
Cloud-Assisted Spatio-Textual k Nearest Neighbor
Joins in Sensor Networks

Mingyang Yang1, Long Zheng1, Yanchao Lu1, Minyi Guo1, Jie Li2
Department of Computer Science and Engineering, Shanghai Jiao Tong University

1{ymycser, longzheng, chzblych, myguo}@sjtu.edu.cn, 2lijie@cs.sjtu.edu.cn

Abstract—k nearest neighbors (kNN) query is an important
problem in a variety of sensor network applications. Traditionally,
we handle this problem with a single query processing approach,
which just considers the location information. It usually neglects
the other information such as temperature, humidity, pressure,
etc. In order to overcome the defect of the traditional approaches,
we investigate the problem from a new perspective and desire to
solve a more interesting problem called spatio-textual k nearest
neighbor join (ST-kNNJ). It searches text-similar and k-nearest
sensors to a query set containing more than one query point.
With the help of cloud computing, ST-kNNJ can be processed in
distributed computational environment to gain better processing
capability and response efficiency. In this paper, we generalize
the problem of ST-kNNJ and propose our approaches to it.
And we can deal with large-scale data when using MapReduce
framework. Evaluation results show that our approach achieve
better performance in comparison with the naive approach.

Keywords—Sensor Networks, Cloud Computing, Distributed
Computing, MapReduce, k Nearest Neighbor Join

I. INTRODUCTION

Wireless sensor networks (WSNs) commonly consist of
a large number of distributed sensors which are capable
of sensing, communicating and computing. After deployed
over wide geographical areas, WSNs are used to monitor
environment and collect data[6]. Typically, these sensors can
obtain various types of data, including geographical location,
temperature, humidity, illumination and pressure. With the
wide use of WSNs, a variety of applications, such as military
and environmental monitoring, intelligent transportation, and
location-based services (LBS), have significantly developed.

In these applications, spatial queries are very important as
sensed data are often geographically distributed[23]. Particu-
larly, k nearest neighbor (kNN) query is a common operation
relevant to WSNs. It can retrieve the information of k nearest
neighbors (kNNs) for a given query point. Applications usually
require information from certain number (e.g. k) of sensors
that are closest to a specified location. For instance, soldiers
can issue kNN queries to obtain k nearest tanks from them in
battlefields.

Recent years, many works[26], [23], [28], [22], [6], [4], [9]
have focused on kNN queries in networks including sensor
networks, ad hoc networks, peer-to-peer networks. But their
approaches just handle a kNN query at a time. Nowadays,
WSNs based applications have become much more popular
and users usually launch a number of queries at the same
time. If we just handle these queries one by one, the response
efficiency is relatively low. It is very necessary to gather these
queries and handling them in batches. We can organize queries

to a query set and perform kNN join query on the query set
and the sensor set. kNN join searches k nearest neighbors of
all the query points from the sensor set, which makes handling
multiple queries simultaneously possible. Moreover, previous
works mentioned above only process spatial information. As
we know, the deployed sensors collect not only spatial in-
formation, but also temperature, humidity, pressure, etc. that
are stored in the form of text or string. In some cases, users
wants to get specific query results according to all of these
information. Text information between kNNs and the query
point should be similar to a certain degree, which means, some
sensors spatially closer to the query point may not be included
in the query result as their text information do not satisfy the
query condition. If we combine this kind of query with kNN
join, we can issue a novel and powerful query called spatio-
textual k nearest neighbor join (ST-kNNJ).

However, if we launch ST-kNNJ query in networks, like
previous work[23], [22], [6], [9], called in-network processing
techniques, energy consumption and communication overhead
will increase while energy budget and network bandwidth is
limited in sensors. This may accelerate sensors aging. Some
other work[26], [8], [29] transfer query processing to central-
ized database servers. With the emergence of cloud computing,
processing ST-kNNJ query in a distributed computational en-
vironment is a natural consideration as the sensed data become
extremely large. This can improve processing capability and
response efficiency. We can process the collected data in the
clouds, and then provide query applications or services for
users, like Software-as-a-Service (SaaS). MapReduce[5] is a
programming framework for processing large-scale datasets by
exploiting the parallelism among a cluster of computing nodes,
which typically consists of a number of commodity machines.
As its simplicity, flexibility, fault tolerance and scalability,
MapReduce has gained increasing support from both industry
and academia in the past few years, and become one of
the most widely used frameworks for parallel and distributed
processing of large data nowadays.

