
Energy-Aware Power Control for a Multiple-Relay

Cooperative Network using Q-Learning
(Invited Paper)

Farshad Shams,† Giacomo Bacci,∗‡ and Marco Luise∗‡

† Dept. Computer Science and Engineering, IMT Institute for Advanced Studies, Lucca, Italy
∗ Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy

‡ Consorzio Nazionale Internuniversitario per le Telecomunicazioni (CNIT), Parma, Italy

Abstract—In this paper, we investigate the power control
problem in a cooperative network with multiple wireless trans-
mitters, multiple full-duplex amplify-and-forward relays, and
one destination. A game-theory-based power control algorithm
is devised to allocate the powers among all active nodes: the
source nodes aim at maximizing their energy efficiency, whereas
the relays aim at maximizing the network sum-rate. After
showing that the proposed game admits multiple pure/mixed-
strategy Nash equilibrium points, we formulate a Q-learning-
based algorithm to let the active players converge to the best Nash
equilibrium point that combines good performance in terms of
both energy efficiency and overall data rate, also calling for a low
computational burden. Numerical results show that the proposed
scheme outperforms Nash bargaining, max-min fairness, and
max-rate optimization schemes.

I. INTRODUCTION

New generations of wireless networks aim at using more

and more intelligent wireless devices, that should be able to

enhance the quality of service (QoS), increase the achievable

throughput, and increase the battery life, while not overus-

ing the common scarce wireless network resources, such as

spectrum and battery energy. In recent years, the idea of

cooperative diversity [1] has been considered as a promising

technique to significantly enhance the transmission of infor-

mation. The basic idea is that transmit data can be aided by

several intermediate nodes, called relays, that retransmit such

data to the receiver, using different schemes: either decode-

and-forward (DF), or compress-and-forward (CF), or amplify-

and-forward (AF), and either half-duplex or full-duplex (please

see [2] for further details).

In the literature, there exist many attempts to properly

allocate the resources in a relay-aided network. Just to men-

tion a few relevant applications in this field, power control

algorithms have been derived for the single-relay (e.g., [3])

and the multiple-relay (e.g., [4]–[6]) scenarios. This problem

has been also widely investigated using game theory [7] to

model the interactions among the nodes in the network (e.g.,

[8]–[12]). However, most approaches show a relatively high
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computational complexity, which could seriously undermine

their applicability. In this contribution, we aim at addressing

this drawback, by investigating the problem of power alloca-

tion at both source nodes and relay nodes, focusing on the

AF strategy for the sake of mathematical tractability, although

a similar way of reasoning can be applied to DF and CF

as well. The communication is assumed to be full-duplex to

enhance the spectral efficiency (SE) of the system. We model

the power control problem as a distributed non-cooperative

game, in which all nodes act as players that adjust their

transmit powers in order to approach an energy efficient data

rate vector, provided that each sources meets its minimum

data rate demand. We show that this game has a mixed-

strategy Nash equilibrium, and we propose a Q-learning-based

algorithm [13] to achieve it. To the best of our knowledge, this

contribution is the first work that considers multiple relays in

designing power allocation schemes at both source nodes and

relay nodes in a full-duplex communication mode.

The remainder of the paper is structured as follows. Sect. II

contains the formulation of the resource allocation problem as

a noncooperative game, whose solution is computed in Sect. III

using a reinforcement-learning method. Sect. IV compares the

performance of the proposed algorithm with other methods

available in the literature, and Sect. V concludes the paper.

II. STATEMENT OF THE PROBLEM

We focus on the uplink of a cooperative relay-aided

network, wherein S multiple sources reach the destination

through N multiple parallel AF relays working in full-duplex

mode, using the links depicted in Fig. 1, where hmi denotes

the channel gain between transmitter m and receiver i, and

Wi ∼ CN
(

0, σ2
w

)

is the additive white Gaussian noise

(AWGN) received at node i with power σ2
w.

