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Abstract—We consider utility maximization in a multi-cell
network under a total transmit power constraint, e.g. given by
a cognitive radio geo-location database. The network utility in
the downlink is maximized by allocating transmit powers in
the network, while meeting the network-wide transmit power
constraint. Distributed algorithms for allocating downlink trans-
mit power are discussed, which involve exchange of prices that
reflect interference between cells. Using primal decomposition, we
present an online algorithm which guarantees that the network
power constraint is met at all times. To this end, each cell
adjusts its power level while taking into account the interference
prices received from neighboring cells. Depending on the pricing
information, a transmitter may reduce its power so that it can be
used by some other transmitter. Distributed optimization enabled
by the exchange of interference prices among cells results in
an efficient distribution of total power among the transmitters.
Simulation results illustrate that exchange of prices can yield a
significant gain over non-cooperative and partially cooperative
power allocation approaches in indoor small multi-cell networks.

I. I NTRODUCTION

Foreseen shortages in spectrum for wireless services have
paved the way for new paradigms that can enable an efficient
utilization of the spectrum, while adhering to existing regula-
tions and policies. Cognitive Radio (CR) has been proposed
to improve spectrum utilization and enhance the efficiency of
spectrum sharing systems. It does so by allowing Secondary
Users (SUs) to opportunistically access the frequency band
originally allocated to the Primary User (PU), when or where
PU is inactive, or otherwise in a manner that does not disturbs
the PUs.

In CR system based on Geo-Location DataBase (GLDB),
see e.g. [1], a GLDB gives a SU the right to use a part
of spectrum in a geographical location, constrained by a
maximum transmit power. Similarly, in recently proposed
Licensed Shared Access (LSA) [2], incumbents would grant
licensees exclusive access to spectrum, subject to service
conditions related to incumbent protection. A GLDB is a
possible solution for realizing such protection. Moreover, in
a GLDB CR system it is possible (and in an LSA system it is
likely) that the secondary user (or LSA licensee) is a cellular
network consisting of multiple transmitters. In such cases, the
distribution of transmission power among these transmitters
needs to be decided. This can be done, e.g., by a GLDB
controlling thepower densityof a secondary network [3].

Different approaches for controlling the average or peak
interference power caused by multiple SUs to PUs have been
considered in [4]–[7]. In [4], the PU determines network-state

dependent prices to the interference caused by the SUs, and
it is shown that subject to these prices, selfish SUs playing a
non-cooperative game converge to a Nash Equilibrium where
the sum interference constraint is satisfied. An alternative
formulation is considered in [5], where the sum rate of the
SUs is maximized, subject to an outage-ratio of PU receivers.
Similarly, in [6], the weighted sum rate maximization of
Multiple-Input Multiple-Output (MIMO) SUs is discussed,
subject to a total interference constraint. The approach issemi-
distributed—the master problem of distributing the transmit
power to the SU transmitters is performed in a centralized
manner, whereas the MIMO covariance optimization at the
SUs is performed in a distributed manner with interference
prices, subject to the power constraints given by the master
solution.

Consider a CR power distribution problem where there is a
secondary cellular network/LSA licensee, which is providing
coverage in a limited geographic region, and is given a total
transmit power constraint. The power has to be dynamically
distributed among transmitters in different cells. This ispartic-
ularly important in uplink transmission of secondary cellular
networks, but applies equally well in downlink, when the
total power constraint given to a network is smaller than
the total maximum transmit power. Scaling behavior of CR
networks with constraints on SU average total power and
peak power has been considered in [8], without algorithmic
considerations. A total power constraint as such, is similar to
a total interference constraint, and the algorithms of [4]–[6]
would apply for the power distribution problem, with suitable
modifications. Our approach differs from [6], in that we present
a completely distributed solution to the primal problem under
network-wide constraint on total transmit power. Moreover,
we consider coupled utility functions, as well as coupled
constraints, whereas in [7] only the (interference) constraints
are coupled.

