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Abstract—In dynamic cognitive radio networks (CRNs) sec-
ondary users (SUs) sense the spectrum bands to find temporal
absence of primary users (PUs) and immediately transmit on the
identified spectrum holes. SUs sequentially sense the channels,
stopping when the available resources are expected to provide the
best throughput performance. Following, the selected channels
are exploited using multi-channel transmission. In this paper,
the multi-channel selection problem for SUs supporting multiple
applications generating traffic with different latency require-
ments is formulated in a CRN with both heterogeneous PU-traffic
and channel conditions. We have proposed an optimal solution
overcoming the expensive computations and storage requirements
typical of optimal stopping problems. Our efficient algorithm
only requires linear-time and quadratic-space complexities in
the online decision phase, aided by statistical decision values
efficiently pre-computed offline. Extensive evaluations validate
our solution as a significant improvement over the application
of existing solutions, all based on the well-known backward in-
duction technique or its approximations, characterized by either
intractable algorithmic complexities or approximate results.

I. INTRODUCTION

The government regulatory bodies have historically assigned
the radio spectrum bands redundantly to applications, resulting
in almost all the frequency bands of the usable radio spectrum
being allocated. The recent enormous increase of mobile traffic
expected to continue in the next years [1], and the proliferation
of new wireless applications [2] have created a shortage of
bandwidth supply known as the spectrum scarcity problem. At
the same time, spectrum measurements [3] highlighted that in
different locations and instants in time, significant portions of
the radio spectrum (called spectrum holes) are underutilized.

Cognitive Radio Networks (CRNs) ease the spectrum
scarcity problem by providing opportunistic access for un-
licensed secondary users (SUs), to operate on the spectrum
holes left by the licensed primary users (PUs). Typically,
SUs monitor the channels to detect the presence of PUs, and
possibly exploit the resources when PUs are not transmitting.
Static CRNs are characterized by channels with stable PU-
activity in both space and time domains. Instead, dynamic
CRNs have rapidly changing PUs’ transmission patterns, gen-
erating spectrum holes, whose durations are comparable with
SUs’ communication times. Since large parts of the wireless
spectrum are allocated to PUs with rapid and bursty transmis-
sion patterns, enabling dynamic CRN operations creates new

exploitable resources, improving the spectrum utilization.
SUs can support multiple applications (such as streaming,

file transfer, remote monitoring), each with different require-
ments of latency and throughput. A time-slotted system is
adopted to provide SUs’ synchronization and PUs’ protection
in the dynamic CRN. During each slot the SUs sequentially
sense the frequency bands to find the spectrum holes and
estimate the channel gains between the SU-transmitter and
the SU-receiver. When channels free from PUs’ transmissions
and with favorable link qualities to meet the application
requirements are found, SUs exploit them using multi-channel
transmission for the remaining part of the time slot. This
is accomplished using Discontiguous Orthogonal Frequency
Division Multiplex (D-OFDM) [4], which allows to transmit
on multiple orthogonal subcarriers, disabling the ones corre-
sponding to the channels in which PU-signals are present.

While sensing more channels could increase the likelihood
of finding better resources to support the application require-
ments, it also incurs the risk of finding channels busy or
with poor link qualities, therefore wasting transmission time
and so degrading SUs’ throughput and delay. The trade-off
between these two aspects is the target of the channel selection
problem, which aims to find the optimal set of channels
to satisfy the SU’s requirements of throughput maximization
and constrained delay imposed by the application needs. The
channel selection problem can be modeled as a finite-horizon
optimal stopping problem [5], deciding at any step if to
search for additional channels or stop and transmit. The known
backward induction method and the k-stage look-ahead (k-sla)
approximation method suffer of either elevated complexity or
imprecision. Also, the multiple traffic types supported by SUs
impose to consider separate parameters for each application,
significantly aggravating the complexity of the problem.

In this paper, the channel selection problem for SUs op-
portunistically transmitting over multiple channels through
D-OFDM is studied. The delay requirements of the SUs’
applications as well as the heterogeneous characteristics of
the CRN generate challenging algorithmic complexities, re-
quiring efficient solutions implementable even in hardware-
constrained devices. Our main contributions are the following:

• We have devised a low-complexity optimal channel se-
lection algorithm, which maximizes the throughput and
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satisfies the delay constraints of SUs’ applications, rep-
resenting an efficient solution for dynamic CRNs.