In the network, each source node s ∈ S = {1, . . . , S}
needs to meet a minimum end-to-end data-rate demand to-

wards the base-station d, as better detailed below, possibly

exploiting (all) relay nodes N = {1, . . . , n, . . . , N}. Using an

information-theoretic approach, detailed in [14] and omitted

here for the sake of brevity, the sth source node’s signal-to-

interference-plus-noise ratio (SINR) at the destination is

γs =
ϕsps

σ2
w +

∑

s′∈S,s′ 6=s ϕs′ps′
(1)
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Fig. 1: Relay-aided source-to-destination communication.

where pm, pm ≤ pm, is node m’s transmit power, with pm
denoting node m’s maximum power, and

ϕs =

(√
hsd +

∑

n∈N |αn|
√
hsnhnd

)2

1 +
∑

n∈N |αn| 2 hnd

(2)

with αn denoting the scaling factor adopted by relay n to

implement the AF strategy in the AWGN scenario, whose

amplitude is chosen to satisfy its own power constraint pn
as follows:

|αn| =
√

pn
σ2
w +

∑

s∈S hsnps
. (3)

Using (1), we can express the Shannon capacity achievable

by source nose s as

Rs = ∆f · log2 (1 + γs) [b/s] (4)

where ∆f denotes the signal bandwidth. Hence, when inspect-

ing (1)–(3), it is straightforward to note the coupling among

the powers of all nodes (sources and relays) on the rate achiev-

able by each source node. A joint power control, that consists

in finding an optimal vector of transmit powers [p1, . . . , pS ]
and [p1, . . . , pN ] such that the network performance can be

increased, also including QoS constraints on each source node

s’s minimum rate Rs, is thus highly desirable, and at the same

time quite challenging.

To investigate the solution to this problem, we will use the

analytical tools of game theory [7], whose aim is to help us

predict the behavior of rational agents with conflicting interests

competing for some common resources. To this end, we model

the interaction among different nodes as the following non-

cooperative game:

G =
{

M, {Pm}m∈M , {um (pm;p−m)}m∈M

}

(5)

where M = S ∪ N , with |M| = M = S + N , is the

set of all active nodes (both source and relay nodes), that

represent the players of the game; um (pm;p−m) is the utility

function of each user m ∈ M, detailed as follows; and

Pm is the discrete set of user m’s transmit power, defined

as Pm = {0,∆pm, 2∆pm, · · · ,Km ·∆pm} = {k∆pm}Km

k=0,

where (Km + 1), with 1 ≤ Km <∞, denotes the number of

power levels (including zero power), and ∆pm = pm/Km is

the power step, with pm denoting user m’s maximum transmit

power. Without loss of generality, for the sake of simplicity

we assume Km = K ∀m ∈ M. Note that, as the number

of players M is finite, and the number of actions available to

each player K + 1 is also finite, G is called a finite game [7].

To account for the different needs demanded by the two

classes of users, we will define two different utility functions.

The goal of each source node is to trade off its achieved

channel capacity with its minimum power consumption. To

this end, we define the utility function for source nodes as

us (ps ; p−s) =
Rs(p)

ps + pc
s.t. Rs ≥ Rs and ps > 0

(6)

where p−s = p\ps is the power vector of all nodes (including

both sources and relays) excluding source s’s power ps, with

p denoting the M × 1 power vector collecting the transmit

powers by all M nodes in the network; Rs(p) is Shannon

capacity (4) achievable by transmitter s, in which we explicitly

include the dependence on p; and pc > 0 is the circuit power,

independent of the transmission rate and modeled as in [15],

[16]. To explicitly account for the constraints in (6), the payoff

of a source node is equal to zero when either Rs < Rs or

ps = 0.

On the other hand, as the relays are just ancillary nodes that

aim at increasing the network performance while not showing

significant power-saving constraints, their main purpose is to

increase the SE of the system. Hence, we define the utility

function for each relay node as

un (pn ; p−n) =
∑

s∈S

Rs(p)

pc
s.t. Rs ≥ Rs ∀ s ∈ S (7)

where pc is used just to let un (pn ; p−n) have the same unit

of measure of us (ps ; p−s); and Rs(p) is again the Shannon

capacity (4) achievable by source s, that depends on pn accord-

ing to (1)–(3). Similarly to (6), we assign un (pn ; p−n) = 0
when Rs(pn) < Rs for at least one source node s.

A close inspection of the utilities (6) and (7) reveals

that including the QoS constraints Rs introduces a coupling

between the power sets that provide positive utilities for all

players m ∈ M. In the remainder of the paper, we assume

that the network setup (that includes channel realizations and

set of minimum rate demands) is such that all sources are

able to meet their requirements Rs, otherwise the problem is

declared to be unfeasible, as better detailed in Sect. III. The

feasibility of the problem is out of scope of this paper, and

left as a future work.

