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Abstract—In this paper, we consider cellular downlink com-
munication from a set of fixed stations to a set of users with
uncertain locations modeled by a spatial distribution. Each user
is associated with a transmitter through association zones that
maximize the signal-to-interference-plus-noise ratio (SINR) to
that user. We define an expected spatial capacity metric that
captures the expected rate summed over all of these zones.
Network performance is measured using an expectation of the
spatial capacity, subject to the assumed user density function.
We examine the sensitivity of this performance metric to the
number of stations and the number of orthogonal (frequency
or time) channels, and present some counter-intuitive properties
of this metric through illustrative examples, simulation, and
optimization.

Index Terms—Downlink, cellular networks, capacity, schedul-
ing.

I. INTRODUCTION

A. Motivation and Summary

We consider a cellular downlink scenario where a collection
of base stations transmit data to a population of receivers
over a collection of orthogonal (time or frequency) channels.
Each base station selects at most one channel for transmission.
Each receiver associates with the base station (and thereby
the corresponding channel) for which the signal to noise
plus interference ratio (SINR) is largest, where the down-
link interference comes from all co-channel base stations.
Each base station, in turn, splits its transmission times fairly
among the various receivers with which it is associated. We
demonstrate that the expected sum rate under this association
rule, assuming a sufficiently large population of users so
that all transmitters have at least one associated receiver, is
independent of the number of users. Here, the expectation
is with respect to the distribution of receiver locations. We
call this number the downlink expected spatial capacity since
it is the sum, over all base station zones, of the expected
received rate over all receiver locations in the zone, normalized
by the probability of a receiver being located in the zone.
By defining our performance metric as an expectation with
respect to receiver locations, our focus is naturally on scenarios
where the transmitter channel assignment timescale is long
relative to the receiver position timescale, i.e., we compute
the expected sum rate (with respect to the assumed receiver
location distribution) over all receivers for a fixed transmitter
channel assignment.

This metric, although having a natural and intuitive inter-
pretation, is shown in this paper through two ‘experiments’

to have several counter-intuitive properties. In the first ex-
periment we demonstrate that the spatial capacity is highly
sensitive to the transmitter locations, and that ‘random’ place-
ments have spatial capacities significantly lower than optimal
placements. Secondly, we show that adding an additional
transmitter can cause a larger increase in spatial capacity when
the transmitter is placed near an existing transmitter than when
placed so the transmitters are ‘evenly spaced’. The results of
the second experiment suggest that splitting the transmissions
across orthogonal channels (time or frequency) may decrease
the spatial capacity, i.e., performance is optimal when all
transmitters share a common resource.

Our work is motivated by recent and growing interest in
cognitive cellular networks, where downlink transmissions
may be optimized by scheduling in time or frequency, by
power control, or by various receiver association rules. Indeed,
coordinated transmissions and interference mitigation amongst
geo-proximate basestations in cellular networks, also known
as Coordinated MultiPoint (CoMP) transmission, is a recent
inclusion in the 3GPP LTE-Advanced standard [1].

The rest of this paper is organized as follows. §II details our
network model and defines the spatial capacity. §III describes
the results of two simulation experiments. We conclude in §IV
and provide possible directions for future work.

B. Related Work

[2] take a game-theoretic approach to determining station
placement and frequency band selection in a linear network
with uniform power. In a fixed-station approach, they model
mobile-users with a uniform density over a line-segment,
specify SINR-based user-to-station association rules, and are
primarily concerned with network performance in the uplink
direction. It is worth emphasizing that our approach is not
game-theoretic precisely because of our assumed max SINR
association rules. If instead, a receiver associates with a trans-
mitter based on its ‘multiplexed’ received rate (i.e., Shannon
capacity divided by the number of simultaneously supported
receivers), then there are potentially competing incentives to
associate with both ‘strong’ transmitters and transmitters with
low receiver counts.