In this paper, we address CR power distribution problem
in a secondary cellular network. The system consists of
multiple interfering cells, each consisting of multiple Mobile
Stations (MSs) and a single Base Station (BS). Network
utility maximization is considered subject to a network-wide
total power constraint. To the best of our understanding, this
problem has not been addressed in the literature—nor has
a completely distributed algorithm been presented for power
distribution problem in the simpler scenario of secondary
transmitter-receiver pairs, or for the related total interference
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power problem. We propose distributed pricing based algo-
rithms for allocating power to SUs, such that the network
utility is maximized while the constraint on sum power of SUs
is met. Both primal and dual decomposition based algorithms
are considered.

The rest of paper is organized as follows: Section II de-
scribes the system model and formulation of optimization
problem. Section III introduces the primal and dual decomposi-
tion concepts and discusses in detail distributed network power
control algorithms for power distribution in CR networks.
Section IV shows simulation results for a CR network in a
WINNER office building [9], followed by a discussion on
the performance of the proposed approaches. We conclude in
Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a set ofI , {1, . . . , I} low-power BSs
deployed in a geographical area, communicating with their
MSs (users) using common bandwidth B. The set of MSs in
the system isL , {1, . . . , L}, where BSi serves the set of
MSs Li ⊆ L, with Li = |Li|, and {Li : i ∈ I} denotes a
partition ofL.

The sum of transmit powers of all BSs is constrained by the
total network powerPmax, i.e.,

∑

i∈I pi ≤ Pmax, where the
transmit powers of BSs are denoted by the setp , {pi}

I
i=1,

with the (per BS) constraintPmin ≤ pi ≤ Pmax. Thus, for
BS i, the local constraint set is

Pi ,
{

pi ∈ R+ : Pmin ≤ pi ≤ Pmax

}

, (1)

Intra-cell scheduling decisions of BSi are reflected by the
scheduling weightswi , {wl}l∈Li

, wherewl is the fraction
of orthogonal resources that BSi allocates for MSl ∈ Li.
We assume that each BS distributes all its resources among its
MSs, so that the local constraint set is

Wi ,

{

wi ∈ R
Li

+ :

∑

l∈Li
wl = 1

wl ≥ 0 , l ∈ Li

}

. (2)

The aim is to maximize the sum-utility

Usum (p,W) =
∑

i∈I

Ui (p,wi) (3)

of the downlink multi-cell system, whereW , {wi}
I
i=1 is a

set comprising of scheduling weights of all MSs. HereUi is
the sum-utility of the MSs served by BSi

Ui (p,wi)=
∑

l∈Li

ul (p,wi) , (4)

where ul is the utility function of a MSl served by BSi.
The Signal-to-Interference plus Noise power Ratio (SINR) that
MS l (served by BSi) experiences in reception is given by

γl(p) =
pi hi,l

Il +N0
l ∈ Li, (5)

wherehi,l is the channel power gain between BSi and MSl,
which is assumed to be frequency flat,N0 is the additive white

Gaussian noise power, and

Il =
∑

j 6= i

pj hj,l l ∈ Li, (6)

denotes the interference experienced by MSl. The utility
function for the users should be selected according to the
performance metric to be maximized. In this paper, we con-
sider Proportional Fair (PF)-Rate utility function [10]. This
leads to fairness in sharing common resources (i.e., power and
scheduling weights) among the MSs of each cell. The PF-Rate
utility function is

ul (p,wi), ln
{

wl ln [1+γl(p)]
}

l ∈ Li , (7)

which is the logarithm of the normalized Shannon rate (in
nats/s/Hz), while treating interference as noise. This loga-
rithmic form of the utility allows to improve the situation
of those users that are experiencing low data-rates (due to
high co-channel interference). The aim is to find the power
allocation of all BSs, such that the network utility is maximized
under the total network power constraintPmax. The network
level optimization problem is given by

maximize
∑

i∈I Ui (p,wi)
p,W

subject to
∑

i∈I pi ≤ Pmax,

pi ∈ Pi, wi ∈ Wi, ∀ i ∈ I.