• We have demonstrated the practicality of our solution
which (unlike the backward induction based optimal
stopping rule) shows limited execution times and storage
needs, even for SUs supporting a large number of appli-
cations and the CRN having large number of channels.

• Through extensive performance evaluation, we have
shown that our algorithm outperforms the maximum
throughput achievable by existing approximate solutions
based on the k-sla method, therefore being the preferred
channel selection solution for dynamic CRNs.

Next, Section II presents the related works. Section III
details the system model adopted. Section IV- V present the
multi-channel selection algorithms and evaluate their perfor-
mance respectively. Finally, Section VI concludes the paper.

II. RELATED WORK

The channel selection problem for throughput maximization
is formulated in literature as a finite horizon optimal stopping
problem [5]. Previous works including [6]–[8] mainly studied
the case of SUs transmitting on a single channel, in which the
computational complexity represents a minor concern.

Limited works have studied the problem of channel selec-
tion with multi-channel transmission. In [9] authors use the
backward induction method to obtain the maximum through-
put within a transmission slot. The constraints of maximum
number of adjacent channels and bandwidth fragments lead to
exponential complexity. Taking advantage of the channels’ ho-
mogeneity, a k-sla approximation is adopted, achieving almost
optimal results. Authors in [10] use a k-sla approximation
stopping rule for the multi-channel selection in a CRN with
known channel rates, achieving close to optimal performance
by applying first the 1-sla stopping rule, until it tells to stop and
transmit, then applying the 2-sla until it also tells to stop, and
so on. This process can become computationally expensive.
A-priori knowledge of channel transmission rates is assumed,
which may not be possible.

In [11] we have devised a low-complexity multi-channel
selection algorithm, using only only PUs’ traffic and channels’
data rates statistics available at SUs. In [12] we have extended
the low-complexity algorithm to the case when knowledge of
channel gains instead of data rates is available, and the channel
selection is constrained by the limited power available at SUs.

To the best of our knowledge this work is the first study
incorporating the latency requirements of the multiple appli-
cations supported by SUs into the channel selection problem.

III. SYSTEM MODEL

A. Characteristics of channels

A CRN operates on M non-overlapping channels, each of
bandwidth W . The channels represent portions of the spectrum
potentially available for opportunistic use by SUs, in which
PU-traffic is present with different patterns among channels.

A time-slotted system with slots of duration T is adopted.
During each slot, a channel is available/unavailable for SUs to

use, depending on the presence/absence of PUs’ transmission
on it. A random variable Xi(t) models the state of channel i
in respect to the presence of PU-activity during a slot t, which
can assume values of 1/0 depending if the channel is avail-
able/unavailable, with qi(t) channel availability probability of
channel i during t. Slowly varying channels, with constant
channel gains during t are considered. The gain of channel i
during t, modeling the degrading effects affecting the wireless
channel, is represented by a random variable Hi(t), such that
Hi(t) = gl with probability pi,l(t), with g1 < . . . < gL. L
represents the number of channel gain values possible in the
CRN, which is assumed finite. Each SU comprises a single D-
OFDM transceiver, capable of sending/receiving on multiple
discontiguous channels at the same time. The aggregated data
rate of m channels during a transmission slot t using D-OFDM
with uniform power distribution is defined as:

bm(r1(t), . . . , rm(t)) =

m∑
i=1

ri(t) ≈ W

m∑
i=1

xi(t) log2
Shi(t)

N0Wzm(t)

(1)
with ri(t) observed data rate of channel i during slot t, xi(t)
and hi(t) realizations of Xi(t) and Hi(t) respectively, and
zm(t) =

∑m
i=1 xi(t) number of channels found available. The

approximation in equation (1) is possible since the Signal-to-
Noise-Ratio (SNR) can be assumed quite larger than 1.

B. Secondary user characteristics

Although able to transmit or receive on multiple discontiguous
channels concurrently, the single D-OFDM transceiver present
in each SU can only send, receive or sense at the same
time. Consequently, a SU with data to transmit, sequentially
search one channel at a time for spectrum holes before
transmitting. The SU-transmitter and its intended SU-receiver
synchronously hop from channel to channel, sensing the
presence of PUs and estimating the link quality. The SU-
transmitter senses the presence of PUs on a channel, reporting
the availability status of it. Channel sensing is assumed error-
free, but including imperfect channel sensing would not alter
the validity of our work. When a channel is found free, its gain
between the SU-transmitter and the SU-receiver is estimated
by sending known pilot symbols and feeding back the obtained
result. The sensing and estimating processes including the
switching delay incur a constant delay τ for each channel.

