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Abstract—This work presents analytic solutions for a useful
integral in wireless communications, which involves the Marcum
Q−function in combination with an exponential function and
arbitrary power terms. The derived expressions have a rather
simple algebraic representation which renders them convenient
both analytically and computationally. Furthermore, they can
be useful in wireless communications and particularly in the
context of cognitive radio communications and radar systems,
where this integral is often encountered. To this end, we derive
novel expressions for the probability of detection in energy
detection based spectrum sensing over η−µ fading channels.
These expressions are given in closed-form and are subsequently
employed in analyzing the effects of generalised multipath fading
conditions in cognitive radio systems. As expected, it is shown
that the detector is highly dependent upon the severity of fading
conditions as even slight variation of the fading parameters affect
the corresponding performance significantly.

I. INTRODUCTION

The generalized Marcum Q−function, Qm(a, b), is a vital

special function in wireless communication theory. It was

proposed several decades ago and has appeared extensively

in various analyses in the context of stochastic processes in

probability theory, single- and multi-channel based commu-

nications over fading channels, information-theoretic analysis

of multiple-input-multple-output (MIMO) systems, cognitive

radio and radar systems, among others [1]–[9], and the refer-

ences therein. Its use has also led to the derivation of numerous

tractable analytic expressions, while its computational realiza-

tion is rather straightforward since it is included as a built-in

function in the most popular software packages [10]–[15].

However, it is widely known that the derivation of tractable

analytic expressions in natural sciences and engineering can

be rather laborious and cumbersome, if not impossible, as

integrals that involve combinations of elementary and special

functions are often required to be evaluated analytically [16]–

[21], and the references therein. This is also the case when

the Marcum Q−function is involved in integrands along with

exponential and arbitrary power terms. A general form of such

an integral is the following:

Ia,b(k,m, p) =

∫ ∞

0

x2k−1Qm(ax, b)e−px2

dx (1)

which can be equivalently expressed as

Ia,b(k,m, p) =
1

2

∫ ∞

0

xk−1Qm(a
√
x, b)e−pxdx. (2)

The integrals in (1) and (2) are encountered in various

applications relating to wireless communications, such as

in the analysis of multichannel diversity systems with non-

coherent and differentially coherent detection and in sensing

of unknown signals in the context of cognitive radio and radar

systems [22]–[40] and the references therein. Based on this,

a recursive formula restricted to only integer values of k and

m was reported in [3] while an infinite series representation

for the case that k is arbitrary and m is positive integer was

recently reported in [41].

Nevertheless, these expressions are neither generic, nor ac-

count for the case that m is an arbitrary real. Motivated by this,

this work is devoted to the derivation of analytic expressions
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for Ia,b(k,m, p) which can be useful in applications relating

to the wide field of digital communications. To this end, novel

analytic expressions are derived for the probability of detection

of energy detection based spectrum sensing over generalized

η−µ fading channels. The derived expressions are given in

closed-form and are utilized in analyzing the performance of

the detector in various fading conditions.

The remainder of this paper is organized as follows: Sec.

II provides the derivation of two analytic expressions for

Ia,b(k,m, p). Sec. III is devoted to the application of the

offered results in the analytic performance evaluation of energy

detection based spectrum sensing over η−µ fading channels

for various severity scenarios. The corresponding numerical

results are given in Sec. IV along with useful discussions,

while closing remarks are provided in Sec. V.

II. ANALYTIC SOLUTIONS TO Ia,b(k,m, p) INTEGRALS

A. A Closed-Form Expression for Arbitrary Integer Values of

k and Arbitrary Real Values of m

As already mentioned, no analytic expressions for (1) and

(2) for the case of arbitrary real values of m have been reported

in the open scientific and technical literature.

Theorem 1. For a, b,m, p ∈ R
+ and k ∈ N, the following

closed-form expressions is valid,

Ia,b(k,m, p) =
Γ(k)Γ

(

m, b2

2

)

2pkΓ(m)
(3)

+

k−1∑

l=0

a2b2mΓ(k) 1F1

(

l + 1,m+ 1, a2b2

2a2+4p

)

m!pk−l2m−l+1 (a2 + 2p)
l+1

e
b2

2

where Γ(x) and Γ(x, a) denote the gamma function and upper

incomplete gamma function, respectively, x! , Γ(x−1) is the

increasing factorial and 1F1(x, y, z) is the Kummer confluent

hypergeometric function [42]–[44].

