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Abstract— As a result of wideband analog front-end, wideband
spectrum sensing techniques are prone to suffer from RF non-
linearities. Intermodulation products due to strong subbands or
carriers stemming from low noise amplifier nonlinearities, can
easily degrade the spectrum sensing performance by causing false
alarms and degrading the detection probability. We analyze the
effects of third-order nonlinearities on both energy detectors and
cyclostationary detectors under front-end nonlinearities. We show
that the presence of strong blockers in the wideband channel can
substantially degrade the sensing performance of both detectors,
and energy detectors loose their advantage over cyclostationary
detectors. Then, we propose an adaptive interference cancellation
algorithm to compensate for the effect of the blockers at any
subband of interest. The obtained results also show that when
compensation is enabled, cyclostationary detector is more robust
to moderate blocker signal levels than the corresponding energy
detector.

I. INTRODUCTION

In the context of Cognitive Radios (CRs) [1], secondary
users (SUs) sense the spectrum to opportunistically access
the unused subbands. However, SU must avoid interfering
with the licensed Primary Users (PUs). As a result, spectrum
sensing [2] is key to the deployment of future cognitive radios.
The RF front-end of the sensing radios can either support
narrowband or wideband sensing. Narrowband RF front-ends
allow the sensing radios to tune to a single subband at a time.
In such an approach, sensing would require tuning of the
local oscillator used for downconversion, and only a single
channel can be sensed at a time. On the other hand, wideband
RF font-ends downconvert a wide range of frequencies to
baseband, where the filtering is performed digitally. In such
receivers, sensing multiple subbands would entail changing
the filtering performed in DSP only while keeping the RF
front-end untouched. In particular, we focus in this work on
wideband RF front-ends as sensing multiple subbands can be
performed purely on the digital side.

With respect to different techniques for spectrum sensing
[2], cyclostationary-based detectors (CD) [3], [4] rely on
detection of hidden redundancies in the received signal. The
redundancy is captured by correlating the received signal with
a frequency-shifted version of itself. The frequency by which
the signal is to be shifted before correlating it with itself,
referred to as cyclic frequency, is a function of the signal’s
modulation type, its symbol rate, and carrier frequency, all of
which are assumed to be known. On the other hand, energy
detectors (ED) [5] rely on computing the energy in the subband

of interest to determine whether the signal of interest (SOI)
is present or not by comparing it to a threshold. Although
energy detectors require the least amount of information about
the signal to be detected, they do suffer from the noise uncer-
tainty problem [6] when the noise floor cannot be estimated
accurately. Cyclostationary detectors do not suffer from the
noise uncertainty problem, and are therefore more robust than
energy detectors in this regard.

The effects of certain receiver front-end non-idealities such
as phase noise [7] and I/Q imbalance [8] as well as sampling
clock offset on the performance of signal detectors have been
reported in number of studies, e.g. [9], [10]. The assumption
in these studies is that the receiver operates in its linear region.
However, depending on the received power of the incoming
signal, wideband sensing receivers might operate in a range
where the RF front-end components such as Low Noise
Amplifier (LNA) exhibit a non-linear behavior. Therefore,
spurious frequencies in the form of harmonics, intermodulation
(IM) and crossmodulation (XM) are generated [11], [12]. As a
result, the presence of strong blockers, i.e. strong signals inside
or outside the subband of interest, in the wideband spectrum
produces distortion terms that affect the detection performance
in other subbands where weaker signals may reside [12], [13].
Under such scenarios, the detection performance might be
degraded, causing the CR network to either cause harmful
interference to the PU, or to miss the opportunity to transmit
in a vacant subband. In [14], [15] an Adaptive Interference
Cancellation (AIC)-based algorithm is used to compensate for
the front-end nonlinearities. However, these papers, generally,
demonstrate the performance of AIC only in terms of IMD
mitigation and, to the authors knowledge, there are no studies
available on the performance of the spectrum sensing algo-
rithms with/without the AIC algorithm, which is the focus of
this paper.

