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Abstract—We address the power control problem in cognitive
radio networks where secondary users exploit spatial spectrum
opportunities without causing unacceptable interference to pri-
mary users. An optimization problem is formulated aiming at
maximizing the utility of secondary users and to ensure the
QoS for both primary and secondary users. To solve the power
allocation problem a genetic algorithm is developed, and two
fitness functions are proposed. The first is oriented towards
minimizing the total transmit power consumption of the sec-
ondary network. The second is a multi-objective function and is
oriented to the joint optimization of total capacity and transmit
power consumption of the secondary network. Results show a
near-optimum performance of the genetic algorithm aided power
control scheme based on the multi-objective fitness function.

I. INTRODUCTION

Cognitive radio technology can significantly improve spec-
trum utilization efficiency by allowing secondary users (SUs)
to dynamically access and share licensed frequency bands
which are assigned to primary users (PUs) [1]. Two main
paradigms have been proposed for spectrum access in cognitive
radio networks, namely, the opportunistic spectrum access
(OSA) and the concurrent spectrum access (CSA) models
[2]. OSA systems aim at avoiding concurrent transmissions
between PUs and SUs by restricting the SUs to access the
channel only at temporary unused frequency bands. The CSA
model is based on the idea that SUs are allowed to transmit
in the same frequency used by active PUs, but subject to the
constraint that they must not affect the communications of PUs.

Transmit power control (TPC) techniques at the SUs may
enable CSA without causing harmful interference to PUs. The
use of TPC may also provide benefits in terms of energy
consumption [3], [4] and network throughput [5]–[7]. The TPC
algorithm can be either distributed or centralized. In distributed
algorithms, every node individually adjusts its transmit power
in order to maximize its own utility function. In centralized
algorithms the TPC problem is addressed as a global opti-
mization problem, where the goal is to maximize a unique
utility function for the secondary network.

In [3] a distributed TPC algorithm based on non-
cooperative game theory for energy efficiency maximization in
the uplink of a multiuser cognitive radio network is proposed.
The tradeoff between energy consumption minimization and
throughput maximization for the secondary link based on
TPC strategies is discussed in [4]. In [5] a robust TPC
problem is formulated as a global optimization taking into
account the uncertainties on the channel estimation, employing

a Lagrangian dual function to solve the problem in a distributed
way. In [6] the joint design of antenna beamforming and power
allocation in cellular cognitive radio networks is considered
and a centralized algorithm to maximize the secondary network
sum rate is proposed. In [7] a TPC algorithm is proposed in
which cognitive nodes exploit location awareness to find the
optimal power control by an exhaustive search technique.

In this paper we present a genetic algorithm (GA) to
solve the transmit power control problem in cognitive radio
networks, formulating the optimization problem in terms of
a general utility function. An admission control algorithm is
used in conjunction with the GA to transform a non-feasible
optimization problem in a feasible one for a subset of SUs.
The GA is then used to solve the power allocation problem in
terms of energy efficiency and the results are compared with a
solution based on linear programming methods. Optimization
methods based on linear or non-linear programming techniques
in general allow obtaining better solutions than those found
by heuristic optimization methods like GAs. However, exact
optimization methods are not very flexible and generally
require that objective function, its derivatives and constraints
meet a set of continuity conditions. The proposed GA can be
easily adapted to handle a variety of optimization objectives by
only modifying the method employed to evaluate the fitness of
each individual in the GA population. We demonstrate this by
utilizing a fitness function that allows the joint optimization
of total transmit power consumption and total capacity of
the secondary network. Moreover, our results show a near-
optimum performance of the proposed GA aided TPC scheme
based on the multi-objective fitness function.

The remainder of this paper is organized as follows. In
Section II the system model and problem formulation are
presented. Section III describes a solution to the TPC problem
for energy efficiency while Section IV presents the proposed
GA algorithm. In Section V numerical results are provided,
while Section VI concludes the paper.

II. SYSTEM MODEL

We consider an interference-limited spectrum sharing sce-
nario in which a secondary network operates inside the primary
coverage area. The primary and secondary networks are com-
posed of M and N transmitter/receiver pairs, respectively. We
assume that the signal propagation is dominated by path-loss
effects. To model the link gain from the kth transmitter to the
ith receiver, hki, we consider a log-distance path loss model,
hki = h0(d0/dki)

α, where α is the path loss exponent, dki
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is the distance from the kth transmitter to the ith receiver, d0
and h0 are constants that represent the reference distance and
the link gain at this location, respectively. It is also assumed
that information about the locations of primary and secondary
nodes is available for cognitive devices. Location-awareness
can be achieved by using the positioning techniques in [8].