In this paper, we study a new problem, called cloud-assisted
spatio-textual k nearest neighbor join (ST-kNNJ) in sensor
networks. ST-kNNJ finds each query point r of a query set
R and its k-nearest sensors {s1, s2,..., sk} from a sensor set
S. Both the query points and the sensors contain location and
text information. These k sensors satisfy the following two
constraints: they are the top-k nearest neighbors to r in space
and meanwhile their text must be similar to r’s. Besides, we
solve the problem of ST-kNNJ in MapReduce framework to
deal with large-scale data in the clouds. We first present a
naive approach using block nested loops. It retrieves query

INISCom 2015, March 02-04, Tokyo, Japan
Copyright © 2015 ICST
DOI 10.4108/icst.iniscom.2015.258321

results by traversing the query set and the sensor set. Then we
propose our improved approach which searches text-similar
intermediate results and finds kNNs from them to obtain the
final query results. To our best knowledge, it is the first work
investigating ST-kNNJ query for sensor networks. Due to the
space limitation of this paper, we evaluate the performance of
this two ST-kNNJ query processing approaches with extensive
datasets.

Our main contributions are summarized as follows:

• We study a new problem called spatio−textual k
nearest neighbor joins in sensor networks and
formalize the notion of it.

• We propose a text similarity based approach which
first finds text-similar pairs and then gets the query
results using spatial information.

• We have conducted comprehensive experiments on
large-scale datasets to evaluate our approach. Exper-
iment results show that our approach achieve better
performance in comparison with the naive approach.

The rest of this paper is organized as follows. We formulate
the ST-kNNJ problem in Section II. Some background knowl-
edge is described in Section III. In Section IV, we present
the naive approach and our ST-kNNJ approaches in detail.
In Section V, experiment results are reported. We survey the
related work in Section VI and make a conclusion in Section
VII.

II. PROBLEM FORMULATION

We formulate the problem of spatio-textual k nearest
neighbor join (ST-kNNJ) in sensor networks. Consider a query
set R = {r1, r2,..., ru} and a sensor set S = {s1, s2,..., sv},
where |R| = u and |S| = v. Each point r (the same to s)
contains 2-dimensional coordinates Cr = (cr,x, cr,y) and a text
Tr. Given a fixed number k and a text similarity threshold τ ,
for each point r ∈ R, ST-kNNJ finds k sensors {s1, s2,..., sk}
from S that satisfy the following two constraints:

• Textual constraint: The text similarities between these
k sensors and r are not less than τ .

• Spatial constraint: These k sensors are the top k near-
est neighbors to r in terms of some spatial distance
metric.

In this work, we use edit distance to evaluate the text sim-
ilarity and Euclidean distance to evaluate the spatial distance
respectively. Furthermore, as we carry out the computation
process in the cloud servers, all the sensed data including
location and text information are stored in cloud servers and
get refreshed periodically according to specific application
requirements.

III. PRELIMINARIES

In this section, we introduce some background knowledge
and techniques used in this work.

A. MapReduce

MapReduce[5] is a popular programming framework for
parallel and distributed processing large-scale datasets using
shared-nothing clusters. A typical MapReduce program con-
sists of a pair of user-defined map and reduce functions.
Invoked for every record in the input datasets, the map function
inputs a key-value pair and produces a list of intermediate key-
values pairs. Then these intermediate pairs are partitioned ac-
cording to the keys. For each partition, all the values associated
with the same intermediate key are sorted and organized into
a list. This procedure is called shuffle. The reduce function
gets sorted data from the appropriate partition and outputs
the final result which is typically a list of key-value pairs.
The computational process can be described conceptually as
follows: map(k1, v1) → list(k2, v2) and reduce(k2, list(v2))
→ list(k3, v3).