The study of fairness and load balancing amongst users
and stations has been addressed by several papers [3]–[6].
[3] propose cross-layer, scheduling and load-aware association
rules and evaluate their effectiveness via simulation. [4] pro-
pose both off- and on-line algorithms to compute handoff and
association rules to achieve network-wide proportial fairness
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in user rates. Emphasis is placed on avoiding inter-cell in-
terference at cell boundaries while performing load balancing
across stations. [5] explore association rules to promote rate
fairness amongst the set of users associated with a common
station. A station’s signal strength, in addition to its loading
(from users’ traffic demands), is considered in building such
association rules.

[7] examines outage probability and average and minimum
per-user rates within multi-tiered wireless cellular systems
using a framework rooted in stochastic geometry. They model
stations and users as independent Poisson P oint Processes
on an infinite space, whereas we study a finite arena with
a fixed but arbitrary number and locations of stations. We
model user positions with an arbitrary density function defined
over the arena. [7] define per-user rates as the ratio of the
expectations of per-cell throughput and number of users per
cell, and show that without cell biasing and under certain
interference-regimes, their metrics are highly invariant to the
number of tiers and density of stations. In contrast, we our
metric can be interpreted as the expectation of the ratio (as
opposed to the ratio of the expectations), which may reveal
interesting behavior in the expected per-user rate, particularly
for stations with few users (small association zones).

[8] propose associating users to base stations via a sum rate
maximization problem. Of import, their sum rate expression,
like ours, accounts for the fact that a station’s resources are
split amongst its associated users. They develop an upper
bound on the maximization problem, while also exploring
power-based association rules as a heuristic to the problem.
They provide results on their upper bound and heuristics em-
ployed under specific instances of station and user placements,
whereas we are interested in characterizing the expected sum
of rates in the network given uncertain user locations.

[9] propose related metrics which they term spatial spectral
efficiency and spatial capacity in the context of ad hoc net-
works. Transmitter locations follow a homogeneous Poission
Point Process (PPP), but each transmitter is limited to a
single receiver positioned a fixed distance away from the
‘associated’ transmitter. Spatial spectral efficiency is defined
as an expectation of the sum spectral efficiencies of successful
communications, taken over all realizations of the PPP, while
spatial capacity is the maximum spatial spectral efficiency such
that all communication attempts are successful. Their perfor-
mance metrics are characterized and bounded analytically as
a parameter of the PPP intensity using stochastic geometry
techniques.

In our work, we consider SINR-based user association rules
that map receiver locations to transmitters, which closely
relates to the concept of reception zones, or cells. Recep-
tion zones indicate regions where each transmitter can be
heard successfully in the presence of the other interfering
stations. Several works have focused on the geometric prop-
erties formed by reception zones, particularly in the case
of uniform power assignment across stations. For example,
[10], [11] establish convexity of SINR cells under certain
parameter regimes of the SINR model while [10], [12] explore

connections between the zones and Voronoi cells. The effect
of non-uniform power on the properties of SINR cells has
been investigated in [13] while interference cancellation is
taken into account in [14]; both works develop refinements to
point-location type algorithms. Non-uniform power can break
convexity of SINR cells as well as produce a disconnected
zone associated with a single transmitter, while interference
cancellation can be used to increase the effective area of
reception zones.

Finally, SINR cells have also been investigated from the per-
spective of stochastic geometry, where transmitter positions are
not fixed, but set according to a random process. [12] present a
general model for wireless communications, including fading
effects and heterogeneous power assignments. They investigate
properties of SINR cells such as SINR cell volume, SINR cell
overlaps, and SINR cell connectivity. They also comment on
the transition of SINR cell shapes to disks to Voronoi cells
under different model parameter regimes.

II. NETWORK MODEL & SPATIAL CAPACITY

A. Notation & Model

We consider a bounded arena A ⊂ R2 with n fixed wireless
station locations x1, . . . , xn ∈ An. Let p1, . . . , pn ∈ R+ be
the transmit powers, let η ≥ 0 be the background noise power
as measured over the system bandwidth, B > 0, and l(·, ·) :
R2×R2 → R+ be the pathloss model. Each station is assigned
to be active in at most one of C orthogonal channels (e.g. time
slots or frequency bands). Let Cc be the set of stations assigned
to channel c, and let c(i) be the channel assigned to station i.
The SINR measured at point y from the station at xi is:

sinrf (xi, y) =
pil(xi, y)∑

î∈Cc(i)\i pîl(xî, y) + η/C
(1)

sinrt(xi, y) =
pil(xi, y)∑

î∈Cc(i)\i pîl(xî, y) + η
, (2)

where interference is summed over co-channel stations. sinrf

considers the case where channels are represented by evenly
spaced frequency bands over B, while sinrt considers the case
where channels are represented by evenly spaced time slots
over a frame.

