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Abstract—Cognitive radio systems aim to take advantage of
the spatiotemporal empty spectrum without causing harmful
interference towards the primary network by utilizing knowledge
of the prevailing radio environment. The radio environment is
typically modeled with propagation models or by interpolating
spatially distributed field measurement data. This paper presents
a practical online data assimilation method based on the ensemble
Kalman filter for estimating the spatial correlation of the time-
variant primary field strength from a collection of sensing
samples. The correlation structure known as the variogram or
covariance function is in turn used in the algorithms for radio
environment mapping. Furthermore, it is shown that the pro-
posed method provides significant reduction in the computation
time compared to traditional sampling methods, thus, it offers
an efficient real-time solution for state estimation in the future
geolocation databases.

Index Terms—Cognitive radio, ensemble Kalman filter, sensing,
radio environment mapping

I. INTRODUCTION

The first realizations of cognitive radios are advancing to-

wards commercial deployment as white space devices (WSD)

capable of flexible spectrum utilization. White spaces are

locally or temporally available frequencies that are principally

occupied by primary use such as TV broadcasting. The cur-

rently prevalent view [1] to the utilization of such spectrum

resources is that WSDs must query a geolocation database

(GDB) through some dedicated channel to obtain information

about available frequencies and related maximum transmission

powers for the location of the WSD. The maximum throughput

of white space network depends on the accuracy of the

information provided by the GDB, as significant protection

margins are required to minimize the worst-case interference

in primary TV receivers.

A GDB is fundamentally based on field strength estimates

for the primary service obtained using terrain based radio

propagation models. However, the limited geographical infor-

mation restricts the achievable accuracy of the field strength

estimates. Radio environment mapping (REM) [2] has been

introduced as an alternative or complementary procedure to

radio propagation models. In concept of REM a database stores

information of the estimated radio environment and uses this

information for example to provide transmission power limits

to WSDs. It is likely that at least a subset of WSDs will be

capable of measuring and reporting the TV signal strength

at their respective locations; such information can be used to

improve the accuracy of a geolocation database.

Recently, there have been several studies on efficient al-

gorithms for estimating the signal strength in unmeasured

locations from a limited number of measurement samples.

For example, inverse distance weighting based methods and

kriging interpolation were compared in [3], and it was con-

cluded that kriging is the most efficient estimator in terms

of minimum mean squared error in situations where relatively

large number of measurement points are available. A multivari-

ate kriging method for incorporating field measurements into

radio propagation models showed to provide further accuracy

especially in undersampled areas [4].

Although kriging techniques offer the best estimation accu-

racy the modeling procedure requires knowledge of the spatial

autocorrelation of the prediction variable. In cognitive radio

systems, the state of the radio environment is susceptible

to continuous fluctuations due to changes in propagation

conditions or transmission parameters of the primary operator.

To that end, active monitoring and reporting of the radio

environment is important so that the prevailing correlation

structure of the signal needed in the interpolation phase can

be captured accurately.

Due to its recursive nature the Kalman filter (KF) provides

a computationally practical method for estimating the state

of a time-variant system corrupted by random noise. In the

context of geolocation database system such conditions exist

when the WSDs measure the dominant radio environment and

send the measurement data to the GDB. It is reasonable to as-

sume that such system contains huge amount of measurement

data from multiple sources, and efficient on-line methods for

data handling are needed. An approach was presented in [5]

where the REM accepted only sensing data that contributed

positively on the estimation accuracy in terms of minimizing

the mean squared error. In [6] a fixed rank kriging method

was introduced for operating with massive data sets.

As we are considering a dynamical system involving abrupt

changes in the radio conditions more adaptive solutions are

required. Consequently, we introduce an efficient real-time

method for estimating the spatial correlation of the primary

signal based on particle filter known as the ensemble Kalman

filter, and show that the computation time can be decreased by

several hundreds of percentages with negligible effect on the

estimation accuracy. This makes the technique attractive for

future use in GDBs that utilize spatial interpolation methods

in radio environment mapping.

The paper is organized as follows: Section II introduces
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the ensemble Kalman filter with a computational description.

In Section III we present a method for linking the ensemble

Kalman filter to estimate the spatial process from the sensing

data. The results are presented in Section IV followed by the

conclusion in Section V.

II. ASSIMILATION OF SENSORY DATA

A. Ensemble Kalman filter

Unlike the well-known KF which provides an optimal

solution to the linear state estimation problem under Gaussian

noise with known covariance, the ensemble Kalman filter

(EnKF) is a suboptimal estimator for possibly non-linear

dynamical systems.

In EnKF a Monte Carlo (MC) method is used to approx-

imate the evolution of the state probability density described

by the so called Fokker-Planck equation. Particularly, in the

MC method an ensemble of the model states describes the

current state space with the mean as the best estimate of the

true state, and the spreading of the ensemble as the error

variance. By integrating this ensemble in time through the

non-linear process it is straightforward to approximate the

necessary moments of the state probability density function.