Hadoop is an open source implementation of MapReduce,
which is popular in the open source community. In Hadoop, da-
ta are stored in Hadoop distributed file system (HDFS). HDFS
contains multiple slave nodes called DataNodes which store
data in chunks and a master node called NameNode which
stores meta-data and monitors DataNodes. Hadoop runtime
system launches two kinds of processes, called JobTracker
and TaskTracker, to handle MapReduce programs. In Hadoop,
a MapReduce program is called a job. JobTracker splits a
submitted job into map tasks and reduce tasks, and schedules
them to TaskTrackers. For a map task, TaskTracker fetches
a data chunk from DataNode and runs the map function.
After all the map tasks are completed, Hadoop runtime system
partitions and sorts the intermediate data. This procedure is
called shuffle. Then multiple TaskTrackers for reduce tasks
are launched to run the reduce function for producing the final
result.

B. Euclidean Distance

Commonly, we use Euclidean distance to measure the
distance between two spatial points in Euclidean space. In
Cartesian coordinates, if r = (cr,1, cr,2,..., cr,n) and s =
(cs,1, cs,2,..., cs,n) are two objects in Euclidean n-space, their
Euclidean distance d(r, s) is defined as:

d(r, s) =

√√√√ n∑
i=1

(cr,i − cs,i)2

C. Edit Distance

In this paper, we use edit distance to evaluate the similarity
between texts. Formally, given texts T1 and T2, their edit
distance, denoted by ed(T1, T2), is the minimum number of
single-character edit operations (i.e., insertion, deletion, and
substitution) needed to transform T1 to T2. For example,
consider T1 = ”sensor” and T2 = ”sense”, ed(T1, T2) is 2.

IV. ST-kNN JOIN

In this section, we introduce two approaches to deal with
ST-kNNJ. A naive approach is to perform a brute-force search
of all points in query set R and sensor set S. Specifically, for
each query point r ∈ R, we scan all sensors in S to get the final
exact results, which means nested loop scans are performed on

R and S. Besides, we present an improved approach that is
more query-efficient than the former naive one. This approach
is based on the state-of-the-art filter-and-refine framework.

A. Nested Loop Approach

To perform nested loop scans on R and S in MapReduce
framework, a straightforward idea is, map tasks used for data
partitioning and reduce tasks used for nested loop scanning.
Data partitioning can distribute data to all cloud servers where
reduce tasks perform nested loop scanning. If map tasks
just input R and partition it into multiple splits, then each
reduce task launched by cloud server gets one split of R and
must input all sensed data of S to finish the computation.
This strategy needs only a single MapReduce job. In many
applications, the size of S is usually much larger than the size
of R. Obviously, this strategy may increase the system I/O
burden and resource consumption.

An improvement is to use block nested loop methodology
mentioned in [27]. This new approach adopted block nested
loop methodology consists of two MapReduce jobs. We denote
this approach as ST-BNLJ and it is described as follow:

1) Block Join Job:

• Map Phase: After reading R (or S), map tasks
perform a linear scan on R (or S) and put every
|R|/n (or |S|/n) points into one block. Then R and S
are both partitioned into n equal-sized blocks. Every
possible pair of blocks (one from R and another from
S) is delegated into a bucket. So this phase produces
a total of n2 buckets.

• Reduce Phase: n2 reduce tasks are launched in cloud
servers. Each reduce task fetches a bucket produced
in the map phase and performs a block nested loop
join between blocks of R and S in that bucket. That
is, by using a nested loop, for each query point r in
the block of R, we scan all sensors in the block of
S to check textual constraint and spatial constraint to
obtain local kNNs. We can calculate edit distance with
dynamic programming to check textual constraint. A
max heap of Euclidean distances can be used to get
kNNs. The output is r and its local kNNs.