Let Hi, i ∈ [n] be subsets of A, called association zones,
where Hi represents the set of locations y ∈ A where the
association rule, φi(y) ≡ 1 {·}, is satisfied:

Hi ≡ {y : φi(y) = 1, y ∈ A} , i ∈ [n]. (3)

We require that the rules φi, i ∈ [n] form a partition on A, so
that every potential user location y associates with a station.
In this paper, we create subsets Hi that contain points where
station i is perceived to be the strongest station:

φi(y) = 1

{
sinr(xi, y) = max

î∈[n]
sinr(xî, y)

}
, i ∈ [n]. (4)



The metric we consider is based on a user density function
λ(y), y ∈ A such that λ(y) ≥ 0 and

∫
A λ(dy) = 1, represent-

ing the spatial distribution on user locations or communication
requests with the n stations. Considering a user density func-
tion can be useful in situations where exact user positions are
not known, e.g. users with mobility within the arena. Let m
be a given number of users, and let Y1, . . . , Ym, representing
their locations, be iid with density λ. Let Pi =

∫
Hi
λ(dy)

be the probability of a user residing in zone Hi. Finally, in
this paper, we will frequently assume a uniform user density:
λ(y) = 1/|A|. In this scenario, Pi = |Hi|/|A|.

B. Spatial Capacity

For our discussion involving ψcap, let ki be the number of
users falling within zone Hi. We use i(y) to denote the station
whose zone contains point y.

Definition 1 (Per-User Capacity): The per-user capacity
ψcap(y), y ∈ A is the capacity of the link between a user
located at y and its associated station:

ψcap(y) =
B

Cki(y)
log2

(
1 + sinr

(
xi(y), y

))
(bps). (5)

ψcap(y) measures the ‘time-averaged’ rate available to a
user at y. ψcap(y) takes into account the fact that each station
i must multiplex resources amongst its ki associated users.
Thus, a user at y gets a 1/ki(y) share of the rate it would
have achieved had it been the only user in the zone. Further,
the time-averaged per-user rate at y contains a factor of 1/C
regardless of whether channels are represented as timeslots or
frequency bands. The user at y either gets a constant B/C-
bandwidth signal from station i or a B-bandwidth signal from
station i over the duration of one slot per frame (1/C of
the time). What does change in the metric, depending on the
choice of channel representation, is the equation for sinr as
shown in (1) and (2).

Definition 2 (Spatial Capacity): In a network of m users
with locations y = (y1, . . . , ym), the spatial capacity, ψm

cap(y),
is the sum of the per-user capacities divided by the volume of
the network arena:

ψm
cap(y) =

1

|A|
∑
j∈[m]

ψcap(yj) (bps/m2). (6)

Proposition 1 (Expected Spatial Capacity): Let
Y = (Y1, . . . , Ym) be the random locations of m users,
chosen iid according to λ. The expected spatial capacity is:

E
[
ψm
cap(Y)

]
=

1

|A|
∑
i∈[n]

(1− (1− Pi)
m)

Pi
∗∫

Hi

B

C
log2

(
1 + sinr

(
xi(y), y

))
λ(dy)

(7)

Proof: A proof sketch follows. By linearity of expecta-
tion, we can express the expected sum capacity as the sum

of expected per-user capacities. It then suffices to analyze
E [ψcap(Y )] for an arbitrary user, Y = Yj . Condition on
Y ∈ Hi, then condition on the random number of users, Ki, in
zone Hi. P (Ki = ki|Y ∈ Hi) can be modeled by a binomial
distribution Bin(m−1, Pi) due to the fact that Y is already in
Hi and the fact that all user locations are iid. The remaining
steps are algebraic manipulations of the resulting expression.