In contrast, in traditional KF the pdf of the process state

is fully described by the mean and the covariance identified

from the analytical examination. The MC method in EnKF

is especially beneficial for systems of high order and huge

amount of measurement data since the true covariance matrix

is replaced with the sample covariance calculated from the

selected ensemble. This is advantageous as the measurement

and process covariances does not have to be known a prior.

For linear systems the EnKF converges to the solution

of the KF as the number of ensemble members approaches

infinity. For non-linear systems a widely used solution is

the extended Kalman filter (EKF), which, however, involves

calculation of the Jacobians for the non-linear process and

measurement functions resulting in increased computational

requirements. In addition, the EKF does not account the true

non-linear dynamics as it linearizes about the current state and

thus neglects some important statistical characteristics of the

state probability density. Thus, it cannot be generalized as an

optimal estimator.

Let the following non-linear system model describe the

process state x at discrete time index k + 1:

xk+1 = f(xk,uk) +wk (1)

where f is a function which maps the current state to the

the next state, xk,wk ∈ R
n, n being the order of the model,

uk ∈ R
m, m being the dimension of the control input. The

measurements are:

zk = h(xk) + vk (2)

where h is a function which relates the state to the measure-

ment, zk, vk ∈ R
r, where r is the number of measurements.

The Gaussian distributed random variables wk and vk are

the uncorrelated process and measurement noise, respectively,

with zero-mean and covariance matrices Qk and Rk.

Both KF and EnKF aim to estimate the process state xk by

minimizing the error between the estimated state and the true

state using the measurements zk. Here we focus on the EnKF

due to its computational efficiency. The filtering procedure

is conceptualized as predict and assimilation (measurement

update) phases.

1) Prediction: In EnKF, the approximate mean and the

state error covariance matrix are calculated from the ensemble.

First, let

[xp,1
k , . . . ,x

p,N
k ]

represent the N ensemble members, where x
p
k ∈ R

n are the

predicted state estimates.

The ensemble mean is

x
p
k =

1

N

N
∑

i=1

x
p,i
k , (3)

where column vector x
p
k ∈ R

n. The ensemble error matrix

X̂ can be calculated from the dispersion of the ensemble

members around the mean

X̂
p
k = [xp,1

k − x
p
k, . . . ,x

p,N
k − x

p
k],

X̂
p
k ∈ R

n×N . Similarly for the observation error matrix

Ẑk = [z1k − zk, . . . , z
N
k − zk]

with dimensions Rr×N . The prediction error covariance matrix

for the ensemble is then

Pxk
=

1

N − 1
X̂

p
k(X̂

p
k)

T, (4)

and the measurement error covariance matrix

Pzk =
1

N − 1
Ẑk(Ẑk)

T. (5)

2) Assimilation: The data assimilation is done by using the

perturbed ensemble of the measurements. Since this ensemble

is propagated through the system it allows to approximate

the distribution of the states after undergoing a non-linear

transformation. Given the measurements zk the starting point

for data assimilation is to form an ensemble of perturbed

measurements

zik = zk + vi
k, i = 1 . . . N (6)

where vi
k is a Gaussian noise term with zero mean and

covariance Rk. The data assimilation, or measurement update,

is done as for KF but separately for each ensemble member

x
a,i
k = x

p,i
k + K̂k(z

i
k − h(xp,i

k )), (7)

where the Kalman gain is determined from the approximations

of the error covariances using the observation matrix-free

implementation as described in [8]

K̂k = Pxk
(Pxk

+Pzk)
−1. (8)

The ensemble prediction is then performed using (1) by

replacing xk with xa
k,i and wk with wk,i.



B. Spatial correlation model

An essential concept in geostatistical modeling and interpo-

lation is the variogram, which describes the spatial correlation

as a function of distance. Generally, the correlation decreases

with the distance, and the variogram is used to model the

level and shape of the correlation. Interpolation methods such

as kriging use the variogram for minimizing the interpola-

tion error variances by determining distinct weights for the

observation samples. Since the accuracy of the prediction, or

interpolation error, fundamentally depends on the accuracy of

the variogram it is important that the spatial correlation is

modeled rigorously. The variogram can be described with [9]

γ(d) =
1

2Nz(d)

∑

(i,j)∈Nzd

|zi − zj |
2 (9)

where Nzd is the set of pairs of observations i, j such that

distance between measurement points |xi − xj | = d, where x

represents the spatial coordinate, d is the distance class, and

Nz(d) is the number of point pairs in that particular set.