The order in which channels are sensed is predetermined
and it can be derived from techniques such as descend-
ing order of availability probabilities [6] or expected data
rates [10] or from SU collision avoidance strategies [7].
Unless specified, no assumptions are made on the sequence
of channels, which shows random characteristics of PU-traffic
and channel gains. It is assumed that the arrays of statistics
Q(t) = [q1(t) . . . qM ], and Pi(t) = [pi,1(t) . . . pi,L(t)] are
available at SUs.

SUs should satisfy the application requirements of through-
put (i.e., number of bits sent during a slot) maximization and
bounded delay during a transmission slot. Clearly, the process
of selecting the CRN’s channels affects the delay of packets



V (Mv)
m (r1, . . . rm) = max

{
ym(r1, . . . rm), qm+1

L∑
l=1

pm+1,lV
(Mv)
m+1 (r1, . . . rm,W log2

Sgl
N0Wzm+1

) + (1− qm+1)V
(Mv)
m+1 (r1, . . . rm, 0)

}
(4)

ym >
(
b
(zm+k)
m +W

m+k∑
j=m+1

qj

L∑
l=1

pj,l log2
S gl

N0 W zm+k

)
[1− (m+ k)α] with 1 6 m < Mv (5)

Fig. 1: Algorithmic framework for channel selection.

and may also reduce the throughput, if the increase in data
rates does not compensate for the transmission time forgone.

SUs supporting up to A different types of applications, each
characterized by a different maximum tolerable medium access
delay requirement d1 < d2 < . . . < dA, are considered. For
an application of type v, with v ∈ {1, 2, . . . A} the throughput
during t, after sensing m channels is defined as:

ym(r1(t), . . . rm(t)) = bm(r1(t), . . . rm(t)) (1−m α) (2)

with α = τ/T . The delay requirement of the application limits
the number of explorable channels during the channel selection
process as 1 6 m 6 Mv = min{M, ⌊dv/τ⌋}, with Mv > 2.

C. Algorithmic framework

Channel information becomes available only after sensing
one frequency band at a time, therefore the channel selec-
tion constitutes an online algorithm. The process has to be
conducted efficiently, minimizing the computation time and
memory overhead. The online complexity can be reduced by
pre-computing offline the operations based on the statistical
values available for the CRN. In fact, these statistics remain
valid for multiple consecutive slots, until the CRN conditions
significantly change. Figure 1 illustrates the alternation of
offline and online phases within the channel selection process.

IV. CHANNEL SELECTION ALGORITHMS

A. Backward induction

For an application v with maximum latency requirement of dv ,
given the current achievable throughput ym(r1, . . . , rm), the
decision if to stop at m and transmit for the rest of the slot, or
continue the channel selection, is based on the expected max-
imum throughput obtained from the dynamic programming
recurrence relation in equations (3-4) with 1 6 m < Mv.

V
(Mv)
Mv

(r1, . . . rMv ) = yMv (r1, . . . rMv ) (3)

The base case (3) computes the throughput achievable when
Mv channels are explored. Equation (4) backwardly takes

the best between the throughput after sensing m channels,
and the expected maximum throughput if the next channel is
considered. If the throughput ym achievable with the current
rates corresponds to the values of V

(Mv)
m for the same rates,

the SU starts transmitting data, otherwise it explores the next
channel. Similarly to the backward induction formulations
in [11], [12], computing offline the V

(Mv)
m rewards values

requires an asymptotic complexity of O
(
M ·

(
M+L
M

)
· L

)
.

Considering A applications, it approximates to O(A ·ML).
When the number of channels M is elevated, this approach

requires expensive computations and large memory require-
ments, exceeding the resources of commodity devices.