We now examine the expected spatial capacity metric (7)
under the assumptions of many users and uniform user density.

Proposition 2 (Uniform Density): Given a uniform user
density, the expected spatial capacity (7) is:

E
[
ψm
cap(Y)

]
=

1

|A|
∑
i∈[n]

(
1−

(
1− |Hi|

|A|

)m)
|Hi|

∗∫
Hi

B

C
log2

(
1 + sinr

(
xi(y), y

))
dy.

(8)

Proof: Under the assumption of uniform user density, we
have λ(y) = 1

|A| and Pi =
|Hi|
|A| .

Proposition 3 (Many-Users): Given non-empty association
zones, the many-users limit m → ∞ of the expected spatial
capacity (7) becomes:

E
[
ψm
cap(Y)

]
=

1

|A|
∑
i∈[n]

1

Pi

∫
Hi

B

C
log2

(
1 + sinr

(
xi(y), y

))
λ(dy).

(9)
Proof: Since Pi > 0, we have (1 − (1 − Pi)

m) → 1 as
m→∞.

Proposition 4 (Many-Users, Uniform Density): Given non-
empty association zones and a uniform user density, the many-
users limit m → ∞ of the expected spatial capacity (7)
becomes:

E [ψcap(Y )] =
1

|A|
∑
i∈[n]

1

|Hi|

∫
Hi

B

C
log2

(
1 + sinr

(
xi(y), y

))
dy.

(10)
Proof: The proof follows from the proofs of Propositions

2 and 3.
Note that the resulting expressions from Propositions 2

through 4 are a sum of integrals of the non-multiplexed ca-
pacity equation (5) with ki(y) = 1. Also note that E [ψcap(Y )]
is independent of the number of users in the network, but
still depends on the distribution of users. If we express the
expected spatial capacity in terms of the expected per-user
capacity directly from (6):

E
[
ψm
cap(Y)

]
=

1

|A|
∑
j∈[m]

E [ψcap(Yj)] =
m

|A|
E [ψcap(Y )] .

(11)
we note that it bears a similarity to the results of Theorem 1
in [9]. Aside from the facts that i) we are summing per-user



capacity instead of a per-transmission spectral efficiency in (6)
and ii) we include an additional 1/ki(y) multiplexing factor,
our spatial capacity can be interpreted as the intensity of users,
m
|A| , multiplied by the expected per-user capacity, E [ψcap(Y )].

Finally, the integral within (7) can be interpreted as the
total throughput offered by station i (analagous to Rk in [7])
and the factor 1/Pi can be related to the number of users
associated with cell i (analagous toNk in [7]). However, in [7],
expectations of both are taken across user and station processes
prior to examining the

III. SIMULATION AND OPTIMIZATION EXPERIMENTS

We illustrate the spatial capacity metric by considering
a collection of scenarios with varying node density, node
placement, number of schedule slots, and active transmitter
sets across multiple slots. The intention of these simulation and
optimization experiments is to gain insight into the properties
of the metric and how it may be used to improve expected
network performance. The metric under consideration is sen-
sitive to all the parameters described in the previous section
including the receiver density, noise power, pathloss exponent,
arena size, transmit power. We limit our attention to the
base case under this model of uniform power allocation,
uniform receiver density, isotropic antenna radiation patterns,
and noise/transmit power representative of a noise-limited
environment.

Unless otherwise stated, we consider a square arena A of
1km by 1km, transmit power pi = 0.1W on every node i ∈ [n],
noise power η = 10−6W, and bandwidth B = 10MHz. The
pathloss model is assumed to be free space (pathloss exponent
of 2). For visualization we use the capacity metric in (5) based
on the SINR equation in (2) (with ki(y) set to 1) to indicate
the maximum capacity available to a receiver placed in a
specific location in the arena. For observing the performance
of the network as we increase the number of transmitter or
scheduling slots, we use the spatial capacity metric in (10).