Given the game formulation detailed above, it is appar-

ent that there exists a tradeoff between achieving a high

network sum-rate (in terms of achievable Shannon capacity)

and maximizing the energy efficiency (EE) of each individual

source node. Moreover, the source nodes’ power allocations

are coupled in a conflicting way, as increasing each source’s

power level increases its own SINR while generating a higher

interference level at both the relays and the destination. Simi-

larly, the relay nodes’ power allocation affects the performance



of all sources in a conflicting way, according to the coupling

among source-to-relay and relay-to-destination links. To solve

the maximization problem1

p∗m = arg max
pm∈Pm

um (pm ; p−m) (8)

in a scalable and distributed way, and thus keeping its com-

plexity low, we can make use of the analytical tools of

noncooperative game theory [7]. A possible solution to (8)

is the pure-strategy Nash equilibrium: each player chooses an

action p∗m ∈ Pm that is its “best response” (in the sense of

utility maximization) to the other players’ choices. Unfortu-

nately, not all games have pure-strategy Nash equilibria. A

generalization of this concept is represented by mixed-strategy

Nash equilibria, which are probabilistic distributions on the

set of actions available to each player that maximize each

player’s expected payoff to the joint probabilistic distribution

of all others.

Definition 1: A mixed-strategy Nash equilibrium for a

game G is a M -tuple of vectors [σ∗
1 , . . . ,σ

∗
M ], with σ

∗
m ∈

[0, 1]K+1, such that, for all m ∈ M and all σm ∈ [0, 1]K+1,
∑

pm∈Pm

∑

p−m∈P−m

σ
∗
−m(p−m)σ∗

m(pm)um (pm ; p−m) ≥
∑

pm∈Pm

∑

p−m∈P−m

σ
∗
−m(p−m)σm(pm)um (pm ; p−m),

(9)

where pm ∈ Pm is a pure strategy, P−m =×i6=m
Pi is

the cartesian product of all strategy sets other than m’s one,

and, likewise, σ
∗
−m(p−m) is the product of probability of

the opponents’ joint strategy p−m, given by σ
∗
−m(p−m) =

∏

i6=m σ∗
i (pi), where the product stems from the independence

of each player’s action with respect to the other ones. �

Theorem 1 (Nash [17]): In every finite static game G there

exists at least one mixed-strategy Nash equilibrium.

The proof makes use of the Brouwer-Kakutani fixed-point

theorem and can be found in [7]. �

III. Q-LEARNING-BASED ALGORITHM

Once the existence of (at least) one mixed-strategy Nash

equilibrium in G is assessed, we now aim at computing it. In

general, there does not exists a specific algebraic method to

solve mixed-strategy best response equations, and solving such

problems is typically NP-hard [18], in particular when there

is a huge number of strategies and players. For a two-player

game, mixed-strategy Nash equilibria can be computed explic-

itly (e.g., see [19]). For more complex games, we can resort to

learning methods [20], that are able to let the players interact

so that they can learn about the game and gather information

about each other in the course of playing. In particular, we can

resort to reinforcement learning techniques [21], well-suited

for multi-agent systems, where agents know little about the

other agents. To cache the results of each player’s experience,

1Note that, although all relay nodes earn the same payoff for a given power
allocation p, the optimal transmit powers p∗

n
for n ∈ N are in general not

equal, due to the different channel link conditions.

most reinforcement learning methods use Q-value functions

Qt=0
m (p), computed at time step t for each player m and any

power profile p = (pm; p−m) ∈ P = Pm×P−m, that lead

agents to the optimal strategy (i.e., the mixed-strategy Nash

equilibrium) [13]. Q-learning has been deeply investigated,

and possesses a firm foundation in the theory of Markov

decision processes. In addition, it is also quite easy to use,

and has been widely employed in many fields of application,

such as communications and networking [22].

The algorithm proposed in this paper, which adapts the one

derived in [23], starts with an initialization of the Q-values

to Qt=0
m (pm; p−m) = um (pm; p−m) for all m ∈ M and

for all p ∈ P . Then, at the beginning of each time step t,
each agent m individually updates the table of probabilities

π
t
m = [πt

m(p)] for all p ∈ Pm×P−m using

πt
m(pm; p−m) =

exp {Ωt
m(pm; p−m) / Tm}

∑

Pm

∑

P−m

exp
{

Ωt
m(pm; p−m) / Tm

}

(10)

wherein Ωt
m(pm; p−m) =

∑t

ℓ=0 (δm)ℓ · um (pm; p−m) is the

discounted reward for taking joint action (pm; p−m) by the

user m in time step t; δm ∈ [0, 1] is a “discount factor”; and

the parameter Tm is a function which provides a randomness

component to control exploration and exploitation of the

actions (see [14] for more details).