The employed QoS metric is the signal-to-interference-and-
noise ratio (SINR), which at the ith PU can be computed as

γ
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ii p
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where p
(p)
i and p

(s)
j denote the transmit power of the ith

primary and the jth secondary transmitters, respectively; h
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and h
(pp)
ji are the link gains from the jth secondary and primary

transmitters to the ith primary receiver, respectively and σ2 is
the thermal noise power. Similarly, the SINR at the ith SU is
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where h
(ss)
ji and h

(ps)
ji are the link gains from the jth secondary

and primary transmitters to the ith secondary receiver.

The SUs may only transmit if they satisfy the QoS re-
quirements for both primary and secondary receivers. Primary
transmitters employ fixed transmit powers. The secondary
network is expected to limit the interference caused to the
primary network while attempting to provide service to the
SUs with a specified QoS determined by the target SINR.
Therefore, the ith link is considered active if the received

SINR is above the corresponding threshold γ
(thp)
i for PUs and

γ
(ths)
i for SUs. In order to meet these requirements, each SU

can adjust its transmit power within the range [pmin, pmax]
and then a power control vector p = [p1, . . . , pN ], can be
allocated to the secondary network. If the optimization goal
is to minimize an objective function ϕ(p), then the optimal
power control vector p∗ can be found by solving

p
∗ =argmin

p

ϕ(p)

subject to C1 : γi ≥ γ
(thp)
i , i = 1, 2, . . . ,M

C2 : γi ≥ γ
(ths)
i , i = 1, 2, . . . , N

C3 : pmin ≤ pi ≤ pmax, i = 1, 2, . . . , N.
(3)

The problem is said to be feasible when there is at least one
solution that satisfies all constraints. This global optimization
approach requires that a central controller in the secondary
network assigns the power vector to SUs by finding a solution
to (3). A control channel between the central controller and
the SUs would be necessary [9], [10].

III. ENERGY EFFICIENCY OPTIMIZATION PROBLEM

SOLUTION BY LINEAR PROGRAMMING METHOD

In [11], a solution to the problem stated in (3) is presented
when the optimization goal is to minimize the total secondary
network power consumption. In this case, the objective func-
tion is a linear function of the secondary network power vector,

ϕe(p) =
∑N

i=1 p
(s)
i . The problem constraints can also be

transformed into linear constraints, so that the problem can be
solved by linear programming methods. Constraints C2 in (3)
can be represented as [I− ΓA]p ≤ b, where I is the N ×N
identity matrix, Γ is an N ×N matrix whose elements are

γij =

{

γ
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, (4)

A is an N ×N matrix with entries specified as
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and b is a row vector with elements
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When [I− ΓA]−1 exists, and the power vector p∗ =
[I− ΓA]−1b satisfies constraints C1 and C3, the problem is
feasible and the optimal solution is p∗.

A. Admission Control

When the problem is not feasible, the initial optimization
problem can be redefined by excluding a set of secondary links
in a way that the problem becomes feasible for the remaining
SUs. To accomplish this, an admission control algorithm is
presented in [11], and for which we include the pseudo code
in Algorithm 1. The method iteratively discards those users
that caused the worst interference until the problem becomes
feasible for a subset Sa ⊆ S, being S the set of all SUs.
The user that caused the worst interference in the secondary
network can be determined by finding the index, w, of the
highest value element in a vector z whose entries are

zj =
∑

∀i∈Sa

(aij + aji). (7)

This algorithm is independent of the objective function,
and thus it can be used as a general way to guarantee that the
problem to be solved is feasible.

IV. GENETIC ALGORITHM IMPLEMENTATION

A. General Description

A GA repeatedly modifies a population of solutions, also
called individuals or chromosomes, which represent the search
space. Over successive generations, a random initial population
evolves until certain stopping criteria are met. As shown
in Algorithm 2, at each iteration the GA selects the best
individuals from the current population and uses them to
produce the children for the next generation. The produced
children are used to replace a fraction of the current population
in the next generation. Children are obtained by means of



Algorithm 1 Admission Control

1. Sa ← S
2. while Sa 6= {∅} do
3. Compute the power vector p∗ = [I− ΓA]−1b
4. if vector p∗ satisfies constraint C3 in (3) then
5. if vector p∗ satisfies constraint C1 in (3) then
6. The problem is feasible in Sa