A. Spatial Density of Transmitters

One of the central questions to consider in optimizing
receiver-agnostic spatial capacity is the effect of transmit-
ter placement and density. The following two experiments
suggest, through simulation, the counter-intuitive notion that
the optimal position for an additional transmitter is in the
vicinity of another active transmitter. So while the mean spatial
capacity increases with transmitter density, it is much lower
that the spatial capacity achievable through optimization of
node placement.

1) Illustrative Transmitter Location Example: In order to
introduce the visualization techniques used in this paper and
to motivate the transmitter density experiment that follows,
we consider two network topologies shown in Fig. 1. The
first topology has nodes located 600m apart at positions:
(200, 200), (200, 800), (800, 200), and (800, 800). The sec-
ond topology has nodes located 200m apart at positions:
(400, 400), (400, 600), (600, 400), and (600, 600). Both net-
works are located in a 1km by 1km arena.

(a) Capacity for topology 1. (b) Change for topology 1.

(c) Capacity for topology 2. (d) Change for topology 2.

Fig. 1. On the left is the capacity metric for two topologies of 4 nodes. The
gradient for the heatmap is from black to white, or from minimum measured
capacity to maximum measured capacity, respectively. On the right is the
capacity change metric that quantifies the relative increase in spatial capacity
in the event of an additional transmitter added at the sampled location.

The left side of Fig. 1 is a heatmap that shows the capacity
metric for these two topologies. On the right side of Fig. 1
is a 3D visualization of a spatial capacity change metric that
measures for a position y ∈ A the relative change in spatial
capacity (10) in the event that a new transmitter is placed at y.
A change metric value of zero means that the spatial capacity
did not change with the addition of a transmitter. A change
metric value of 0.1 means that spatial capacity increased by
10%.

We gather four interesting observations from this experi-
ment. First, placing a transmitter anywhere in the arena will
have a non-negative effect on the spatial capacity. Second,
generally, the optimal placement for an additional transmitter
appears to be close to at least one other transmitter, but not
right next to it. In other words, there is a sweet spot in the area
near other transmitters where the increase in spatial capacity
would be locally optimal were a new transmitter positioned
there. This is a counter-intuitive observation that suggest a
highly-clustered topology is likely to lead to a higher spatial
capacity than a less-clustered one. Third, topology 1 indicates
that edge effects may have a significant influence on the
metric. Transmitters close to the edge of the arena have a
cell that is smaller than it otherwise might be. The counter-
intuitive observation here is that such a curtailed cell often
leads to an increase in spatial capacity.

The fourth observation is that the change metric for the
majority of the arena is close to zero, increasing significantly
only in the aforementioned zones near other transmitters.
Therefore, if we were to randomly place a transmitter in the
arena, the expected improvement will be much lower than the
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n ∈ {2, 3, ..., 10}. The middle line is the mean. The box is the mean
plus/minus the standard deviation. The whiskers of the plot are the minimum
and maximum of each set of 10, 000 spatial capacity values.

maximum improvement if we optimize the placement of the
transmitter. This observation is built upon in the next section.

2) Varying Number of Transmitters: In this experiment,
we consider the relationship between the spatial capacity
and the number of active transmitters in the arena. For each
n ∈ {2, 3, ..., 10} number of transmitters, we simulate 10, 000
realizations of random node positions, and compute the spatial
capacity of the network assuming all n transmitters are actively
transmitting in a single slot. Fig. 2 shows the mean, standard
deviation, and range of the 10, 000 spatial capacity evaluations
for each n. The node topologies are generated using a 2D
uniform Binomial Point Process (BPP).

We can draw two insights from the data in Fig. 2. First,
the mean spatial capacity increases with the number of trans-
mitters. Second observation is that the mean spatial capacity
is much closer to the minimum than the maximum. This
is related to the observation in §III-A1 that the majority of
two-node configuration in the arena do not lead to a spatial
capacity value that is much higher than if just one of these
nodes was transmitting. While this cannot be directly extended
to arbitrary configurations of n nodes, it does provide some
intuition that clustered topologies (with small groups of nodes
positioned close together) provide higher spatial capacity than
topologies that are more uniformly spread out in the arena.