(8)

This is a non-convex problem, for genericUi, as the SINRs
of receivers are coupled. However, it is convex for the PF-
Rate utility that is considered here [11]. In what follows, we
discuss decomposition methods that lead to pricing algorithms
for finding a solution of (8) in a distributed way. Note that
in frequency selective channels, this model would naturally
generalize to the multichannel version of the power allocation
problem, which is non-convex [12].

III. D ISTRIBUTED NETWORK POWER CONTROL

To formulate a distributed solution to (8), primal and dual
decomposition methods can be used, in conjunction with
pricing algorithms for distributed optimization overp andW.

A. Primal Decomposition

The primal decomposition [13] is an appropriate decom-
position procedure in this case, as it can be seen that fix-
ing power vector decouples the problem intoI independent
scheduling weight optimization sub-problems, one per BS.
Thus, the optimization problem (8) can be separated into a
two level optimization procedure. At a lower level, withp
fixed, we have the decoupled scheduling weight optimization
sub-problems∀ i ∈ I,

maximize Ui (wi)
wi

subject to wi ∈ Wi,

(9)



which is a convex problem and can be solved at each BS. For
updating the coupling variablep, we have a master problem
∀i ∈ I,

maximize Ui (p)
p

subject to
∑

i∈I pi ≤ Pmax, pi ∈ Pi.

(10)

Optimization overp couples the cells in utility function as
well as in constraints. When not considering the network-wide
power constraint, the problem is a conventional distributed
power control problem [14]. We use a pricing algorithm to
solve the optimization overp in a distributed way. As the
utility function Ui is continuous, this problem can be solved
by an iterative descent method as discussed next.

B. Components of Gradient and Pricing

Consider the network utility in the master problem which
can be written as

Usum(p|W) = Ui (p|wi) +
∑

j 6= i Uj (p|wj) . (11)

Differentiating with respect topi we have

Di =
∂Usum(p|W)

∂pi
=

∂Ui (p|wi)

∂pi
+
∑

j 6= i

∂Uj (p|wj)

∂pi
. (12)

Let us define the following terms aspower benefitandpower
price, respectively:

πii = ∂Ui(p|wi)
∂pi

∀ i ∈ I,

πji =
∂Uj(p|wj)

∂pi
∀ j ∈ I, j 6= i.

(13)

With the PF-rate utility function, the power benefit becomes

πii =
∑

l∈Li

1

ln [1 + γl(p)]

γl(p)

[1 + γl(p)]

1

pi
. (14)

This reflects the increase in utilityUi per unit increase in
power pi. Likewise, the power priceπji indicates the effect
of the power of BSi on the utility of BSj, and is given by

πji = −
∑

l∈Lj

1

ln [1 + γl(p)]

[γl(p)]
2

[1 + γl(p)]

hi,l

pjhj,l

. (15)

By the exchange of power prices, the BSs can cooperatively
maximize the network utility over their respective powers in
a distributed way. Base stationi calculates the benefitπii for
its own use, andπij , to exchange it with each neighborj.
To calculate the benefits and prices terms, the BSi needs to
know: 1) current SINRs{γl}l∈Li

of the MSs served byi, and
the corresponding own cell channel gains{hi,l}l∈Li

; 2) the
cross channel gains between its served MSs and the interfering
BSs {hj,l}j 6=i,l∈Li

; and 3) its own transmit powerpi. It is
assumed that the channel gains are calculated by periodic
transmission of orthogonal pilot signals by the BSs, whereas
the prices are exchanged over a backhaul links that connects
the BSs.

To find the solution of (8) in a distributed manner, the
master problem and the secondary problems need to be solved

iteratively. Compared to distributed power control, the novelty
in solving (8) comes from the global constraint. It can be seen
that for the PF-rate utility function, the secondary problems
(i.e. optimization overwi) can be simplified, since closed form
solution exists. For the PF-rate utility function in frequency
flat static channels, the optimal scheduling weight allocation
is Round Robin allocation, where all MSs get an equal share of
resources. Therefore, the scheduling weightsW are constant
while the optimization over transmit powersp is done in an
iterative manner. To do this, we devise a distributed version
of the coordinate descent method on the constraint surface,
following the approach given in [15], where the1-norm is
used when selecting the descent direction.