Note in the first job, each query point r ∈ R is partitioned
into one block of R and replicated in n buckets (one for each
of the n blocks of S). We can see that, when the first job is
finished, each query point r ∈ R has n local kNNs. Hence,
we use another job to merge these local kNNs to get global
kNNs for r.

2) Merging Job:

• Map Phase: Map tasks read all outputs of the first
job and transfer each query point r ∈ R and its nk
kNN candidates to a reduce task. This can be done
by using the unique ID (e.g. pointIDr) of each query
point r as output key of map tasks.

• Reduce Phase: A reduce task retrieves each query
point r ∈ R and its nk kNN candidates, and
then sort these candidates in ascending order of
d(r, candidate). Finally we get the top-k results (i.e.
global kNNs) for each query point r.

B. filter-and-refine based Approach

When the number of query points or deployed sensors
increases, the efficiency of nested loop approach may be
affected due to its brute-force search. In order to overcome
this defect, we propose an improved approach. From the
problem definition, we can know that, sensors from the final
results must first satisfy the textual constraint before comparing
spatial distances. Hence we can explore the potential of text
information and use them to prune useless data. Inspired by
the work in [11], we adopt the the state-of-the-art filter-and-
refine framework in this approach.

Consider a query point r ∈ R and a sensor s ∈ S, if
they are not text-similar, then s can be pruned. We can use
an inverted index to filter out text-similar candidates and then
verify them to get final results. In inverted indices, texts are
treated as index keys and points containing the corresponding
text are index values.

As mentioned above, we use edit distance to evaluate
the text similarity between texts. A technique based on q-
grams and a q-gram counting argument have been proposed
to identify candidate texts within a small edit distance from
a query text fast[10]. Let Σ be an alphabet. For a text T in
Σ, we use a sliding window of length q over the characters
of it to produce its q-grams. In particular, the beginning and
the end of T have less than q characters. Special characters
which are not in the Σ, such as # and $, are introduced to
deal with them. Then T is extended by prefixing it with q
- 1 occurrences of # and suffixing it with q - 1 occurrences
of $, so that the q-grams in the beginning and the end of T
have exactly q characters. For instance, consider q = 3 and T =
”network”, the q-grams of T are {##n, #ne, net, etw, two, wor,
ork, rk$, k$$}. Texts within a small edit distance will share
a large number of q–grams. Let GT be the set of q–grams of
text T . From [10], we have the following conclusion:

For texts T1 and T2 of length |T1| and |T2|, if ed(T1, T2) =
τ , then |GT1 ∩GT2 | ≥ max(|T1|, |T2|)− 1− (τ − 1)× q (∗).

So we can first construct inverted indices based on q-grams
of texts of sensors. As the sensed data are stored in cloud
servers and get refreshed periodically, once the indices are
constructed after refreshment, the subsequent queries share
the same indices. For r ∈ R, we get its q-grams and their
corresponding inverted indices. After counting the occurrence
of sensors in these indices, the above conclusion is used
to get r’s text-similar candidates. At last, we verify the
filtered candidates by checking textual constraint and spatial
constraint. This filter-and-refine based approach consists of
two MapReduce jobs. The first job is a preprocessing job. It
constructs inverted indices for the sensor set S. The second
job is used for queries. It filters out text-similar sensors for
each query point, and refines these candidates to outputs the
final query results. We denote this approach as ST-FRJ and it
is described as follow:

1) Preprocessing Job:

• Map Phase: Map tasks input query set S. For each
sensor s ∈ S, Ts is divided into |Ts| − q+ 1 q-grams.
Then map tasks use (gram, s) as output key-value
pair.

• Reduce Phase: A reduce task retrieves all key-value
pairs (gram, s) that share the same gram. Hence,
gram is used for inverted index key and all these
sensors are used for inverted index values. At last,
reduce tasks output all inverted indices.