The aim of this paper is to study the robustness of different
spectrum sensing techniques to non-linear RF front-ends. We
show that strong blockers can severely degrade the sensing per-
formance for both cyclostationary-based detectors and energy-
based detectors. We describe in Section II the system model
and formulate the detection problem to be solved. Section
III presents both kinds of detectors to be studied in this
work, and shows the degradation in sensing performance under
third-order nonlinearities. Section IV describes the adaptive
technique for interference cancellation to reduce the effect of
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the blockers in the subband of interest. We show in Section V
the performance gains when using the proposed solution, and
Section VI concludes the paper.

II. SYSTEM MODEL

The problem of receiver (Rx) front-end nonlinearity in the
sensing of a wideband spectrum on channel-by-channel basis
is considered in this article. In this scheme, the entire wideband
signal is downconverted to baseband and digitized. Then,
digital filtering is performed for the subband of interest, and
the resulting I/Q samples are fed to the detector to perform
spectrum sensing. Naturally, the nonlinearity in the sensing
front-end results in the generation of intermodulation (IM)
terms. As a result, the IM terms can affect the performance of
the sensing Rx in terms of degradation in receiver operating
characteristic (ROC) curve for a given signal-to-noise ratio
(SNR). The odd-order nonlinear terms are only considered for
the modeling of the RF front-end nonlinearity as the spurious
frequency components that are generated by the even-order
terms, i.e harmonics and inter/cross-modulation terms, are
assumed to be outside of the overall digitized wideband [11].
Moreover, the nonlinearity in the front-end is assumed to be
mild and therefore is modeled with a cubic term. As a result,
the baseband equivalent of the wideband signal at the output
of the nonlinear front-end can be described as [15]

yW [n] = β1x[n] + β3x[n]|x[n]|2 + w[n], (1)

where β1, β3 are characteristics of the sensing Rx front-end,
x[n] is the received baseband equivalent wideband signal, and
w[n] is the additive white Gaussian noise. The values for β1,
β3 are related to the amplitude AIP3 of the signal at third-
order intercept point through the following expression [15]

AIP3 =

√
4|β1|
3|β3|

. (2)

Also the power of the input signal yW [n], in dBm, and in
terms of AIP3 can be written as [15]

PIP3 = 20 log10 AIP3 + 10 dBm.

We focus on the detection of a given subband in the wideband
spectrum centered at fc. The licensed primary user that may
occupy this channel utilizes a known modulation scheme. The
real world example of such setup is the digital TV band in
US where the primary users are single carrier signals with
vestigial single sideband (VSB) modulation. As a result of the
third-order nonlinearity, the third-order intermodulation term
of any two relatively strong signals zi(t) and zj(t), also known
as blockers in this context, located at fi and fj will fall in the
subband of interest if fi±2fj = fc or 2fi±fj = fc. We focus
on the baseband representation of such a scenario in a given
subband of interest after downconversion to an intermediate
frequency fIF and digital filtering. For example, in the single
pair of blockers case, it was shown in [15] that the signal in
the subband of interest is given by

y[n]≈
(
β1z0[n] +

3β3

2
z2i [n]z

∗
j [n]

)
ej2πfIFnTs + wz[n], (3)
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Fig. 1. Interference on the SOI by the IMD components that are generated
by two blockers as the result of third-order nonlinearity in the receiver front-
end. In this example blockers are around frequencies fi and fj . The SOI is
around frequency fc = 2fj − fi.

where z0[n] is the baseband version of signal of interest (SOI),
zi[n] and zj [n] are the baseband representation of the blockers
whose third-order IMD term falls in the subband of interest
at center frequency fc = 2fi − fj . The center frequency
of the subband of interest after RF I/Q downconversion is
denoted by fIF and Ts is the sampling period. Finally, wz[n]
is the complex white Gaussian additive noise in the subband of
interest. It should be noted that in this model the assumption
is that the blockers are orders of magnitude stronger than SOI,
i.e. E[|z0[n]|2] ≪ E[|zi[n]|2]. Therefore, the additional IMD
terms around fc generated by the SOI and one blocker in the
form of z0[n]|zi[n]|2 as well as the self-interference IMD term
generated by the SOI in the form of z0[n]|z0[n]|2 are negligible
compared to the IMD terms of the blocker pairs. One example
of the power spectrum density (PSD) of a two blocker case
for a Rx front-end with finite IP3 is depicted in Fig. 1.