Proof: By integrating (2) by parts one obtains,

Ia,b(k,m, p) =

T
︷ ︸︸ ︷

lim
c→∞

[
Qm(a

√
x, b)

2

∫

xk−1e−pxdx

]c

0

− 1

2

∫ ∞

0

[∫
xk−1

epx
dx

]
d

dx
Qm(a

√
x, b)dx

(4)

where c is a non-negative finite real. By recalling that the lower

incomplete gamma function is given by γ(a, x) , Γ(a) −
Γ(a, x), it readily follows that

∫
xa−1exp(−x)dx = γ(a, x) =

−Γ(a, x). Upon substituting in (4) one obtains,

T = lim
c→∞

[
Qm(a

√
x, b)γ(k, px)

2pk

]c

0

=
Qm(0, b)Γ(k, 0)

2pk
− lim

c→∞

Qm(a
√
c, b)Γ(k, pc)

2pk
.

(5)

With the aid of the identities for Qm(a, b) and Γ(a, x) func-

tions in [?], [3] and [42] as well as expressing dQm(a, b)/da

according to [3, eq. (10)], it follows that

Ia,b(k,m, p) =

m−1∑

l=0

Γ(k)b2l

l!pk2l
e−

b2

2

+
bm

pke
b2

2

∫ ∞

0

Γ
(

k, py
2

a2

)

e−
y2

2 Im(by)

ym−1
dy.

(6)

By making the necessary variable transformation in [43, II. 7

- pp. 726] and substituting in (6) yields

Ia,b(k,m, p) =
m−1∑

l=0

Γ(k)b2l

l!pk2l
e−

b2

2

(7)

+

k−1∑

l=0

bmΓ(k)e−
b2

2

l!pk−la2l

∫ ∞

0

y2l−m+1Im(by)

e
y2

2 (1+
2p

a2 )
dy.

Notably, the above integral can be expressed in closed-form

with the aid of [43, eq. (2.15.5.4)]. To this effect, by perform-

ing the necessary change of variables and substituting in (7),

equation (3) is deduced, which completes the proof.

It is noted that the algebraic representation of the derived

solution is simpler than the recursive expression in [3], [4]

and additionally, the value of m is subject to no restrictions.

B. An Exact Infinite Series to Ia,b(k,m, p) for Arbitrary Reals

It is recalled that no analytic expressions exist for (1) and

(2) for arbitrary real values, i.e. unrestricted, of all involved

parameters.

Lemma 1. For a, b, k,m, p ∈ R
+, the following exact infinite

series representation is valid for the integral in (1) and (2),

Ia,b(k,m, p) =

∞∑

l=0

a2l2kΓ(k + l)Γ
(

m+ l, b2

2

)

l!Γ(m+ l) (a2 + 2p)
k+l

. (8)

Proof: The Qm(a, b) function can be expressed in infinite

series according to [6, eq. (29)]. Therefore, by performing the

necessary change of variables it immediately follows that,

Qm(a
√
x, b) = e−

xa2

2

∞∑

l=0

a2lxlΓ
(

l +m, b2

2

)

l!2lΓ(l +m)
(9)

which upon substitution in (2) yields,

Ia,b(k,m, p) =

∞∑

l=0

a2lΓ
(

m+ l, b
2

2

)

l!2lΓ(m+ l)

∫ ∞

0

xk+l−1

e
x
(

p+ a2

2

) dx

︸ ︷︷ ︸

R

.

(10)

The above integral can be expressed in terms of the Γ(.)
function in [43, eq. (2.10.3.2)], yielding

R =
2k+lΓ(k + l)

a2 + 2p
. (11)

Evidently, by substituting (11) in (10), equation (8) is deduced

thus completing the proof.



The series in (8) is convergent and can provide acceptable

accuracy when truncated after relatively few terms. However,

deriving a closed-form expression for the truncation error is

particularly advantageous in determining the corresponding

truncation error accurately and straightforwardly.

Lemma 2. For a, b, k,m, p ∈ R
+, the following inequality

can serve as a closed-form upper bound for the truncation

error of (8),

ǫt ≤
Γ(k)

pk
−

n∑

l=0

a2l2kΓ(k + l)Γ
(

m+ l, b
2

2

)

l!Γ(m+ l) (a2 + 2p)
k+l

. (12)

Proof: The truncation error of (8) when this is truncated

after n terms is expressed as,

ǫt =
∞∑

l=n+1

a2l2kΓ(k + l)Γ
(

m+ l, b
2

2

)

l!Γ(m+ l) (a2 + 2p)k+l

=

∞∑

l=0

a2l2kΓ(k + l)Γ
(

m+ l, b2

2

)

l!Γ(m+ l) (a2 + 2p)
k+l

−
n∑

l=0

a2l2kΓ(k + l)Γ
(

m+ l, b2

2

)

l!Γ(m+ l) (a2 + 2p)
k+l

.