The experimental variogram is fitted to a predefined vari-

ogram model, for example using the least squares method, to

ensure that the estimation variance is positive and well-defined

for all possible distances. There are several options for the

variogram model, and the choice is typically made based on

heuristics or on minimizing some error criterion. In our study

the spherical model is used

γ̂(d) =

{

b
(

3
2
d
a
− 1

2 (
d
a
)3
)

, d ≤ a

b, d > a
(10)

where b is the maximum value of the variogram function (sill

variance), a describes the range or distance where the em-

pirical variogram reaches its maximum, and d is the distance

class.

III. PROBLEM DEFINITION AND SIMULATION METHODS

Consider a cognitive radio system operating for example in

TV white spaces. As described in Section I the performance

of the system can be enhanced by updating the database

with REM techniques by utilizing measurement samples from

remote sensors such as WSDs. The data set consisting of the

spectrum sensing samples will grow enormous in the course of

time and thus requires efficient processing. Furthermore, the

changes in the radio environment must be taken into account

in the mapping procedure.

In this study, we demonstrate the use of ensemble Kalman

filter for estimating the variogram calculated from the noisy

sensing samples obtained in a changing radio environment. A

realistic model of the network is constructed by using digital

street data and sophisticated propagation modeling utilizing

high-resolution digital terrain data. The sensing is then mod-

eled by the predicted average field strength in given location

corrupted by Gaussian noise. The simulation procedure is

described in the following:

1) The radio environment is modeled by terrain based

propagation model described in subsection III-A. This

represents the true field strength from where the REM

is estimated.

2) The changes in the radio environment are emulated by

switching four transmitters on and off. The transmitters

are located in the corners of network area shown in

Fig.1.

3) The simulation consists of six phases. In the first four

phases transmitters Tx1 to Tx4 are transmitting sep-

arately in each phase. In the fifth phase transmitters

Tx1 and Tx4 are transmitting simultaneously. In the

sixth phase all of the four transmitters are switched on

simultaneously.

4) Each phase consists of 100 iterations. In each iteration a

number of WSD sense the spectrum in the modeled area.

The simulated sensing sample for a WSD is the value in

its corresponding pixel in the propagation map (III-A)

corrupted with zero mean random noise and standard

deviation σWSD.

5) The locations for WSDs in each iteration are random

but limited in the street network shown in Fig.1.

6) The database keeps a cumulative moving average of the

field strength in the measured locations, that is, if a WSD

senses an already measured pixel the GDB updates the

average value with the new data.

7) The measurement data is uploaded to the GDB. The

EnKF continuously estimates the variogram from the

uploaded samples. This is described in subsection III-B.

A. Propagation model

The propagation prediction representing the true radio envi-

ronment is implemented according to the guidelines presented

in [10]. In addition to basic free-space propagation loss

including short-term effects, the implemented model consid-

ers corrections due to different kinds of radio propagation

phenomena. These include diffraction, tropospheric scatter,

ducting and layer reflection/refrection, local clutter height, lo-

cation variability, and building entry loss. The terrain data and

parameters for the four prediction maps are the same except

of the transmitter heights. The prediction map represents the

Helsinki metropolitan area in Southern Finland spanning 12

km diagonally. The parameters are presented in Table I.

B. Mapping the spatial correlation

The variogram is estimated from the GDB in each iteration.

Since the data set is growing in every iteration as more

noisy samples are uploaded to the GDB, calculation of the

variogram will become computationally demanding. However,

the estimation simplifies by using EnKF.

In our model, the state of the system xk is modeled as the

values of the variogram functions calculated from a collection

of predicted field strength values. As actual sensing data is

migrated to the GDB the variogram functions will be calcu-

lated to form a set of measurements zk. A major advantage in

EnKF that it is not necessary to know the underlying process



Fig. 1. Predicted field strength of four simultaneous transmissions, and the
street network of the study area. The prediction map represents the Helsinki
metropolitan area in Southern Finland, spanning 12 km diagonally.

Parameters for ITU-R P.1812 Value

ERP 1000 W

htx1 / htx2 / htx3 / htx4 150m / 50m / 30m / 10m

hrx 1.5m

Polarization Horizontal

Frequency 490 MHz

Time percentage 50%

Location probability 50%

Resolution 30m × 30m

Simulation parameters

σWSD 5.5dB

Nr. of sensors per iteration 30

Nr. of ensemble members 100

Nr. of distance classes 20

TABLE I
SIMULATION PARAMETERS

since the state estimation is performed using the observations,

where the true state is approximated by the ensemble mean.

To simplify the modeling a one to one mapping between the

process state and the observations is assumed, that is, each

observation describes one state variable. Thus the dimension

n of xk is equal to dimension r of zk.

The estimation procedure is described in the following.