The goal of the CR is to detect the presence of the weak SOI
z0[n] in the presence of strong blockers. The filtered signal
under both hypotheses is given as follows

y[n]=


3β3

2 z2i [n]z
∗
j [n]e

j2πfIFnTs + wz[n], under H0(
β1z0[n] +

3β3

2 z2i [n]z
∗
j [n]

)
ej2πfIFnTs

+wz[n], under H1.

We define the Signal to Noise Ratio (SNR) with respect to the
SOI as

SNR = 10 log10

(
E[β2

1 |z0[n]|2]
E[|wz[n]|2]

)
dB, (4)

where E[·] is the statistical expectation operation. Further,
we assume for simplicity that both blockers have the same
power, i.e. E[|zi[n]|2] = E[|zj [n]|2], and define the Signal to
Interference Ratio (SIR) as

SIR = 10 log10

(
E[|z0[n]|2]
E[|zi[n]|2]

)
dB. (5)

III. DETECTION METHODS AND PROBLEM FORMULATION

We consider energy detectors and cyclostationary detectors
as the two detection methods to be analyzed. After defining
the two detectors, we show the impact of RF nonlinearities on
both detectors.



A. Spectrum Sensing Algorithms

Cyclostationary detectors (CD) rely on detecting the pres-
ence or absence of cyclic features in the received signal. In
order to detect the presence of a cyclic feature, a typical
detection method relies on the computation of the Cyclic Auto-
Correlation (CAC) function. This detection method correlates
the received signal with a frequency shifted version of itself at
a given lag ν, where the cyclic frequency is denoted by α. For
the case of linearly-modulated signals, the cyclic frequencies
at which cyclic features occur are a function of the signal’s
symbol rate and carrier frequency. With a finite sensing time,
the non-conjugate CAC Rα(ν) is computed with N samples
as follows

Rα
y (ν) =

1

N

N−1∑
n=0

y[n]y[n− ν]e−j2παnTs . (6)

For the signal class considered in this work, it was shown in
[3] that VSB signals exhibit a cyclic frequency at α = 2fIF .
Although the imperfect knowledge of the cyclic frequency de-
grades the detection performance of cyclostationary detectors
as shown in [16], [17], we focus in this work on the effect of
nonlinearities in cyclostationary detection and assume perfect
knowledge of the cyclic frequency. The lag ν at which the non-
conjugate CAC is to be computed is modulation-dependent,
and is set to ν = 0 in this work as it maximizes the power of
the cyclic feature at α = 2fIF .

Energy detection (ED) on the other hand can be seen as a
special case of the CAC, and can be performed by computing
the conjugate CAC at cyclic frequency α = 0 and lag ν = 0.
In addition, we do not consider the noise uncertainty problem
of EDs [6], and show the degradation of ED due to receiver
nonlinearities only. The detector therefore computes the test
statistic given by

R0
y∗(0) =

1

N

N−1∑
n=0

y[n]y[n]∗. (7)

Therefore, depending on the kind of detector, the sensing
radio computes Rα

y (0) or R0
y∗(0), and performs the following

hypothesis test

Cyclic Detector

{
|Rα

y (0)| < γCD → SOI is absent
|Rα

y (0)| > γCD → SOI is present,

Energy Detector

{
|R0

y∗(0)| < γED → SOI is absent
|R0

y∗(0)| > γED → SOI is present.

where γ is the decision threshold that is usually set to maintain
a Constant Probability of False Alarm (CFAR) Pcfar =
P(|Rα

y (0)| > γCD|H0) under CD, or Pcfar = P(|R0
y∗(0)| >

γED|H0) under ED.