After this update, each agent m chooses the best joint

strategy p̃m, according to

p̃m = arg max
p∈P

πt
m(p) (11)

and finally updates its own Q-value according to the recursion

Qt+1
m (p̃m)←−

(

1− f t+1
m

)

·Qt
m(p̃m) +

f t+1
m ·

(

um (p̃m) + δm ·Qt
m(p̃m) ·

M
∏

i=1

πt
i(p̃m)

)

(12)

where f t
m is the learning rate, which is a function of t [24].

Hu and Wellman in [23] proves that the Q-value updates

(12) converge for all agents m ∈ M in the long-run

with probability one. When this occurs, the profile σ
∗
m =

[σ∗
m(pm)]pm∈Pm

, with elements

σ∗
m(pm) =

∑

p−m∈P−m

πt
m(pm;p−m) (13)

for all pm ∈ Pm, coincides with a mixed-strategy Nash equi-

librium of the game G. For the reader’s convenience, the

proposed algorithm is summarized in Table I. Note that, if

there exists some agent m ∈M, such that its initial Q-values

Qt=0
m (pm; p−m) = um (pm; p−m) = 0 for all p ∈ P , then

its strategy set becomes empty. In this case, the problem is

declared to be unfeasible, as the network resources are not

enough to accommodate all users given their QoS constraints

and the channel realizations.



Initialization:

for every m ∈ M do

for every p ∈ P = Pm×P−m do

set Q0
m (p) = um (p);

end for

end for

Feasibility check:

if
(

∃m ∈ M s.t. Q0
m (p) = 0 ∀p ∈ P

)

then exit;

else set t = 0 and a tolerance ε≪ 1;

Loop:

repeat

{updating probabilities}
for every m ∈ M do

for every p ∈ P = Pm×P−m do

update πt
m(p) using (10);

end for

compute p̃m using (11);

end for

{updating Q-values}
for every m ∈ M do

update Qt+1
m (p̃m) using (12);

end for

update t = t+ 1;

until maxm∈M

∣

∣Qt
m(p̃m)−Qt−1

m (p̃m)
∣

∣ ≤ ε
Output:

compute σ∗
m(pm) using (13).

Table I: Q-learning-based algorithm.

IV. NUMERICAL RESULTS

In this section, we show the performance of the proposed

algorithm to control the power in a multiple-relay-aided com-

munication network scenario, and compare it with that of well

known power allocation schemes, namely: i) Nash bargaining

solution (NBS) [25]; ii) max-min fairness solution [26]; and

iii) max rate solution [27]. Throughout the simulations, unless

otherwise specified, we make use of the following system

parameters: ∆f = 10.938 kHz, σ2
w = 10 nW, pc = 100mW

[15], and pm = 1W for all m ∈ M. For simplicity,

we set Rs = 1 kb/s for all source nodes s ∈ S. The

distances of relays and source nodes from the base stations

are assumed to be uniformly distributed between 10 and

100m, the path loss exponent is set to ς = 4, and a 24-

tap channel model [28] is used to reproduce the effects of

shadowing and scattering. We also set f t
m = t−0.8, δm = 0.85,

and Tm = 10−2 · um · exp
{

−10−2 · um · t
}

, with um =
maxp∈P um (p), that provide a good tradeoff between EE

and SE, based on an exhaustive search [14], not reported here

for the sake of brevity. To reduce the computational burden

of the proposed algorithm, which is exponentially increasing

with the number of power steps K + 1, we select the cases

K = 1, corresponding to the situation in which the sum-rate is

maximized and the computational load is the minimum one,

at the cost of a reduced EE, and K = 3, which provides
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an interesting tradeoff between SE, EE, and computational

complexity of the algorithm. Note that, using such values of

K, the proposed algorithm converges after a few iteration steps

(typically, less than 3) [14].

In Figs. 2-4, we will compare the performance of our pro-

posed algorithm, using K = 1 (circles) and K = 3 (squares),

with the following optimization techniques, formalized below,

and depicted by diamonds, lower triangles, and asterisks,

respectively:2

NBS fairness: max
pm∈[0, p

m
]

∏

s∈S

Rs −Rs

ps + pc
(14a)

max-min fairness: max
pm∈[0, p

m
]
min
s∈S

Rs

ps + pc
(14b)

max rate: max
pm∈[0, p

m
]

∑

s∈S

Rs (14c)

2Throughout the simulations, and unlike our proposed algorithm, the
transmit power set here is assumed to be continuous in [0, p

m
].
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Figs. 2 and 3 report the average EE as functions of the

number of source nodes S, and the number of relays N ,

respectively. As expected, the EE is decreasing with S and

increasing with N . When N is fixed, increasing S increases

the multiple access interference (MAI), thus reducing the EE.