7. else
8. Redefine the optimization problem by removing

the secondary user corresponding to the largest
element in p∗ from set Sa

9. end if
10. else
11. Determine w from (7) and redefine the problem

removing the wth secondary user from set Sa

12. end if
13. end while

two processes: mutation and crossover. The crossover of two
parent chromosomes tries to exploit the best genes of the
previous generation to create a better offspring. The mutation
can prevent the GA from getting stuck in a local maximum by
randomly introducing little changes [12]. At each generation
there is a group of chromosomes, called the elite individuals,
which are guaranteed to survive to the next generation without
modification. Denoting λe, λm and λc as the number of
elite, mutation and crossover individuals in the population,
respectively, the population size is given by λ = λe+λm+λc.
Setting λ and λe to fixed values, the number of crossover and
mutation children can be controlled via the crossover fraction
parameter, defined as κ = λc/(λc + λm).

Algorithm 2 Genetic Algorithm

1. k ← 1
2. Create a random initial population θ0 of size λ
3. Set current population θk equal to θ0
4. repeat
5. Score each member of θk by computing its fitness value
6. Assign a rank to each member of θk based on its fitness
7. Compute the expectation (estimated number of children

that each individual should produce) of each member of
θk based on its rank

8. Select 2λc + λm parent individuals
9. Create λc crossover children from the parents

10. Create λm mutation children from the parents
11. Select λe elite individuals
12. Replace the current population
13. k ← k + 1
14. until the maximum number of generation is reached

The general pseudocode shown in Algorithm 2 can be
adapted to solve a variety of optimization problems, by only
modifying the way each individual is scored and ranked.
The optimization problem we are trying to solve via a GA
is a constrained optimization problem. Hence, the fitness
evaluation of each individual must take into account not only
the objective function value for that individual, but also the
constraints violations. For that sake, the admission control
algorithm discussed in Section III is executed before the
GA to ensure problem feasibility. Since the GA does not

guarantee the optimality of the solution, when the algorithm
stops it is checked if the power vector to be assigned to the
secondary network does not violate the primary network SINR
requirements, otherwise a null power vector is returned.

In order to evaluate the fitness of individuals we propose
two functions. The first employs a penalty function to handle
constraints and is oriented towards minimizing the total trans-
mit power consumption of the secondary network. The second
is a multi-objective fitness function that jointly optimizes the
total capacity and transmit power consumption.

B. Power Consumption Minimization

The most common method to handle constraints in GAs
is to use penalty functions [13]. Penalty methods are pro-
cedures for approximating constrained optimization problems
by unconstrained ones. This is accomplished by adding to
the objective function a term that prescribes a high cost for
violation of the constraints. In this case the fitness value of
each individual is computed as

φ = ϕe(p) + cp

M
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i ]2 + cs

N
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highest priority of PUs can be controlled by separating the
primary and secondary constraints in the penalty function and
assigning a higher value to the primary penalty factor cp than
to the secondary penalty factor cs.

C. Joint Optimization of Power Consumption and Capacity

In this case we use a rank based fitness scaling method,
based on a multi-objective fitness function, which outputs a
vector Φ with four components

Φ =

[

M
∑

i=1

µ
(p)
i ,

N
∑

i=1

µ
(s)
i , ϕe(p), ϕc(p)

]

. (9)

The first and second entries count the number of primary
and secondary network constraints violations, respectively:

µ
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{
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i < γ

(thp)
i

0, otherwise
, (10)

µ
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The third and fourth entries account for the total transmit
power and capacity of the secondary network, respectively.

The function ϕc(p) = −∑N

i=1 log2[1 + γ
(s)
i ] denotes the

objective function aimed at maximizing the total capacity of
the secondary network which takes into account the sum of
the capacity of the N sub-links in a bandwidth normalized
analysis, based on the Shannon-Hartley channel capacity the-
orem, as has been presented in [4], [7]. Note that the negative
sign means that the optimization goal is to minimize the
objective function, so that the smallest possible value of ϕc(p)
corresponds to the highest capacity of the secondary network.

When ranking two individuals X and Y , the constraints
entries are compared according to the following priority: 1)



number of primary constraints violations and 2) number of
secondary constraints violations. In each case, the next entry
is considered for comparison only if the current entry is the
same for both individuals. If they are different, the individual
with the lowest entry value is selected as the best. Next, if the
number of constraints violations is equal for both individual,
a parameter ∆ϕ that accounts for the joint improvement in
capacity and power consumption is computed

∆ϕ = δe
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If ∆ϕ < 0 the chromosome X is better than Y , else the
individual Y is selected. Parameters δe and δc control the
tradeoff between power consumption minimization and total
capacity maximization. If δe = 1 and δc = 0, then only the
power consumption is optimized. If we set δe = 0 and δc = 1
then only the total capacity is maximized.