An updating BSi ∈ I receives the power prices{πji}j 6=i,
and the{Dj}j 6=i from all interfering BSs. With the prices
available, it calculates its power benefits and constructs theDi,
which gives a complete information of how its transmit power
can influence the network utility. With{Dj}j 6=i available for
all interfering BSs, it selects a BSj∗ that can increase the
network utility the most,

j∗ = arg maxDj
j 6= i (16)

If the utility increaseDj∗ is larger than the own-cell in-
creaseDi, it sends a message to that BSj∗ to increase its
power by a step-sizeδ times the difference in gradients.

To meet the total power constraint, the BSi reduces its
power by the same amount. To avoid excessive changes in
the initialization stage, we also set a maximum absolute step-
size δmax. This is followed by a power price, andDi update
step, where BSi updates itsDi and power price{πij}i6=j that
corresponds to the new power profile and sends them to all
interfering BSs. With this power update procedure, the network
power constraint is always respected in all iterations, which
makes it suitable for an online implementation. We consider
asynchronous and periodic updates, so that each BS has a set
of unique update timesti[n], wheren is the iteration index.
Each BS updates the power, prices, andDi only once in an
iteration. A summary of the proposed Distributed Network
Power Control (DNPC) algorithm based on Primal decomposi-
tion (DNPC-Primal) is given as Algorithm 1. Note that for the
PF-Rate utility function, the gradients may be unbounded. As
we assume that the powers of BSs with active users are larger
than a minimum powerPmin ≪ Pmax, gradients are bounded,
and the algorithm can be proven to converge. Moreover, this
limitation does not change the convexity of the domain.

C. Dual Decomposition

To apply the dual decomposition to problem (8), additional
auxiliary variables and corresponding equality constraints need
to be introduced. This is essential because of the specific nature
of the problem, where the coupling exists in both objective
functions and the system wide constraints [16]. To this end,



Algorithm 1 DNPC-Primal Algorithm
1: At ti[n], calculateDi using received interference prices
2: if Di > Dj ∀ j 6= i

i is in local optimum
else

3: Select BS according toj∗ = argmaxj 6=i Dj . Reduce
power by δ′ = min(δ(D∗

j − Di), δmax) and send power
increment message to BSk.

4: BS j∗ updates its power toPj∗ [n+ 1] = Pj∗ [n] + δ′

end
5: BS i updates interference prices to interferersj 6= i

6: BS i updates and announces itsDi

7: Repeat until convergence orn = MaxIters.

we can formalize the problem as

maximize
∑

i∈I Ui (pi, {pij}j 6=i)
{pi, {pij}j 6=i}i∈I

subject to
∑

i∈I pi ≤ Pmax, pij = pj , ∀ i, j
pi ∈ Pi, pij ∈ Pj , ∀ i, j

(17)

Note thatpij here is an auxiliary variable that can be inter-
preted as perception of BSi on the power of BSj, which
is equal to the actual power of BSj at equilibrium. The
equivalent form in terms of Lagrangian is given by

maximize
∑

i∈I Ui (pi, {pij}j 6=i) + λ(Pmax −
∑

i∈I pi)
{pi, {pij}j 6=i}i∈I +

∑

i,j ∈I,j 6= i µij(pj − pij)

subject topi ∈ Pi, pij ∈ Pj , ∀ i, j,
(18)

whereλ can be referred to as the power price in this case, and
µijs are the consistency prices for alli, j. Next, we decompose
the Lagrangian intoI sub-problems, one for each BS. The
sub-problem for BSi can be expressed as

maximize si
pi, {pij}j 6=i

subject topi ∈ Pi, pij ∈ Pj ,

(19)

wheresi can be viewed as asurplus function that takes into
account the pricing terms, and is given by

si , Ui (pi, {pij}j 6=i)− λpi +
(

∑

j ∈I,j 6= i µji

)

pi

−
∑

j ∈I,j 6= i µijpij
(20)