2) Query Job:

• Map Phase: Map tasks simply read query set R and
evenly disperse them to all reduce tasks. This can be
done by using pointID mod n (i.e. number of reduce
tasks) as output key and query point as output value.

• Reduce Phase: A reduce task fetches a chunk of
R. For each query point r in this chunk, we first
divide Tr into q-grams and read the corresponding
inverted indices. Then the conclusion mentioned above
is used to filter out text-similar candidate sensors.
Then we verify the filtered candidates to obtain the
final kNNs by calculating their edit distance and
Euclidean distance.

V. EXPERIMENTS

We implement our approaches in Java with Hadoop APIs
and execute our experiments on our in-house cluster. The
cluster contains 10 computing servers, each of which has one
Intel Xeon E5645 2.4GHz CPU, 64GB memory, two 200GB
SATA hard disks and Gigabit ethernet. On each server, we
install CentOS 6.5 operating system, Java 1.7.0 with 64-Bit
server VM, and Hadoop 1.0.4. And we make the following
modifications to the default Hadoop configurations: (1) each
server is set to run 10 map and 10 reduce tasks; (2) the size of
virtual memory for each map and reduce task is set to 2GB;
(3) the replication factor is set to 1.

We evaluate the naive approach ST-BNLJ and the improved
approach ST-FRJ on simulated query set (denoted as R) and
sensor set (denoted as S). Totally, R contains 32K query points
and S contains 320K sensors. Each point of R (or S) contains
2-dimensional coordinates (spatial information) and a text (text
information) whose length is at least 10 and no more than 20.

In our experiments, we measure the effect of the following
parameters to our approaches: (1) gram length q; (2) text
similarity threshold τ ; (3) number of nearest neighbors k; (4)
size of R; (5) size of S; (6) number of cores in a single
computing server; (7) number of computing servers. Due to
the space limitation of this paper, we evaluate performance of
our approaches with execution time. By default, we conduct
the performance evaluation on R with 1K query points and S
with 80K sensors. q is set to 2, k is set to 20, τ is set to 3,
and the number of computing servers is 10.

A. Effect of q

From Fig. 1, we observe that the running time of prepro-
cessing job of ST-FRJ increases substantially when the gram
length q increases. But the running time of query job of ST-FRJ
remains almost the same. It means a short gram (e.g. 2 or 3 in
our experiments) is suitable for inverted indices construction.
So we choose a short gram in the following experiments.
Note that, although ST-FRJ contains two jobs: preprocessing
job and query job. But preprocessing job runs only when the

sensed data (S) get refreshed periodically according to specific
application requirements. There is no need to run it when
every query request comes. So we mainly focus on the query
performance of ST-BNLJ and ST-FRJ.

0

200

400

600

800

1000

1200

2 3 4 5 6

ru
nn

in
g

tim
e

(s
ec

on
ds

)

q

Preprocessing Query

Fig. 1. Effect of Gram Length q

B. Effect of τ and k

From Fig. 2(a), we can see that when text similarity
threshold τ increases, the query time of ST-BNLJ (and ST-
FRJ) remains almost the same. In ST-BNLJ, τ is used to
check textual constraint after calculating edit distance in the
block join job. In ST-FRJ, τ is used to filter out candidate
sensors after counting the occurrence of sensors in the inverted
indices in the query job. Its change dose not incur any
transmission overhead for all these approaches. Although a
larger τ may bring more candidates, which may make the max
heap adjustment more frequently. But when the cloud severs
is powerful enough, this impact can be negligible.

A little difference in Fig. 2(b) is when the number of
nearest neighbors k increases, the query time of ST-BNLJ
increases slightly while the query time of ST-FRJ remains
almost the same. In ST-BNLJ, a larger k will incur more
intermediate results (i.e. local kNNs). So the transmission
overheads between its two jobs increase. In ST-FRJ, k’s change
dose not incur any transmission overhead. Hence the query
time of ST-FRJ is almost the same.But no matter how τ and k
vary, ST-FRJ always achieves better query performance than
ST-BNLJ.