(13)

It is recalled that the Γ(a, x) function is monotonically de-

creasing w.r.t. x and thus, Γ(a, x) ≤ Γ(a). To this effect, the

upper incomplete gamma function in (13) can be bounded as,

ǫt ≤
∞∑

l=0

a2l2kΓ(k + l)

l! (a2 + 2p)
k+l

−
n∑

l=0

a2l2kΓ(k + l)Γ
(

m+ l, b2

2

)

l!Γ(m+ l) (a2 + 2p)
k+l

.

(14)

By recalling the Pochhammer symbol, (a)n , Γ(a+n)/Γ(a),
it follows that Γ(k + l) = (k)lΓ(k). Based on this, the above

infinite series can be expressed as follows,

∞∑

l=0

a2l2kΓ(k + l)

l! (a2 + 2p)
k+l

=
Γ(k)2k

(a2 + 2p)
k

∞∑

l=0

a2l(k)l

l! (a2 + 2p)
l
. (15)

The infinite series in the right-hand side of (15) can be

expressed in terms of the hypergeometric function, namely,

∞∑

l=0

a2l(k)l(1)l

l! (a2 + 2p)l (1)l
= 1F0

(

k; ;
a2

a2 + 2p

)

(16)

Based on (16), it immediately follows that

1F0

(

k; ;
a2

a2 + 2p

)

=
(a2 + 2p)k

2kpk
. (17)

Therefore, by substituting in (17) in (15) one obtains,

∞∑

l=0

a2l2kΓ(k + l)

l! (a2 + 2p)
k+l

=
Γ(k)

pk
. (18)

Evidently, by substituting (18) in (14) yields (12) thus, com-

pleting the proof.

To the best of the Authors’ knowledge, equations (3),

(8) and (12) have not been previously reported in the open

technical literature.

III. APPLICATIONS IN COGNITIVE RADIO

A. Energy Detection Based Spectrum Sensing

Cognitive radio (CR) is an emerging technology that allows

opportunistic access of licensed frequency bands when they

are not utilized. Given the increased spectrum scarcity along

with the high demands for bandwidth resources, CR is antic-

ipated to play a core role in the next generation of mobile

communication systems, namely 5G. The most important part

of CR technology is the accurate and robust sensing of vacant

frequency bands and based on the respective decision the user

will decide on whether it can establish communication or

not. Therefore, spectrum sensing is the most critical operation

in CR systems with energy detection being regarded as the

most simple and popular method [23]. In this context, the

performance of energy detection based spectrum sensing over

various fading conditions have been investigated in [24]–[33],

[35] - and the reference therein.

It is recalled that in narrowband energy detection, the

received signal waveform follows a binary hypothesis that can

be represented as [33, eq. (1)],

r(t) =

{

n(t) : H0

hs(t) + n(t) : H1

(19)

where s(t), h and n(t) denote an unknown deterministic

signal, the amplitude of the channel coefficient and an additive

white Gaussian noise (AWGN) process, respectively. The

samples of n(t) are assumed to be zero-mean Gaussian random

variables with variance N0W with W and N0 denoting the

single-sided signal bandwidth and a single-sided noise power

spectral density, respectively [33]. The hypotheses H0 and

H1 refer to the cases that a signal is absent or present, re-

spectively. The received signal is subject to filtering, squaring

and integration over the time interval T which is expressed

as [22, eq. (2)], y , 2
N0

∫ T

0
| r(t) |2 dt. The output of

the integrator corresponds to a measure of the energy of the

received waveform and acts as a test statistic that determines

whether the received energy measure corresponds only to the

energy of noise (H0) or to the energy of both the unknown

deterministic signal and noise (H1). By denoting the time

bandwidth product as u = TW , the test statistic typically

follows the central chi-square distribution with 2u degrees of

freedom under the H0 hypothesis and the non central chi-

square distribution with 2u degrees of freedom under the H1

hypothesis [24]. Based on this and by recalling that energy

detection is largely affected by a predefined energy threshold,

λ, the performance of the detector is characterized by the

probability of false alarm, Pf = Pr(y > λ | H0) and the

probability of detection, Pd = Pr(y > λ | H1), namely [22],

Pf =
Γ
(
u, λ

2

)

Γ(u)
(20)

and

Pd = Qu

(√

2γ,
√
λ
)

(21)

respectively.