B. k-stage look-ahead (k-sla)

This approximated solution decides at each stage if to stop or
continue, depending on whether the rule optimal among those
truncated k stages ahead stops or continues [5]. A simplified
k-sla stopping rule is obtained in (5) similarly to the multi-
channel case in [10]. For an application v, with a maximum
tolerable delay dv translating into maximum number of ex-
plorable channels Mv, it finds when the throughput attainable
using the zm available channels among 1, . . . ,m is no less than
the expected throughput after adding the available channels
among the next k. The term b

(zm+k)
m adapts bm to consider

the effect on the SNR of transmitting over zm+k channels:

b
(zm+k)
m = W

m∑
i=1

xi log2
S hi

N0Wzm+k
= bm +WZm,m+k (6)

with Zm,n = {0 if zm = 0; zm log2
zm
zn

otherwise}. The
number of channels available in m + k steps is estimated as
zm+k = zm+

∑m+k
i=m+1 qi. The double summation in (5) com-

putes the expected aggregate rate from the next k channels.
The k-sla method achieves close to optimal results by ap-

plying incremental k-sla rules, starting from 1-sla, increasing
if the current rule suggests to stop, up to the k-sla. The process
leads to an online complexity of O((M+k) ·k ·L). Although,
pre-computation may reduce the online complexity, this solu-
tion becomes either imprecise or computationally expensive.
In fact, when the next k channels do not constitute an accurate
representation of the all selectable CRN’s channels, the result
would be imprecise. The probability of this event decreases
by increasing k, which aggravates the online computations.

C. Delta algorithm

In the proposed algorithm, the channel selection for an appli-
cation v stops if the throughput achievable after visiting m



channels is no less than the largest expected throughput that
can be possibly achieved using future channels m+1 to Mv .
The stopping rule at step m is defined as:

ym > max
m<n6Mv

{(b(zn)
m +Bm,n)(1− n α)} 1 6 m < Mv (7)

with b
(zn)
m current attainable aggregate data transmission rate

bm adapted to consider the effect on the SNR of transmitting
over zn channels (i.e., b

(zn)
m = bm + WZm,n) and Bm,n

expected aggregate data transmission rate supported by the
channels m+ 1 to n derived as follows:

Bm,n = W

n∑
j=m+1

qj

L∑
l=1

pj,l log2
S gl

N0 W zn

= W

n∑
j=m+1

qj
(
log2

S

N0Wzn
+

L∑
l=1

pj,llog2gl
)

(8)

For each step m, the formula in (7) can be rewritten as:

ym > (b(zn)
m +Bm,n)(1− n α) ∀n, m < n 6 Mv (9)

and translated into a condition on the data transmission rate:

bm > (WZm,n +Bm,n)
1− nα

(n−m)α
= ∆m,n(v)

∀n, m < n 6 Mv (10)

The stopping rule for an application v stated in (7), is
equivalent to the stopping rule in (11), based on Theorem 1.

bm > ∆m(v) = max
m<n6Mv

{∆m,n(v)} 1 6 m < Mv (11)

Theorem 1. For an application v seeking for throughput max-
imization constrained by the maximum number of explorable
channels Mv , the two statements are equivalent at any channel
selection step m: (i) The rate bm is no less than ∆m,n(v).
(ii) The throughput ym is no less than the maximum expected
throughput if exploration continues until any step n, i.e.

bm > ∆m,n(v) ⇐⇒ ym > (b(zn)
m +Bm,n)(1− n α)

∀m,n, 1 6 m < n 6 Mv (12)

The proof of Theorem 1 is derived similarly to the proof
in [11]. The algorithm implementation results in the following
operations. At every step m, the rate achievable exploiting the
channels found idle (i.e., zm), is compared with the corre-
sponding threshold, denoted as ∆(zm)

m (v). The threshold values
are pre-computed and stored in memory, reducing the online
phase to a comparison operation for each step. Algorithm 1
illustrates the offline computations. Lines 1-8 compute the
partial sums Qi and Gi. Lines 9-25 compute the ∆

(zm)
m (v)

values with O(M3) time-complexity. Particularly, the outer
loops consider all the possible steps and available channels for
the channel selection process. The inner loop iterates through
the remaining channels, switching the considered application
when the delay limit of the current application is passed. The

pre-computed values are accessed during the online phase,
requiring only linear-time and O(A ·M2) space complexities.

V. PERFORMANCE EVALUATION

A. Evaluation of algorithmic complexities

The execution times and space requirements of the backward
induction and Delta algorithms are studied. Instead, the k-sla
method is not considered now, since it is an approximation.
Different cases of number of applications supported by the
SUs and number of channels in the CRN are considered. Three
scenarios with varying number of channel gains supported are
examined. The values of maximum explorable channels Mv

for each application v are chosen equally spaced in {2, . . .M}.
Figure 2 shows the execution times of the offline phases

for the backward induction and Delta algorithms, running on
a virtual machine with 3.0 GHz clock speed and 2.4 GB of
RAM, having two to three times more resources than typical
portable devices. The backward induction requires several
seconds which is not tolerable, whereas the Delta algorithm
has very constrained execution times, between hundreds of
microseconds to few milliseconds. All variables significantly
affect the backward induction algorithm, whereas our solution
is only minimally affected by the number of channels.