C. Effect of R and S

From Fig. 2(c) and Fig. 2(d), we can observe that when the
sizes of query set R and sensor set S increase, the query time
of both ST-BNLJ and ST-FRJ increases. But their growth rates
are different. The query time of ST-FRJ gets linear growth,
while the query time of ST-BNLJ grows faster. That’s because
ST-BNLJ adopts a brute-force search (i.e. nested loop seach)
on R and S. However, ST-FRJ can usually prune a lot of
useless data by utilizing inverted indices to reduce the number
of candidates. In the worst case, all sensors become text-similar
candidates and ST-FRJ may get the same growth rate of query
time as ST-BNLJ. But on average, it has better performance
than ST-BNLJ and its query time is always less than ST-BNLJ.

60

80

100

120

140

160

1 2 3 4 5

qu
er

y
tim

e
(s

ec
on

ds
)

τ

ST-BNLJ ST-FRJ

(a) Text Similarity Threshold τ

60

80

100

120

140

160

1 10 20 40 80

qu
er

y
tim

e
(s

ec
on

ds
)

k

ST-BNLJ ST-FRJ

(b) Number of Nearest Neighbors k

0
50

100
150
200
250
300
350
400

1 2 4 8 16 32

qu
er

y
tim

e
(s

ec
on

ds
)

R (×103)

ST-BNLJ ST-FRJ

(c) Size of R

60
80

100
120
140
160
180
200
220

10 20 40 80 160 320

qu
er

y
tim

e
(s

ec
on

ds
)

S (×103)

ST-BNLJ ST-FRJ

(d) Size of S

0
100
200
300
400
500
600
700
800

1 2 5 10 20

qu
er

y
tim

e
(s

ec
on

ds
)

number of cores

ST-BNLJ ST-FRJ

(e) Number of Computing Cores U

60

80

100

120

140

160

2 4 6 8 10

qu
er

y
tim

e
(s

ec
on

ds
)

number of servers

ST-BNLJ ST-FRJ

(f) Number of Computing Servers N

Fig. 2. Effects of τ , k, R, S, U & N

D. Effect of Computing Cores and Servers

We first measure the effect of computing cores in a single
cloud server. This can be done by configuring Hadoop to run
in a single cloud server (i.e. it is master and single slave at
the same time.). We can change the Hadoop configuration by
tuning the number of map tasks (or reduce tasks) running
simultaneously. In this way, we can control the number of
computing cores. From Fig. 2(e), we can see that when the
computing cores increases, the query time of ST-BNLJ and
ST-FRJ decreases, which means our approaches are compute-
intensive. ST-BNLJ gets a larger decrement when the comput-
ing cores increases from a small number.

As our approaches are compute-intensive, we extend the
experiments to more than one cloud server. We enlarge the
number of computing servers from 2 to 10 in order to see its
effect. From Fig. 2(f), a obvious trend is that with the number
of computing servers increasing, the query time of ST-BNLJ
and ST-FRJ decreases. It means more computing servers can
bring more query performance promotion. However, no matter
how the number of computing servers (or cores) varies, ST-FRJ
always gains better query performance than ST-BNLJ.

VI. RELATED WORK

Many studies have focused on kNN queries in WSNs.
In [8], [29], fixed communication infrastructure and cen-
tralized database servers are required, and query processing
and data storage rely on centralized database servers. Some
approaches[3], [7] delegate partial query monitoring tasks to
the mobile user, in order to reduce communication overhead.
Existing in-network kNN query processing approaches can be

classified into two categories: infrastructure-based approaches
and infrastructure-free approaches. The former ones rely on a
network infrastructure for query propagation and processing,
as in[16], [17], [23]. The latter ones propagate kNN queries
along some well-devised itineraries to collect data, and some
infrastructure-free kNN query processing approaches based on
itinerary structures have been proposed in [23], [18], [19],
[6]. In [23], the authors proposed three methods for kNN
query processing in location-aware sensor networks. GRT
and KBT are based on tree infrastructure while IKNN is an
infrastructure-free approach. DIKNN, another infrastructure-
free approach proposed in [19], uses routing, kNN boundary
estimation, and query dissemination to get query results. In
[6], an approach called PCIKNN is proposed which calculates
the network density during the traversal of the itineraries and
partitions the search range to reduce the response time of query
execution.