B. The η−µ Distribution

The η−µ distribution is a generalized fading model that

has been widely shown to provide adequate characterization

of multipath fading in non-line-of-sight (NLOS) communi-

cations. It was reported in [45] along with the κ−µ fading

model which accounts for corresponding line-of-sight (LOS)

communication scenarios. The η−µ fading model has been

shown to be particularly flexible and it includes as special

cases the well known Hoyt, Nakagami−m, Rayleigh and one-

sided Gaussian distributions [45]. Its remarkable flexibility and

usefulness were demonstrated clearly in [45, Fig. 9] along

with the κ−µ fading model where it is clearly shown that the

η−µ fading model is significantly more flexible than the more

commonly adopted Nakagami−m and Rayleigh distributions.

In terms of physical interpretation, the η−µ fading model

is expressed by two physical parameters, η and µ and it

holds for two formats, namely Format-1 and Format-2. In

the former, the η parameter denotes the ratio of the powers

between the multipath waves in the in-phase and quadrature

components, whereas in the latter it denotes the correlation

coefficient between the scattered wave in-phase and quadrature

components of each cluster of multipath. Likewise, the µ
parameter denotes - in both formats - the inverse of the

normalised variance and relates to the number of multipath

clusters in the environment1 [45].

The SNR probability density function of the η−µ distribu-

tion is expressed as,

pγ(γ) =
2
√
πµµ+ 1

2hµ

Γ(µ)Hµ− 1
2

γµ− 1
2

γµ+ 1
2

e−2µh γ
γ Iµ− 1

2

(
2µHγ

γ

)

(22)

where γ denotes the average SNR whereas

h =
2 + η−1 + η

4
, H =

η−1 − η

4
(23)

in Format-1 with 0 < η < ∞ and,

h =
1

1− η2
, H =

η

1− η2
(24)

in Format-2 with −1 < η < 1. In addition,

µ =
E2(R2)

2Var(R2)

[

1 +
H

h

]

(25)

with E(.) and r̂ denoting expectation and the root-mean-

square (rms) value of the envelope R, respectively [45].

C. Energy Detection over η−µ Fading Channels

Corollary 1. For u, γ, λ ∈ R
+ and µ ∈ N, the following

closed-form expressions hold for the average probability of

1The Format-2 of the η−µ distribution is also known as λ−µ distribution.

detection over η−µ fading channels,

P d =

µ−1
∑

l=0

(µ)lh
µG

(
u, λ2

)

l!2µ+lHµ+l

{
(−1)l

(h−H)µ−l
+

(−1)µ

(h+H)µ−l

}

+

µ−1
∑

l=0

µ−l−1
∑

i=0

hµµiλu(µ)lγe
−λ

2

u!l!2µ+u+i−iHµ+l
×







(−1)l 1F1

(

1 + i, 1 + u, λγ
2γ+4µ(h−H)

)

(h−H)µ−l−i(γ + 2(h−H)µ)i+1

+
(−1)µ 1F1

(

1 + i, 1 + u, λγ
2γ+4µ(h+H)

)

(h+H)µ−l−i(γ + 2(h+H)µ)i+1







(26)

where G(a, x) , Γ(a, x)/Γ(a) denotes the regularized upper

incomplete gamma function and h and H are given by (23)

and (24) according to Format-1 and Format-2, respectively.

Proof: The average detection probability is obtained by

averaging (21) over the fading statistics of the channel, namely,

P d =

∫ ∞

0

Qu

(√

2γ,
√
λ
)

pγ(γ)dγ. (27)

By substituting (22) in (27) one obtains,

P d = A
∫ ∞

0

Qu

(√
2γ,

√
λ
)

Iµ− 1
2

(
2µHγ

γ

)

γ
1
2−µe2µh

γ
γ

dγ (28)

where

A =
2
√
πµµ+ 1

2hµ

Γ(µ)Hµ− 1
2 γµ+ 1

2

. (29)

Importantly, for the special case that µ is a positive integer,

the Bessel function in (28) can be expressed in closed-form

with the aid of [46, eq. (8.467)] namely,

Iµ− 1
2

(
2µHγ

γ

)

=

µ−1
∑

l=0

(−1)lΓ(µ+ l)γl+ 1
2 e

2µHγ
γ

l!
√
πΓ(µ− l)(4µHγ)l+

1
2

+

µ−1
∑

l=0

(−1)µΓ(µ+ l)γl+ 1
2 e−

2µHγ
γ

l!
√
πΓ(µ− l)(4µHγ)l+

1
2

.