B. Detection Performance Degradation under RF front-end
nonlinearity

We analyze in this section the detection performance degra-
dation of both detectors in the presence of third-order non-
linearities and strong blockers via simulation. In particular,
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Fig. 2. Detection performance degradation of both cyclostationary-based
and energy-based detectors in the presence of third-order nonlinearities with
varying blocker strengths.

we focus on low SIR regimes, where the blockers power is
much larger than the SOI power (when present). Fig. 2 shows
the performance loss of both cyclostationary and energy-based
detectors at a SNR of 0 dB using 5000 samples to compute (6)
and (7). The IIP3 of the front-end of the Rx is -10dBm and the
mean power of the wideband received signal is varied between
three cases where there is no blocker, SIR = -26 dB and SIR
= -30 dB. Fig. 2 shows simulated ROC for these three cases.
Under no noise uncertainty [6], ED outperforms CD when the
LNA operates in its linear region. However, the performances
of both ED and CD degrade heavily when the Rx front-end
operates in its nonlinear region. Although ED outperforms CD
in case of a linear front-end, this advantage vanishes as the
RF font-end operates in its non-linear regime. In the next
section, we formulate an adaptive interference cancellation
algorithm that improves the detection performance of both
sensing algorithms under RF nonlinearities.

IV. ADAPTIVE INTERFERENCE CANCELLATION (AIC)
ALGORITHM

In this section, we formulate an adaptive interference
cancellation based approach for improving the sensing of
weak signals in the presence of nonlinearities. The basic
compensation structure, motivated by (1), is presented in Fig.
3. For every sensing operation, the band-split filtering stage
first separates the subband of interest from rest of the band.
These effective filtering functions are denoted by HD and
HR with their corresponding impulse responses hD[n] and
hR[n], respectively. Here, ”D” refers to ”desired” and ”R” to
”reference” signal branches.

Filtering the wideband signal yW [n] using the band-splitting
filters yields

y[n] = hD[n] ∗ yW [n] ≈ xD[n] + vD[n]

y
′
[n] = hR[n] ∗ yW [n] ≈ xR[n], (8)
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Fig. 3. Proposed compensation structure for third-order nonlinearity in the front-end. The upper branch captures the desired signal subband and the lower
branch generates an interference reference. These two signals are then processed by an adaptive interference canceller to suppress the nonlinear distortion
effects from the signal of interest

where ∗ represents the convolution operation. Here yW [n]
is the wideband signal in (1). Moreover, in (8), y[n] is
the signal residing at the subband of interest. In the two
blocker case and modeling in (3) the blocker-free signal
is xD[n] = β1z0[n]e

j2πfIFnTs + wz[n]. The signal y
′
[n]

contains the components at the rest of the band, which we
assume here to be dominated by the strong blockers. The
spurious frequencies stemming from nonlinear component in
the subband of interest are denoted by vD[n]. Again, in the
two-blockers case in (3) vD[n] = 3β3

2 z2i [n]z
∗
j [n]e

j2πfIFnTs .
The idea in this compensation structure is to regenerate vD[n],
i.e. the portion of the IMD terms which are generated by
the dominant blockers, from the signal components available
in the reference branch. Considering the baseband model of
nonlinearity in (1) it is possible to conclude that all the IM
terms which are generated by the blockers can be re-generated
by transforming y

′
[n] with a baseband model of front-end

nonlinearity, i.e. y
′
[n]|y′

[n]|2. Naturally, this nonlinear model
generates the interfering as well as non-interfering inter/cross-
modulation terms, therefore a band-limitation filter is required
to isolate the interfering inter/cross-modulation term, i.e. v̂D[n]
(Fig.3). After generation of v̂D[n], an adaptive filtering stage
is applied to ”scale” the reproduced IMD components properly
before being subtracted from the desired signal. This can be
written as

x̂D[n] = y[n]− 3

2
q[n]v̂D[n]. (9)

The adaptive filter coefficient, q[n], can be adjusted, e.g., to
minimize the power of the compensator output using the well-
known least-mean-square (LMS) algorithm [18] as follows

q[n+ 1] = q[n] + µv̂∗D[n]x̂D[n] (10)

where the output of the interference canceller, serving also as
the error signal in learning, is x̂D[n]. Also, µ is the step-size
for the coefficients update of the LMS algorithm. In practical
implementation, the effective processing of different nonlinear-
ity orders can be carried out individually by having parallel
reference signal branches (reference nonlinearity and adaptive
filter stage) for each order of interest. For instance, possible
fifth-order nonlinearity in the LNA can be accommodated by
adding a branch of simple fifth-order stage, i.e. y

′
[n]|y′

[n]|4,
followed by a band limitation and adaptive filter stage in the
reference branch. Thus, in general, it should be noted that

no detailed a priori knowledge of the nonlinearity of the
front-end is basically needed. The reference nonlinearity sec-
tion simply regenerates the interfering frequency components
which are then further modified by the online adaptive filter
stage, controlling the actual interference cancellation process.
Furthermore, by adjusting the band-split filtering stage that
separates the current sensing subband from the rest of the
spectrum, this method is applicable regardless of the position
of the sensing subband.