ST-kNNJ can be considered as a combination of spatial
kNN join and text similarity join. In traditional database area,
there have been many works that study the kNN join and text
similarity join, and many approaches have been developed
to solve this two problems. In [20], [25], [24], kNN join is
performed on a single and centralized machine. When the size
of datasets becomes extremely large or the data become multi-
dimensional, the performance of the single machine becomes
the bottleneck to solve this problem. To cope with large dataset
or multi-dimensional data, several work[27], [13] is proposed
using MapReduce framework. The approach in [27] computes
approximate results while the approach in [13] computes exact
results.

Li et al. have given a conclusion of string similarity joins

in [11]. Existing studies addressing this problem can be mainly
classified into two categories: filter-and-refine framework
and trie based framework. The first one contains a filter
step and a refine step. The filter step generates signatures
for each strings and uses the signatures to generate candidate
pairs. The refine step verifies the candidate pairs to get the
final results. There are many studies, such as [1], [21] belong
to it. The second one such as [15] uses a trie structure to
share prefixes and utilizes prefixes for pruning. Vernica et al.
propose a parallel approach using MapReduce to solve set-
similarity join problem in [14]. It fits for the situation in which
the dataset is very large.

Recently, several work has been presented to deal with the
spatio-textual similarity join, such as [12], [2]. In [12], several
methods have been proposed based on prefix filter technique.
In [2], Bouros et al. combine ideas from spatial distance join
and set similarity join methods and propose algorithms that
take into account both spatial and textual constraints. However,
Both of these methods are centralized and run on a single
machine.

VII. CONCLUSION

In this paper, we study a new problem called spatio-textual
k nearest neighbor join (ST-kNNJ) in sensor networks. Differ-
ent from traditional approaches to answer k nearest neighbor
(kNN) query, we focus on not only spatial information but
also text information collected by sensors. ST-kNNJ organizes
the queries into query set for batch processing. Furthermore,
we solve this problem in the clouds by utilizing distributed
computing framework MapReduce. We formolize the problem
of ST-kNNJ and present a naive approach and an improved
approach. The former one adopts block nested loop join to
do brute-force search on query set and sensor set to get
query results. The latter one uses filter-and-refine framework
to get text-similar candidates and then to find final kNNs.
At last, we design and conduct experiments to evaluate the
proposed approaches and the experiment results show that the
improved approach gains better query performance than the
naive approach. In the future work, we desire to design more
efficient approaches to make full use of the spatial information
to get kNNs and conduct extensive experiments to compare
the performance between our approaches and the traditional
approaches.

ACKNOWLEDGMENT

This work is partially sponsored by the National Ba-
sic Research 973 Program of China (No. 2015CB352403),
the National Natural Science Foundation of China (NS-
FC) (No. 61261160502, No. 61202025), the Program for
Changjiang Scholars and Innovative Research Team in U-
niversity (IRT1158, PCSIRT), the Scientific Innovation Act
of STCSM (No. 13511504200), and the EU FP7 CLIMBER
project (No. PIRSES-GA-2012-318939).

REFERENCES

[1] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity
search. In WWW, pages 131–140, 2007.

[2] P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual similarity joins.
VLDB, 6(1):1–12, 2012.

[3] Y. Cai, K. A. Hua, and G. Cao. Processing range-monitoring queries
on heterogeneous mobile objects. In MDM, pages 27–38, 2004.

[4] C.-Y. Chow, M. F. Mokbel, and H. V. Leong. On efficient and scalable
support of continuous queries in mobile peer-to-peer environments.
TMC, 10(10):1473–1487, 2010.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In OSDI, pages 137–150, 2004.