(30)

Therefore, by substituting (30) in (28) it follows that,

P d =

µ−1
∑

l=0

A(−1)lΓ(µ+ l)γl+ 1
2

l!
√
πΓ(µ− l)(4µH)l+

1
2

∫ ∞

0

Qu

(√
2γ,

√
λ
)

dγ

γl−µ+1e
2µ(h−H)γ

γ

+

µ−1
∑

l=0

A(−1)µΓ(µ+ l)γl+ 1
2

l!
√
πΓ(µ− l)(4µH)l+

1
2

∫ ∞

0

Qu

(√
2γ,

√
λ
)

dγ

γl−µ+1e
2µ(h+H)γ

γ

.

(31)

Notably, the integrals in (31) have the same algebraic represen-

tation as (1) and (2) and thus, they can be expressed in closed-

form with the aid of Theorem 1. As a result, by performing the

necessary change of variables in (3), substituting in (31) and

carrying out long but basic algebraic manipulations, equation

(26) is deduced and thus, the proof is completed.



Remark 1. The energy threshold in (20) can be expressed

as λ = 2G−1 (u, Pf ), where G−1(.) is the inverse regularized

upper incomplete gamma function. To this effect (26) can be

also equivalently expressed in terms of Pf as follows:

P d =

µ−1
∑

l=0

(µ)lh
µPf

l!2µ+lHµ+l

{
(−1)l

(h−H)µ−l
+

(−1)µ

(h+H)µ−l

}

+

µ−1
∑

l=0

µ−l−1
∑

i=0

γ hµµi
[
G−1 (u, Pf )

]u
(µ)l

u!l!2µ+i−iHµ+leG
−1(u,Pf )

×






(−1)l 1F1

(

1 + i, 1 + u,
G

−1(u,Pf )γ
γ+2µ(h−H)

)

(h−H)µ−l−i(γ + 2(h−H)µ)i+1

+
(−1)µ 1F1

(

1 + i, 1 + u,
G

−1(u,Pf )γ
γ+2µ(h+H)

)

(h+H)µ−l−i(γ + 2(h+H)µ)i+1






.

(32)

To the best of the Authors knowledge (26) and (32) have not

been previously reported in the open technical literature.

IV. NUMERICAL RESULTS

This section is devoted to the analysis of the behaviour

of energy detection in η−µ fading conditions by means of

P d versus γ curves and complementary receiver operating

characteristics (ROC) curves (Pm versus Pf ). To this end, Fig.

1 illustrates the behavior of the P d versus γ for different values

of the fading parameters η and µ for constant time-bandwidth

product u = 3 and the case that Pf = 0.01 and Pf = 0.1. One

can notice that the average probability of detection is increased

as η increases from 0.01 to 0.95 for both cases of Pf . This

is also the case for the µ parameter as for a fixed value of

η, the P d increases when µ = 3 compared to the case that

µ = 1. This also holds for both Pf = 0.01 and Pf = 0.1 and

particularly for moderate to high average SNR levels.

In the same context, Fig. 2 depicts the corresponding ROC

curves (Pm = 1−Pd versus Pf ). The value of Pf is assumed

between 0.01 and 0.2 while u = 4 and γ = 15dB. One

can observe how the performance of the detector improves

as the severity of fading is reduced in terms of both η and µ.

Indicatively, for Pf = 0.1 the value of Pm reduces by over

70% when η changes from 0.01 to 0.95 for µ = 1.0 and

over 65% when µ changes from 1.0 to 2.0 for η = 0.95. This

demonstrates the sensitivity of the energy detector in multipath

fading conditions and how the corresponding severity of fading

can affect its performance and robustness.

V. CONCLUSION

New expressions were derived for a Marcum Q−function

based integral that is often encountered in the broad area of

digital communications. These expressions include an exact

closed-form expression and an infinite series representation

along with a closed-form upper bound for the corresponding

truncation error. The offered results have a relatively simple

algebraic representation which render them analytically and

numerically convenient while they can be useful in numerous

applications in wireless communications. As an example, they
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Fig. 1. P d vs γ for different values of η and µ with u = 3 and Pf = 0.01
and Pf = 0.1.
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Fig. 2. Pm vs Pf ROC curve for for different values of η and µ with u = 4
and γ = 15 dB.

were used in energy detection based spectrum sensing, in

the context of cognitive radio and radar systems, deriving

novel closed-form expressions for the average probability of

detection of unknown signals over η−µ fading channels. The

derived expressions were subsequently employed in analyzing

the effect of multipath fading on the spectrum sensing perfor-

mance and it was shown that the overall performance of the

detector is, as expected, largely affected by the value of the

involved fading parameters, particularly for moderate and high

SNR levels.
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