Then, the master dual problem can be stated as:

minimize g (λ, {µij}j 6=i)
{λ, µij}

subject toλ ≥ 0,

(21)

which can be easily solved by the gradient method, using the
following iterates for updating the dual variables:

λ(n+ 1) =

[

λ(n)− α

(

Pmax −
∑

i∈I

pi

)]+

, (22)

Algorithm 2 DNPC-Dual Algorithm
1: Initialize µi,j = 0, ∀ i, j; λ = 0
2: At t[n], each BSi ∈ I updates its power according to (25)

and communicates the solution to all interfering BSsj 6= i

3: Each BSi updates its consistency prices{µij}i6=j accord-
ing to the iterate in (23)

4: λ is updated using (22)
5: Repeat until convergence orn = MaxIters.

µij(n+ 1) = µij(n)− α (pj − pij) ∀ i, j. (23)

A similar iterative procedure can be employed for solving (19)
as well, where BSi would step in direction of gradient (pro-
jected on local constraint set) to increase the objective over pi
andpij . The gradient can be expressed as

∇si ,

{

∇pi
si = πii +

∑

j∈I,j 6=i µji

∇pij
si = πij − µij ∀ j ∈ I, j 6= i,

(24)

whereπii, andπji are defined in (14) and (15), respectively.
Thus, the gradient projection update rule for BSi ∈ I is given
by

pi (n+ 1) = [pi (n) + β∇pi
si]Pi

,

pij (n+ 1) =
[

pij (n) + β∇pij
si
]

Pj
, ∀ j,

(25)

where [•]X denotes the projection on setX , and β is the
scaling factor for the gradient. Therefore, in a given iteration
each BSi ∈ I updates not only the consistency pricesµi,j and
λ, but also its own powerpi, and auxiliary powers{pij}j 6=i.
The algorithm is summarized as Distributed Network Power
Control with Dual decomposition (DNPC-Dual) in Algo-
rithm 2. Note thatλ updates are based on global knowledge
of the transmit powers, and thus this algorithm is not fully
decentralized.

IV. N UMERICAL RESULTS

In this section, we analyze the performance of the proposed
algorithms and compare them with various cooperative and
non-cooperative approaches. The simulation scenario is pre-
sented first, followed by the discussion of results.

A. Simulation Scenario

We consider a small cell network scenario, comprising of
multiple low power BSs, serving a number of MSs deployed in
a multistory building. Figure 1 shows the simulation scenario,
with an illustration of the BS locations inside the building. The
propagation characteristics inside the buildings are modeled
according to a WINNER A1 office model [9]. The average
path loss is

PL [dB] = A log10(d) +B + C log10

(

fc

5

)

+DLw, (26)

where d [m] is the distance between the transmitter and
receiver, fc [GHz] is the carrier frequency of the system,
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Fig. 1. Layout of the WINNER office building. The dots in the figure
represent small-cell BSs.

TABLE I
WINNER II PATH LOSS MODEL

Building dimensions [m] 100 × 50

Room dimensions [m] 10 × 10

Corridor width [m] 5

Room height [m] 3

BS antenna height [m] 2

MS antenna height [m] 1

Number of floors 3
Antenna patterns omni directional
Carrier frequency [GHz] 2.6

Line-of-sight in same room/corridor
Path loss coefficients A = 18.7, B = 46.8, C = 20

Inner wall loss [dB] 5 (per wall)

Lw [dB] identifies the (discrete) loss that is produced by walls
(and windows), andD is the number of walls between trans-
mitter and receiver (see Table I for more details). Details of
other system parameters are given in Table II. Each MS selects
a single BS as a serving BS on the basis of received power in
the downlink. It is assumed that a backhaul connection exists
between the BSs, over which the exchange of prices takes
place.