Figure 3 shows the storage requirements of the backward
induction and Delta algorithms to hold in memory the values
pre-computed offline and needed for the online decisions. The

Algorithm 1 ∆
(zm)
m (v) Pre-computing

Require: Pi for 1 6 i 6 M , Q, α, gl for 1 6 l 6 L,
Mv for 1 6 v 6 A

Ensure: ∆
(zm)
m (v)

1: Q0 = 0; G0 = 0; v̄ = 1
2: for i = 1 → MA do
3: γ = 0; Qi = Qi−1 + qi
4: for l = 1 → L do
5: γ = γ + pi,l log2 gl
6: end for
7: Gi = Gi−1 + qi γ
8: end for
9: for m = 1 → Mv̄ − 1 do

10: for zm = 0 → m do
11: v = v̄; ∆(zm)

m (v) = 0
12: for n = m+ 1 → MA do
13: zn = zm +Qn −Qm
14: if n > Mv then
15: v = v + 1
16: ∆

(zm)
m (v) = ∆

(zm)
m (v − 1)

17: end if
18: ∆

(zm)
m (v) = max

{
∆

(zm)
m (v),W 1−n α

(n−m)α

[
Zm,n

19: +(Gn −Gm) + (Qn −Qm) log2

(
S

N0 W zn

) ]}
20: end for
21: end for
22: if m == Mv̄ − 1 then
23: v̄ = min{v̄ + 1, A}
24: end if
25: end for
26: return ∆

(zm)
m (v)
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Fig. 2: Offline execution times when varying number of: applications supported (A), channels (M ), and channel gains (L).
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Fig. 3: Number of offline pre-computed entries for the back-
ward induction (B.I.) and Delta (∆) algorithms.

parameters considered are number of channels, applications
supported, and channel gains. The Delta algorithm needs much
less storage than the backward induction to run its operations.
The memory savings range from 4-10 times for L = 2 up to
several thousands for L = 6, confirming the feasibility of our
solution and the intractability of the backward induction.

B. Network performance

Computer simulations are used with these settings: bandwidth
W = 1 MHz, signal power at the SU-receiver S = −80
dBm, thermal noise spectral density N0 = 290 · 1.38e − 23
W/Hz, T = 10 ms, and τ = 300 µs. The CRN considered has
M = 25 channels, with gains {0.2, 0.7} and three different
probability mass functions distributed among channels: Pi =
[0.8 0.2], Pi = [0.5 0.5], and Pi = [0.2 0.8]. The PU-traffic is

generated by a Poisson process with exponentially distributed
durations multiple of T . SU-traffic is considered saturated. The
maximum throughput achievable by knowing in advance the
PU-occupancies and the channel gains is used for comparisons.

The average throughput of a SU application in a CRN
with heterogeneous PU-traffic characteristics among channels
is shown in Figure 4. Three scenarios are considered with four,
three and two channel availability probability values possible,
equally spaced in the range 0.1 − 0.9. The Delta algorithm
reaches 96−98% of the maximum throughput in all cases. The
scenarios show similar behaviors, with our proposed solution
performing better than the backward induction and the k-sla
approximation solution. The k-sla approximation necessitates
incremental values of k to achieve comparable performance.

Although the k-sla solution performs reasonably well in the
scenario considered, we have identified that it suffers when the
next k-channels are not be good indicators of all next channels.
We have considered channel sequences alternating consecu-
tive groups of very likely available channels with groups of
very likely unavailable channels. Figure 5 shows the average
throughput results when varying the k parameter. When the
lengths of groups are large, the k-sla approximation performs
poorly compared to the Delta and the maximum throughput
values, slightly improving when the k parameter exceeds the
group’s length. Performances improve for shorter groups of
similar channels, where the k-sla becomes comparable to the

Fig. 4: Average throughput under three CRN configurations
with heterogeneous characteristics of channel availabilities.
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Fig. 5: Average throughput of the k-sla algorithm varying k, compared to the Delta algorithm and the maximum throughput.

