial value of xi3, i.e., xi3(0), is the average charging
level of the PHEVs’ batteries in region i. In the model, all
PHEVs in region i are considered in the state xi3. We have

xi2 = nixi3, (6)

where ni is the total number of PHEVs that are plugged in
charging stations in region i.

The energy from xi1 can be consumed or recharged in
two ways: from visiting PHEVs or from local PHEVs. Since
visiting energy flow only effects xi2, the difference between
xi2 and nixi3 is the external influence by visiting PHEVs.
Besides, the energy fluctuation caused by local PHEVs can be
calculated by the variation of the SOC. Therefore,

xi1 = x0
i1 + (xi2 − nixi3) + (nix

0
i3 − nixi3)

= xi2 − 2nixi3 + βi,
(7)

βi = x0
i1 + nix

0
i3, (8)

where βi is a constant.
The equations (5)-(7) are correlated with each other to

form an internal energy transformation construction, which
constitutes the 3-dimensional state vector of the system. Each
region shares the same strength of coupling and activation
functions, but with different features. βi and ni allow each
node to retain its own features.

f(xi(t), ni, βi) =


.

xi1 = −xi1 + xi2 − 2nixi3 + βi,
.

xi2 = −xi2 + nixi3,
.

xi3 = kxi1.
(9)

The analytical model is used to simulate the process of
synchronization and achieve the target SOC. Then, the result
of synchronization could direct the experimental model in
determining the dynamic price.

C. Dynamic Price Function

In the experimental model, PHEVs will adjust their battery
level according to the current price.

Battry leveli =
β

Pri(t)
, (10)

where β is a constant. The target SOC xi3 is the battery
level that region i intends to achieve through dynamic price
incentives. Therefore, we have the pricing function

Pri(t) =
β

xi3
. (11)

IV. GENERALIZED SYNCHRONIZATION

In this section, we use generalized synchronization with en-
hanced projective function to achieve system synchronization.
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A. Criterion for Generalized Synchronization

Definition 1: To achieve generalized synchronization in a
V2G network, we propose a new hybrid approach. Based on
the model and traditional definition of generalized synchro-
nization, we have

lim
t→∞

||Hi[xi(t), ni]− s(t)|| = 0, (i = 1, 2, · · · , N), (12)

where Hi[xi(t), ni] is defined as the enhanced projective func-
tion. We consider that there is a unique state s(t) for each node
after synchronization. Thus, the solution of the V2G network is
S = {(xT

1 , · · · , xT
N )T ∈ RMN : xi = s(t), ∀i = 1, · · · , N}.

The unique state should satisfy the condition
.
s(t) =

.
si(t),

for the stability of the synchronization results. In addition,
si(t) = Hi(xi(t)).

We define the solution of the network S =
{(xT

1 , · · · , xT
N )T ∈ RMN : xi = s(t),∀i = 1, · · · , N},

where s(t) ∈ RM is a synchronization solution of each
isolated node and satisfying

.
s(t) =

.
si(t). In addition,

si(t) = Hi(xi(t)).
As the objective is to balance the energy distribution, we

define the synchronized state of an energy system as being
energy efficient and balancing energy transportation and con-
sumption. The efficiency of energy utility can be obtained by
xi1 = 0. We define the balance according to (7). In addition,
H : Rm → RM is the continuously differentiable vector map
(m = 3,M = 2) and can be presented as

Hi[xi(t), ni] =

[
1 0 0
0 −1 2ni

] xi1

xi2

xi3

−
[

0
βi

]
. (13)

We use (1) and combine it with the activation function (9).
The function of node i can be presented as

.
x11(t) = −x11(t) + x12(t)− 2n1x13(t) + β1, (14)

.
x12(t) = n1x13(t)− x12(t) + C

5∑
j=1

aj1xj(t)

−L
5∑

j=2

bj1xj(t),

(15)

.
x13(t) = kx11(t). (16)

Then, we use (6) to solve the equation si(t) = Hi(xi(t)). We
have {

si1 = xi1

si2 = −xi2 + 2nxi3 + β,
(17)

and { .
si1 = −si1 − si2
.
si2 = −si2 + 2nksi1.

(18)

The state vector will be stable only when si(t) = s(t) =
[0, 0]T . This means that the V2G network system will achieve
the stability and the synchronization if all nodes are at the
points of zero vector.

B. Stability and Synchronization

Theorem 1: The V2G network can achieve synchronization
when all nodes are in the state si(t). The solution of si(t)
is a stable result. This means that none of the nodes will
deviate from the state si(t) if they are all in this state. As
the consequence, the V2G network will be stable.

Proof: The Jacobian matrix of function (18) is

J =

[
−1 −1
2nik −1.

]
(19)

Then, we can get the characteristic equation as

λ2 + 2λ+ (1 + 2nk) = 0. (20)

Note that (1 + 2nk) > 1, thus 0 > λ1 > λ2. This result
demonstrates that the V2G network system is asymptotic
stability and can be stable on the solution of s(t) = [0, 0]T .

Theorem 2: The system error will convergence to zero,
when the V2G network achieve its synchronization.

Proof: The system error of V2G network is given by

e = Hi[xi(t), ni]− s(t) = Hi[xi(t), ni]. (21)

According to (12), we have
.
e =

.

Hi[xi(t), ni] = Je. (22)

We know that the Jacobian matrix J is a negative definite
matrix. Therefore, the synchronous error e in the V2G network
will approach to zero, and become stable gradually.