B. Performance Analysis

The performance of the proposed DNPC algorithms that
solve the optimization problem given by (8) is compared
for different cases, that entail varying degrees of cooperation
among cells. For comparison, the (Cumulative Distribution
Functions) CDFs of network utility are illustrated in Fig. 2,
for 1000 random network instances generated according to the
simulation parameters. To analyze the gain from pricing ex-
change, the baseline non-cooperative case considered isEqual
Power, where the total network power is distributed equally
among the BSs.

The DNPC-Primal algorithm is also considered without

TABLE II
SIMULATION PARAMETERS

Number of BSs 12

Number of MSs 12

Maximum Transmit Power (Pmax) [dBm] 20

Minimum Transmit Power (Pmin) [dBm] −10

Noise figure [dB] 9

Thermal noise [dBm/Hz] −174

Shadow fading correlation 0.5

Shadow fading standard deviation [dB] 3

TABLE III
CONVERGENCEOF DNPC ALGORITHMS

Converged Instances (%) Iterations (mean)
DNPC-Primal 99.70 70.20
DNPC-Dual 99.10 8.93×10

3

DNPC-Primal(w/o Pri) 100 7.63

power prices, i.e.DNPC-Primal (w/o Pri). In this case, for all
BSsi, theDi comprises of the benefit terms only. Note that it
is a partially cooperative scheme, as each BSi reports itsDi to
all BSsj 6= i. On the other hand, in fully cooperative DNPC-
Primal, each BSi receives both{Dj}j 6=i, and prices{πji}j 6=i

from all BSs. The maximum power increase (or decrease) step-
sizeδmax is set to1% of the current BS transmit power. Like-
wise, the dual decomposition (DNPC-Dual) is also considered
with α = 0.45 and β = 1. It is observed to be extremely
sensitive to the step-size related parameters involved, and for
most cases it requires a large number of iterations to converge.
It can be seen that a substantial gain of the order of4.5×
in terms of median network utility can be achieved over
the baseline Equal Power case by both DNPC-Primal and
DNPC-Dual algorithms. Some loss is observed for the DNPC-
Primal (w/o Pri), which makes sense as the decisions on power
changes are made by considering the partial information (i.e.
only πii terms). In Fig. 2, the corresponding user data-rates
are shown with zoom on lower end of the CDF of user data-
rates, which highlights the benefit of PF-Rate utility, as itcan
be seen that data-rates of MSs experiencing low SINRs are
increased significantly.

To study the convergence characteristics for DNPC-Primal,
and DNPC-Dual, we use a formal convergence criterion that
the difference between achieved network utility and the opti-
mal utility is less than5%. It should be noted that the slight
discrepancy observed in Fig. 3 between the rates achieved
by DNPC-Primal and DNPC-Dual is due to this stopping
criterion, as it is not very strict. Nevertheless, it has been
chosen to speed-up the convergence of DNPC-Dual to some
extent. From Fig. 3, we observe 100% improvement over
baseline case at 10%-tile of CDF of user data-rates. Moreover,
convergence is observed in almost all network instances (more
than 99% with suitable update step-size parameters) for both
algorithms, albeit with a very high number of iterations for
DNPC-Dual. Therefore, the maximum number of iterations is
set to MaxIters= 40 × 103. The convergence statistics are
summarized in Table III.

V. CONCLUSIONS

In this paper, we proposed distributed pricing algorithms
based on decomposition methods, for network utility max-
imization in CR networks under network-wide power con-
straint. Primal decomposition is used to design an online algo-
rithm for PF-Rate maximization, while meeting the network-
wide power constraint. Numerical simulations carried out in
a practical small cell CR network scenario show that the
proposed approach performs better than the non-cooperative,
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Fig. 2. Comparison of network utility for different cooperative and non-
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Fig. 3. Comparison of user data-rates for different cooperative and non-
cooperative power allocation schemes. The inset shows the lower end of CDF
to clarify the gains achieved by the use of pricing in a small cell CR network.

and partial cooperative schemes, in terms of the network utility
and the data-rates achieved by users.
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