D. Parents Selection

To select the parents for the next generation it is necessary
to map the raw fitness scores to an expected number of
children for each individual. The selection process requires
that the expected number of children be in a proper range
[14]. Regarding the employed fitness scaling method, the
expectation of each individual is computed as

ǫj =
1/
√
qj

∑λ

i=1(1/
√
qi)

, (13)

where qk represents the rank of the kth chromosome in the
population. If we are minimizing, qk = 1 corresponds to the
best chromosome while qk = λ corresponds to the worst. Note
that the sum of all expectations must be equal to one.

The selection process chooses parents based on their expec-
tation. The selection method used in our GA was the roulette
method. The algorithm simulates a roulette wheel, where the
area of each segment is proportional to its expectation and
uses a random number to select one of the sections with a
probability equal to its area. In this method each jth individual
from the current population has a probability equal to ǫj of
being selected as parent for the next generation.

E. Mutation and Crossover

The mutation of each individual is performed by adding
to the parent chromosome a random vector taken from a
Gaussian distribution with zero mean. The variance of this
distribution can be controlled via two parameters: the mutation
scale, Ms, and the mutation shrink, Mh. The mutation scale
determines the variance at the first generation. The mutation
shrink controls how the variance shrinks as generations go
by. At generation g, the mutation variance is computed as
Mσ = Ms(1− gMh/Sg), where Sg is the maximum number
of generations. If Mh = 0, the variance is constant and
if Mh = 1, the variance shrinks to 0 linearly as the last
generation is reached. To produce a crossover child, once two
parents are randomly selected, the genes in the offspring are
chosen from one or another parent with equal probability.
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Fig. 1. Average value of total transmit power of secondary network as a
function of the crossover fraction and for different values of the mutation
scale, using the penalty-based fitness function and assuming N = 10, λ = 50

and Sg = 500.

V. NUMERICAL RESULTS

In our simulations the topology is generated by the uniform
random placement of N cognitive transmitters in a cell of
radius R = 100m. We consider the presence of a single
primary link (M = 1), with the transmitter at the center of
the cell. Each receiver is placed at a fixed distance r = 10m
from the intended transmitter in a uniformly generated random
direction. For the propagation model we consider α = 3,
d0 = 1m, h0 = 10−4. The SINR threshold was set to 10dB
and 3dB for the primary and secondary networks, respectively.
For all cognitive transmitters we set pmin = 0mW and pmax =
200mW, and for the primary transmitter p(p) = 100mW.

A. Tuning the GA Parameters

First, we illustrate the results of adjusting the most im-
portant parameters of the GA for N = 10 assuming that
the optimization objective is to minimize the total secondary
network transmission power, Ps. These parameters include the
crossover fraction, the mutation scale, the population size and
the maximum number of generations. We assume a number of
elite individuals λe = 2 and a mutation shrink Mh = 1. Also,
for the penalty-based fitness function we set penalty parameters
to cp = 8 and cs = 2. For the multi-objective fitness function
we set δe = 1 and δc = 0, since the goal is to minimize the
total secondary network transmission power.

Figure 1 shows the average value of Ps as a function of
the crossover fraction and for different values of the mutation
scale, using the penalty-based fitness function. Similar results
were obtained by using the multi-objective fitness function.
The crossover fraction controls the balance between the explo-
ration of new solutions (mutation) and the recombination of
genes from parents with the highest fitness of past generations
(crossover). We can see that this balance is reached when
κ ≈ 0.8. Mutation adds to the diversity of a population and
thereby increases the likelihood that the algorithm generates
individuals with better fitness values. However, from Figure 1 it
can be noted a degradation in performance when the mutation
scale is increased or the crossover fraction is decreased, since
the genetic search becomes a random search.