V. NUMERICAL RESULTS

In this section, we verify the proposed analytical model
and demonstrate the performance of the proposed price-based
control strategy. We use real date in the simulation. The system
model is supported by three kinds of data: vehicle travel data,
the date of renewable energy generation and the data of local
demand. Therefore, we access several database resources to
select the typical data that we use in this model.

We adopt the household travel data dictionary of southeast
Florida region as the data of the PHEVs’ travel [14]. There
are three counties in the southeast Florida, Broward, Dade
and Palm Beach. Based on the statistics, we find that most
of the trips by vehicles taking place inside a single county
and only 9.18% of the travel is crossing county borders. This
small part of travel crossing boundary has little impact to
the energy dispatch in the system model. Therefore, we only
choose Broward as the simulation area. Fig. 3(a) shows the
geographic map of Broward. We further divide Broward into
13 parts, and number them from 1 to 13, as Fig. 3(b) has
described.

According to the household activity records, most trips
happen within two time intervals: in the morning between
6 am and 10 am and in the afternoon between 16 pm and
20 pm. Since the energy dispatching is mostly available during
rush hours, we conduct our simulations during the first time
interval.
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(a) Geographic map of Broward.

(b) The schematic map of 13 regions.

Fig. 3: The map of targeted area in the experiment.

TABLE I: Load data in the 13 regions in the daytime.

Region Load demand The average Renewable power
(MWh) load rate supply(MWh)

1 37.035 80.27% 507.69
2 21.837 89.70% 549.99
3 -11.433 87.67% 0
4 43.131 89.96% 952.23
5 33.549 87.49% 676.92
6 2.619 75.14% 0
7 -2.971 85.29% 0
8 30.237 88.53% 529.02
9 42.891 81.12% 592.29
10 47.196 79.78% 634.62
11 -16.161 87.49% 0
12 -0.246 80.27% 0
13 56.715 69.14% 740.61

We adopt solar energy data and wind energy data from the
daily renewable watch [15]. We refer to the local demand data
in the previous study [16]. Table I shows the power load
information. It includes the renewable power supply (solar
or wind), the average load rate and the load demand in the
daytime. The average load rate is calculated by dividing the
actual load by the standard load. In this paper, the standard
load is 80% of the maximum load which is regarded as the
balance between supply and demand. The load demand is
received from the actual load minus the standard load. Positive
values mean that the regions need to export amount of energy
to other places to achieve balance. Negative values represent
the transportation in the opposite direction.

The battery model we used is the Chevy Volts Lithium-ion
battery with 15 KWh capability. The nominal charging rate

0 50 100 150 200 250
−1

−0.5

0

0.5

1
x 10

5

t(min)

x 1(K
W

)

(a) The sync curves

0 50 100 150 200 250
0

2

4

6

8
x 10

4

t(min)

e

(b) The error curves 

Fig. 4: Synchronization of the V2G network.
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Fig. 5: Synchronization of V2G network at double trip-rate.

is 2.0 KW. The parameters of willingness, β = 0.8318. The
time horizon is divided by 24 hours a day. We investigate the
procedure of synchronization and the results of price-based
synchronization control.

We simulate the analytical model in the rush hour because
a large number of PHEVs travelling at that time may ful-
fil the energy transportation needs. We observe the process
of synchronization of the V2G network. Fig. 4 shows the
synchronization procedure starting at 7 o’clock. Fig. 4(a) is
the synchronized curve in the x1 component which represents
the energy demand level in each region. The error curve is
described in Fig. 4(b). We see that the system achieves its
synchronization as long as the system error is asymptotically
stable to zero.

From Fig. 4, we can observe that the system will achieve
its synchronization at time 9:20. Fig. 5 shows the result
of doubling the trip rate of the PHEVs at time 7 o’clock
and simulates the synchronization process again. Comparison
between these two situations indicates that higher PHEVs
traffic among different regions speeds up the convergence of
the network and reduces the time to reach the synchronization
state. When there are more PHEVs, the amount of dispatched
energy increases and the time for energy control may be
reduced. Such a transportation of power is beneficial with the
objective to balance energy supply and demand. Therefore,
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Fig. 6: Energy demand in the morning rush hours.

V2G network synchronization is significant for the efficiency
and reliability of industrial smart grid.

Fig. 6 shows the energy demand during the time interval
of 6 am to 11 am (the morning rush hours) in regions 1,
3, 6, 9 and 12. Fig. 6(a) shows the result at time 6:00 am
and Fig. 6(b) is at 11:00 am. At the beginning of the rush
hours, there is a large difference in energy demand among
the regions. At the end of the rush hours, the differences are
reduced significantly. We can see that, in some regions the
demand for more energy is very close to zero, and in the
other regions the demand is very small. The control error
is small and caused by some unexpected reasons, such as,
PHEVs transportation delay, limited energy transfer rate, and
history data difference. could say that the V2G network can
perform satisfying energy dispatching under the price-based
control with the synchronization method, and hence improve
the power grid in balancing energy demand and supply.

VI. CONCLUSION

V2G network plays an essential role in the industrial smart
grid. In this paper, we propose to utilize price-based energy
control to dispatch energy among regions. In particular, we
take advantage of the PHEV mobility to equivalently transport
the renewable energy among regions with different demands.
Given a V2G networks with energy state information and
history data, the proposed approach could operate adaptively
to general network structures or parameter settings. Illustrative
results demonstrate that the V2G networks under the price-
based energy control can achieve energy demand and supply
balance in all regions.
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