[6] T.-Y. Fu, W.-C. Peng, and W.-C. Lee. Parallelizing itinerary-based knn
query processing in wireless sensor networks. TKDE, 22(5):711–729,
2010.

[7] B. Gedik and L. Liu. Mobieyes: Distributed processing of continuously
moving queries on moving objects in a mobile system. In EDBT, pages
67–87, 2004.

[8] H. Hu, J. Xu, and D. L. Lee. A generic framework for monitoring
continuous spatial queries over moving objects. In SIGMOD, pages
479–490, 2005.

[9] Y. Komai, Y. Sasaki, T. Hara, and S. Nishio. Knn query processing
methods in mobile ad hoc networks. TMC, 13(5):1090–1103, 2014.

[10] F. Li, B. Yao, M. Tang, and M. Hadjieleftheriou. Spatial approximate
string search. TKDE, 25(6):1394–1409, 2013.

[11] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A partition-based
method for similarity joins. VLDB, 5(3):253–264, 2011.

[12] S. Liu, G. Li, and J. Feng. Star-join: Spatio-textual similarity join. In
CIKM, pages 1016–1027, 2012.

[13] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient processing of k nearest
neighbor joins using mapreduce. VLDB, 5(10):1016–1027, 2012.

[14] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity joins
using mapreduce. In SIGMOD, pages 495–506, 2010.

[15] J. Wang, G. Li, and J. Feng. Trie-join: Efficient trie-based string
similarity joins with edit-distance constraints. VLDB, 3(1):1219–1230,
2010.

[16] J. Winter and W.-C. Lee. Kpt: A dynamic knn query processing
algorithm for location-aware sensor networks. In DMSN, pages 119–
124, 2004.

[17] J. Winter, Y. Xu, and W.-C. Lee. Energy efficient processing of k nearest
neighbor queries in location-aware sensor networks. In MobiQuitous,
pages 281–292, 2005.

[18] S.-H. Wu, K.-T. Chuang, C.-M. Chen, and M.-S. Chen. Diknn:
An itinerary-based knn query processing algorithm for mobile sensor
networks. In ICDE, pages 456–465, 2007.

[19] S.-H. Wu, K.-T. Chuang, C.-M. Chen, and M.-S. Chen. Toward the
optimal itinerary-based knn query processing in mobile sensor network.
TKDE, 20(12):1655–1668, 2008.

[20] C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: An efficient method for
knn join processing. In VLDB, pages 756–767, 2004.

[21] C. Xiao, W. Wang, and X. Lin. Ed-join: an efficient algorithm for
similarity joins with edit distance constraints. VLDB, 1(1):933–944,
2008.

[22] B. Xu, F. Vafaee, and O. Wolfson. In-network query processing in
mobile p2p databases. In GIS, pages 207–216, 2009.

[23] Y. Xu, T.-Y. Fu, W.-C. Lee, and J. Winter. Processing k nearest neighbor
queries in location-aware sensor networks. SIGPRO, 87(12):2861–2881,
2007.

[24] B. Yao, F. Li, and P. Kumar. K nearest neighbor queries and knn-joins
in large relational databases (almost) for free. In ICDE, pages 4–15,
2010.

[25] C. Yu, B. Cui, S. Wang, and J. Su. Efficient index-based knn join
processing for high-dimensional data. INSFOF, 49(4):332–344, 2007.

[26] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighbor queries
over moving objects. In ICDE, pages 631–642, 2005.

[27] C. Zhang, F. Li, and J. Jestes. Efficient parallel knn joins for large data
in mapreduce. In EDBT, pages 38–49, 2010.

[28] Y. Zhang, B. Hull, H. Balakrishnan, and S. Madden. Icedb:
Intermittently-connected continuous query processing. In ICDE, pages
166–175, 2007.

[29] B. Zheng, J. Xu, W.-C. Lee, and L. Lee. Grid-partition index: A hybrid
method for nearest-neighbor queries in wireless location-based services.
VLDB, 15(1):21–39, 2006.