Figure 2 shows the average value of Ps as a function of
the population size using the penalty-based (GAp) and multi-
objective (GAm) fitness functions. If the population size is too
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Fig. 2. Average value of total transmit power of secondary network as a
function of the population size, assuming N = 10, κ = 0.8, Ms = 0.1 and
Sg = 100.

small, the search space is poorly represented and the GA may
converge prematurely. Larger population sizes allow the GA
to explore more solutions from the search space and therefore
a better result is obtained. However, the larger the population
size, the longer the GA takes to compute each generation.
An optimal selection of the population size allows to find
the solution without a high consumption of computational
resources and time. The optimum value of λ is dependent
on the genome length, as for individuals of a population to
cover the entire search space, it is necessary that the size
of the population be greater than the genome length. As a
result, the GA performance does not increase linearly with the
increasing of population size, so the improved performance
is more remarkable at lower values of λ. In setting this
parameter should be considered the relationship between the
solution quality and the computational cost, which is directly
proportional to λ. As shown in Figure 2, for a population size
greater than 45 (about four times the genome length) there is
not a significant improvement in the performance.
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Fig. 3. Average value of total transmit power of secondary network as a
function of the maximum number of generations, assuming N = 10, κ = 0.8,
Ms = 0.1 and λ = 50.

Figure 3 shows the average value of Ps as a function of the
maximum number of generations. In our GA implementation,
a maximum number of iterations is used as stopping criteria.
Generally, the progress of a GA is most noticeable during the
first generations, but after a certain number of iterations this
progress becomes slower. Although the convergence time is
very important, a rapid convergence is not always desirable,
because if the fitness function has a large number of local
optima, the algorithm may converge to one of these local
optima. In these cases, the number of generations and the

population diversity required by the GA may be considerably
higher than in cases where the objective function has fewer
local maxima. Taking into account the results shown in Figure
3, we select Sg = 500 as an appropriate value.

B. Minimizing Total Transmit Power

Figure 4 shows the average value of Ps as a function of
the number of SUs. In this figure the results obtained via
linear programming (LP) and the GA using the penalty-based
and multi-objective fitness functions are compared. Note how
the performance of the proposed GA scheme is very close
to the exact solution. However, since an admission control
algorithm is used, these results have to be analyzed with
care. We must take into account the probability of SINR
constraint violation at secondary receivers (outage probability).
This outage probability is shown in Figure 5 as a function
of the number of secondary links. These results demonstrate
how, regardless of the results shown in Figure 4, the penalty-
based fitness function (GAp) has a worse performance when
compared to the multi-objective fitness function (GAm) for this
particular problem. Moreover, note that the outage probability
that is achieved with the GAm is slightly greater than the one
obtained with the LP, what means that even if the admission
control algorithm ensures optimality, still exists a non-zero
probability that the GA rejects users from feasible set Sa in
favor of minimizing the objective function. Thus, the fact that
the GAm outperforms the LP solution in Figure 4 comes at
the cost of an increased outage probability.
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Fig. 4. Average value of total transmit power of secondary network as a
function of the number of secondary users.

1 2 3 4 5 6 7 8 9 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of Secondary Links

S
e

c
o

n
d

a
ry

 L
in

k
s
 O

u
ta

g
e

 P
ro

b
a

b
ili

ty

 

 

LP

GAp

GAm (δ
e
=1, δ

c
=0)

Fig. 5. Outage probability as a function of the number of secondary users.

C. Joint Optimization of Capacity and Transmit Power

Figure 6 shows the improvement in the secondary network
capacity that is achieved using the multi-objective fitness func-
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Fig. 6. Average value of total capacity of secondary network as a function
of the number of secondary users.

tion with parameters δe = 0 and δc = 1 (capacity maximiza-
tion), when compared with this same fitness function but using
parameters values δe = 1 and δc = 0 (power minimization).
However, as can be noted in Figure 7, this improvement
prescribes a high cost in the power consumption. An increase
in network capacity on the order of 2.5 times requires that the
power consumption is increased by approximately 40 times.
Figure 8 shows how by setting δe = 1 and varying δc between
0 and 20 the tradeoff between power minimization and capacity
maximization can be controlled. Thus, the secondary network
power consumption can be adjusted as a function of the
throughput requirements and vice versa.
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Fig. 7. Average value of total transmit power of secondary network as a
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VI. CONCLUSION

The use of a GA is an attractive approach to solve optimiza-
tion problems in cognitive radio networks. The main limitation

found with the use of a GA to solve the optimization problem
under study was that multiple parameters must be adjusted in
order to ensure the proper operation of the algorithm. By using
a multi-objective fitness function, the algorithm implementa-
tion can be easily adapted to solve a variety of optimization
problems, regardless of the number and type of constraints.
The use of a penalty function to handle the constraints does not
guarantee the strict fulfillment of all constraints and additional
parameters should be introduced which must also be adjusted
to achieve a tradeoff between maximizing the utility and met-
ing the constraints. In future works we will investigate how to
increase the algorithm flexibility by dynamically adjusting its
parameters and combining multiple optimization objectives. As
future work, we will focus on full-duplex cognitive networks.
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