On the contrary, increasing N while S is constant increases the

sum-rate in the long run, without additional power expenditure

at the source side. Note that the case K = 3 outperforms the

case K = 1. However, even in the extreme case K = 1 (i.e.,

each node selects either zero power or its maximum one),

the proposed algorithm outperforms the well-known solutions

(14). Similar conclusions can be drawn for the average SE,

reported in Fig. 4, where the average sum-rate is reported as

a function of S. Obviously, by definition the maximum sum-

rate is given (14c), and confirmed by our numerical results.

However, the performance gap paid by the proposed algorithm

is still acceptable, especially when compared with the perfor-

mance gap achieved by NBS and max-min approaches.

To measure the improvement achieved by including the

relay powers into the resource allocation problem, which, to

the best of our knowledge, is not present in the available

literature, we now compare the proposed algorithm, where

M = S ∪ N , with the same scheme, but with M = S,

while each relay nodes n ∈ N adopts the same power level

pn = pn = 1W at all steps of the algorithm. For the sake

of completeness, we also report the comparison between the

source-plus-relay versus source-only power control schemes

for the NBS, max-min fairness, and max-rate solutions. Fig. 5

reports the percentage of improvement in terms of average EE

at the mixed-strategy Nash equilibrium of the game, where u∗
s

and ũ∗
s represent the source’s average utilities achieved by

the proposed algorithm using M = S ∪ N and M = S,

respectively, as a function of N , using S = 4. As can be seen,

apart from the max-min fairness case,3 allowing the relays to

3Here, we fall into a Braess-type paradox, already observed in other
different contexts (e.g., [29], [30]).
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regulate their transmit powers jointly with the source nodes

is always beneficial in terms of both average EE and average

sum-rate. This is particularly apparent for the case K = 3
when S increases, but the same behavior can also be observed

for all other curves. More importantly, the proposed source-

plus-relay approach outperforms not only the source-only case,

as the improvement is always positive, but also both versions

(i.e., source-plus-relay and source-only) at all other schemes.

Finally, let us investigate the impact of the circuit power

pc on the performance of the resource allocation techniques

introduced above. As mentioned in Sect. II, pc depends upon

characteristics of electrical architecture of the nodes. Using

some results available in the literature (e.g., [16], [31]), it is

known that the EE increases as pc decreases. To verify it,

Fig. 6 reports the average EE as a function of pc for a network

consisting of S = 6 source nodes and N = 4 relay nodes.



As can be seen, pc has a weak impact on max-min fairness

and max-rate solutions, whose performance in terms of EE is

always lower than that achieved by the technique illustrated in

Sect. III. On the contrary, the NBS outperforms the proposed

algorithm for low values of pc (in this particular scenario,

when pc < 7mW). However, note that such small values are

not yet available in practical systems [32], and typical values

of pc are in the order of 100mW [15], [32], wherein the

proposed algorithm shows significantly higher performance.

V. CONCLUSION

In this work, we considered a reliable wireless communica-

tion network consisting of multiple sources, multiple parallel

relays, and one destination, in which each active node is

modeled as a player in a non-cooperative finite game, whose

interest is formulated as follows: each source node is a self-

interested player which aims at maximizing its own energy

efficiency; and each relay node is an altruistic player which

aims at maximizing the network sum-rate with constraints on

the minimum rates of all sources. The mixed-strategy Nash

equilibrium points of the game are then computed using a Q-

learning-based algorithm, which leads the players to compute

a probability distribution among all available pure strategies.

Numerical results show that our proposed technique, that

uses a low-complexity algorithm, outperforms the Nash bar-

gaining solution and the max-min fairness approach in terms

of both energy efficiency and network sum-rate, and signifi-

cantly outperforms the max-rate solution in terms of energy

efficiency, which is our major performance metric, while

paying a tolerable performance gap in terms of network sum-

rate. Further work is needed to assess the feasibility of the

problem given a particular network realization, and to extend

the formulation of the problem to a multicarrier system, so

that the additional degrees of freedom may improve the both

the energy and the spectral efficiency of the network.
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