TABLE I: Throughput and delay in realistic scenarios.
PU-traffic → Heavy Light Heavy and light Heterogeneous

↓Channels quality qi = 0.1 qi = 0.9 qi = 0.1/0.9 qi = 0.1 + (0.9−0.1)(i−1)
M−1

Mv = 24 Th(Mb/s) Delay(τ ) Th(Mb/s) Delay(τ ) Th(Mb/s) Delay(τ ) Th(Mb/s) Delay(τ )

Poor/Avg/Best Delta 8.11 16.26 46.68 14.42 31.06 14.17 30.33 14.51
Max. Th. 9.89 13.71 47.21 14.34 31.58 14.05 31.6 13.9

Poor/Avg Delta 7.9 16.22 44.83 14.34 30.00 13.99 29.11 14.46
Max. Th. 9.6 13.73 45.31 14.22 30.52 13.9 30.44 13.9

Avg/Best Delta 8.29 16.48 48.85 14.54 32.24 14.22 31.43 14.59
Max. Th. 10.24 13.67 49.4 14.43 32.97 14.1 32.82 14.04

Mv = 20 Th(Mb/s) Delay(τ ) Th(Mb/s) Delay(τ ) Th(Mb/s) Delay(τ ) Th(Mb/s) Delay(τ )

Poor/Avg/Best Delta 7.84 15.53 46.65 14.42 30.81 14.08 30.24 14.43
Max. Th. 9.61 12.99 47.16 14.33 31.36 13.98 31.56 13.9

Poor/Avg Delta 7.59 15.60 44.83 14.34 29.97 14.07 29.15 14.44
Max. Th. 9.33 12.9 45.34 14.25 30.58 13.85 30.44 13.9

Avg/Best Delta 8.14 15.57 48.82 14.55 32.36 14.18 31.43 14.53
Max. Th. 9.95 12.92 49.42 14.44 33.00 14.01 32.8 14.0

Mv = 16 Th(Mb/s) Delay(τ ) Th(Mb/s) Delay(τ ) Th(Mb/s) Delay(τ ) Th(Mb/s) Delay(τ )

Poor/Avg/Best Delta 7.33 13.64 46.4 14.41 30.05 13.38 29.62 13.84
Max. Th. 9.07 11.29 47.26 14.29 31.17 13.10 31.42 13.12

Poor/Avg Delta 7.19 13.57 44.61 14.32 29.27 13.35 28.49 13.78
Max. Th. 8.86 11.23 45.36 14.15 30.34 13.10 30.17 13.09

Avg/Best Delta 7.65 13.62 48.55 14.53 31.61 14.5 30.64 13.9
Max. Th. 9.34 11.31 49.38 14.38 32.68 13.17 32.49 13.18

Delta solution as soon as k exceeds the length value.
Table I reports the average throughput and channel access

delay of the Delta algorithm compared with the maximum
throughput, for three applications with different delay require-
ments, translating into Mv = 24, 20, 16 respectively, under
varied realistic conditions of PU-traffic and link quality of
channels. Four cases of PU-traffic are considered: (1) all
channels with heavy PU-traffic (i.e., qi = 0.1); (2) all channels
with light PU-traffic (i.e., qi = 0.9); (3) half of the channels
with light and half with heavy PU-traffic; (4) heterogeneous
PU-traffic, with channel characterized by different availability
probabilities, equally spaced in the interval 0.1−0.9. Channel
gain values are chosen among [0.2 0.45 0.7] with different
probabilities, modeling poor (Pi = [0.7 0.2 0.1]), average
(Pi = [0.1 0.8 0.1]), and best (Pi = [0.1 0.2 0.7]) link quality
channels. The following CRN cases considered: (1) poor,
average, and best channels; (2) poor and average channels;
(3) average and best channels. In all cases, the Delta algorithm
performs greatly, reaching 81−98% of the maximum through-
put, and channel access delays from equal to a maximum 2.8τ
increase, compared to the maximum throughput solution.

VI. CONCLUSIONS

We have presented the multi-channel selection problem for
SUs supporting multiple applications with different latency

requirements, in dynamic CRNs with heterogeneous channels.
We have proposed an efficient algorithm, with very limited
execution times and storage requirements, which make it very
appropriate for implementations in hardware-constrained SUs.
The validity of our solution has been demonstrated through
extensive experimental and simulation results, confirming the
algorithmic efficiency and network performance quality, in
comparison with existing solutions and theoretical results.
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