B. Scheduling

The optimal schedule problem seeks a set of channel
assignments c(i), i ∈ [n] in order to maximize some expected
performance metric E [ψ(Y )] of the system. In the following
two experiments, we consider multiplexed association zones
(see §II-A) and optimal packing of transmissions over multiple
schedule slots.

1) Illustrative Multiplexing Example: We consider two
examples of 2-slot assignments for network of 25 nodes
positioned in a lattice of 5× 5. Fig. 3 shows the visualization
of per-slot capacity and the multiplexed capacity for both of
these assignments. Moreover, it shows the association zones
for a multiple-slot case based on which the spatial capacity

(a) 1 slot. (b) 2 slots. (c) 3 slots.

(d) 4 slots. (e) 5 slots.

Fig. 4. The optimal slot assignments for a network of five nodes when the
number of slots is constrained to 1, 2, 3, 4, or 5.
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metric is computed. An association zone Hi in (3) for node
i ∈ [n] is a subset of the arena in which the capacity metric is
maximized for a receiver that can optimally choose in which
slot to listen in on. In the homogeneous power single slot case,
the association zones form a Voronoi diagram of convex cells
[10]. In the multiple-slot case, as shown in Fig. 3, the zones
can be convex, but can also be disjoint non-convex with holes.

These two examples of slot assignments were chosen to
demonstrate the counter-intuitive nature of the spatial capacity
metric in its valuation of the density of transmitters over the
negative interference effects on the capacity of each individual
cell. It may seem reasonable to assume that the more even split
of slot assignments in the first example would lead to an order-
of-magnitude higher spatial capacity. Instead the difference
is small with spatial capacity of 259.4bps/m2 for the first
example and 186.4bps/m2 for the second example.

2) Varying Number of Schedule Slots: In this experiment,
we compute an optimal schedule for a network of five nodes in
a topology shown in Fig. 4(a). We find the schedule for 1, 2, 3,
4, and 5 slot assignments for which the multiplexed association
zones maximize the spatial capacity. Fig. 4 shows the optimal
solution for each of these five optimization problems. Each
transmitter is constrained to only transmit in a single time
slot. Fig. 5 shows the decreasing spatial capacity for each of
these solutions as the number of slots increases.

The fact that the spatial capacity decreases with the number
of schedule slots confirms the counter-intuitive notion (from
§III-A) in this specific case that the spatial capacity is maxi-
mized when all transmitters are active.



(a) Ex. 1: Capacity of nodes active in slots 1 and 2. (b) Ex. 2: Capacity of nodes active in slots 1 and 2.

(c) Ex. 1: Multiplexed asso-
ciation zones (see §II-A).

(d) Ex. 1: Capacity of multiplexed
schedule.

(e) Ex. 2: Multiplexed asso-
ciation zones (see §II-A).

(f) Ex. 2: Capacity of multiplexed
schedule.

Fig. 3. Two illustrative examples of channel assignments on a network of 25 nodes that are positioned in a 5×5 lattice. The first row shows the transmitters
assigned to the first and second slots for both examples. The second row shows the multiplexed association zones and multiplexed capacity metric (in bps)
for both examples. The spatial capacity is 259.4bps/m2 for the first example and 186.4bps/m2 for the second example.

IV. CONCLUSIONS & FUTURE WORK

In this paper, we presented a spatial capacity metric com-
puted over SINR-based association regions in the context of
cellular downlink communication. We considered the sensi-
tivity of this metric to the position, density, and scheduling
of transmitters to reveal some counter-intuitive properties of
this metric. In particular, we observed: (1) that a highly-
clustered topology leads to a higher spatial capacity than a
less-clustered one, (2) that spatial capacity increases as the
number of transmitters increases, and decreases as the number
of schedule slots increases.

Future work will expand the network model on which
the spatial capacity metric is based to include heterogeneous
power and directional antennas, and expand the optimization
framework to include power control and facility location
problems. In §III-A1, we observed that adding a transmitter
anywhere in the arena has a non-negative effect on spatial
capacity. This observation was gathered from extensive sim-
ulation. In future work, we seek to prove this property for
arbitrary node placement configurations.
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