First, to initialize the filter and predict the process state, M

locations are drawn randomly N times from the possible sens-

ing locations in the geolocation database. Assuming that the

location of the transmitter is known by the GDB, these initial

predicted sample values at given distance from the transmitter

are approximated as the free-space field strength corrupted

with zero-mean Gaussian noise with standard deviation σwsd.

The variogram is calculated for each of these N sets using

(9) with r distance (lag) classes, corresponding to the number

of the measurements in (2). The obtained set now forms the

perturbed state predictions X̂
p
k.

Second, to obtain the measurements the variogram is calcu-

lated for the sensing data from the WSDs. N sets of the same

M locations are sampled but the field strength is given by the

procedure described in item 4) in the beginning of Section III.

The variogram is calculated for each of these N sets. Similarly,

the obtained set now forms the perturbed state measurements

Ẑ
p
k.

In turn, the database is approximating the mean process

state by averaging (7) for each state to get x̂a
k by using (3)-

(8) with the data described above. To complete the modeling,

the variogram fitting is performed to x̂a
k using (10) after each

predict and assimilation phase. The described procedure effec-

tively maps the 2-dimensional spatial process to 1-dimensional

function to be further used in geostatistical interpolation.

IV. RESULTS

As presented for example in [11] estimating the variogram

reliably can require several thousands of samples depending

on the spatial variation in the data. For total number of samples

Ns, calculating the squared difference between point pairs

in (9) requires
(

Ns

2

)

calculations. However, by distributing

the variogram calculation for EnKF with N members with

M samples per member the calculation reduces to N
(

M
2

)

operations. For example, computation for Ns = 10, 000
samples requires ∼50M operations while distributing it to

N = 100 members with M = 100 samples each requires

∼0.5M operations. Using the latter method introduces addi-

tional computation in the order of ⌊Θ(r2N)⌋ [8] for evaluating

the Kalman gain in (8), however, resulting only in ∼0.04M

calculations with the parameters used.
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Fig. 2. Root mean square error between the reference variogram and the
variogram calculated from the database content using the ensemble Kalman
filter for sampling (blue), and all samples (red). The second ordinate (green)
represents the duration for computing the variogram with EnKF (solid line)
and comprehensively from all database samples (dashed line).

Nevertheless, there is a tradeoff between the estimation

accuracy and computation time of the EnKF. This is shown

in Fig. 2 as root mean square error (RMSE) between fitted

variograms. The blue line represents the error for EnKF, and



Fig. 3. Calculated variograms as a function of uploaded sensing samples (iteration). Left: Variogram calculated using EnKF. Right: Fitted variogram.

red dots represent the error for variogram calculated from all of

the samples contained in GDB at the corresponding iteration.

The reference variogram γREF for RMSE is calculated by

sampling the model representing the real radio environment at

10,000 locations. However, as the figure indicates, the RMSE

follows the ideal case (red dots) appropriately. In addition,

the figure shows the computation time for calculating the

variogram using the EnKF and entire content of the GDB.

The EnKF is almost 20 times faster even in the short simulated

case, thus, the tradeoff is reasonable. Note that the computation

time for EnKF grows linearly since the number of samples per

member in each iteration is fixed, while the computation time

for comprehensive sampling increase with the factor
(

Ns

2

)

.

Figure 3 shows an example of the evolution of the variogram

as new samples are arriving in the GDB. Clearly, the shape,

range and maximum value of the variogram function follow

the changing radio environment.

The results in terms of mean absolute error (MAE) after

ordinary kriging (OK) [9] interpolation using the estimated

variograms at first and last iteration in each phase are presented

in Table II. The resulting radio environment map is obtained

by considering 1000 spectrum samples in the network area and

using 40 nearest samples per prediction location in the OK.

The map is then compared against another set of 1000 samples

from different locations in the original map. According to the

results, MAE and the accuracy of the corresponding variogram

improve significantly even in the relatively short simulation

cycle consisting of 100 iterations.

V. CONCLUSION

This paper presented a computationally practical method

for data assimilation in geolocation database systems where

abrupt changes in the radio environment cause reassessment

Variogram P1 P2 P3 P4 P5 P6

γ1st 7.40 dB 6.73 dB 5.59 dB 5.31 dB 6.17 dB 5.76 dB
γ100th 5.05 dB 5.55 dB 4.75 dB 4.79 dB 4.57 dB 4.63 dB

TABLE II
MEAN ABSOLUTE ERROR OF THE INTERPOLATED RESULTS USING THE

ESTIMATED VARIOGRAMS FROM FIRST AND LAST ITERATION IN THE

PHASES 1-6 OF THE SIMULATION.

of the parameters for the REM. Particularly, we modeled

the 2-dimensional spatial process as 1-dimensional function,

and linked the ensemble Kalman filter to estimate the mean

state and covariance of the distance classes of the variogram.

This procedure showed considerable improvement in the

computational efficiency compared to traditional geostatistical

sampling methods.
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