V. NUMERICAL RESULTS

In this section, we show the performance of the interference
cancellation algorithm first by analyzing the convergence of
the adaptive filter for various blocker levels. We then show
the performance gains that can be achieved using the proposed
AIC for both energy and cyclostationary detectors for varying
sensing time and blocker strength. All signals are 6 MHz wide,
and follow the 8-VSB modulation scheme which exhibits a
cyclic feature at α = 2fIF .

A. Interference Cancellation Performance

In order to analyze the performance of the AIC, we first
analyze the convergence of the adaptive algorithm. Given that
the compensation is performed before the detection, we do
not consider any specific detection method at this point yet.
As per the nature of adaptive filters, the number of samples
used for the AIC determines the convergence level of the
adaptive algorithm. We show in Fig. 4 the evolution of the
AIC coefficient q[n] over time for a range of SIR levels ranging
from -10 dB to -36 dB with a step size µ = 5× 10−5. In our
simulations, we consider β1 = 1, an IIP3 of -10 dBm, resulting
in β3 = −133.33. As the reference signal to the adaptive filter
is proportional to the blocker strength, the convergence rate of
the AIC is therefore inversely proportional to the SIR. As a
result, one would expect that the improvement in the detection
performance improves with lower SIR. This will be validated
in the rest of the numerical results. In addition, the conver-
gence rate is faster with lower SIR. This in turn forms the trade
off between AIC run-time and actual sensing time. Although
estimating the β3 coefficient is not performed as frequently
as the sensing stage, increasing the number of iterations of
the AIC in turn reduces the throughput of the CR network.
However, given that main objective of the sensing radio is to
avoid interference caused to the primary users, it is therefore of
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Fig. 4. The convergence behavior of the AIC algorithm coefficient, q[n], for
various levels of SIR under a SNR of 0 dB.

the interest of the SUs to compensate for the bad performance
by running the AIC until convergence. To study the detection
performance as a function of the remaining of the parameters,
we select the number of iterations for the AIC to guarantee
the convergence of the adaptive algorithm. In practice, e.g.
normalized LMS learning or gear-shift type methods can offer
better convergence in the coefficient adaptation.

B. Effect of Increasing Sensing Time

Next, we fix both the SNR to 0 dB, and the SIR to -30
dB, and vary the sensing time required to compute the test
statistics. In fact, increasing the sensing time is equivalent to
improving the SNR and SIR for both ED and CD as the vari-
ance of both the intermodulation term and the noise decrease
with increasing N . Fig. 5 shows the detection probability
for a fixed CFAR of 0.1 for varying number of samples N
from 1000 to 5000 samples. At the SIR level of -30 dB,
both non-compensated ED and CD perform similarly, and
the detection probability increases with increasing N . After
estimating β3 using 105 samples and compensating for the
effect of nonlinearities, energy detectors regain their advantage
over cyclostationary detectors as the detection performance
of ED becomes better than that of CD. In addition, we note
that the performance gains due to the AIC increase with
increasing sensing time. Further, we compare in Fig. 5 the
detection performance of the compensated detectors with the
performance of ideal detectors in the absence of nonlinearity.
We make two observations. First, the performance of the
compensated detectors is still worse than that of the ideal
ones. In fact, as was shown in Section V-A, the convergence
rate of the AIC is faster in low SIR regimes. Therefore, it is
expected that the gap between compensated and ideal curves
increases with increasing SIR levels. Second, as we have
shown in Fig. 2 that ED suffers from a greater performance
loss under nonlinearities, this behavior can also be seen in
the performance degradation between compensated and ideal
detection performance.
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Fig. 5. Detection performance degradation of both cyclostationary-based and
energy-based detectors with and without the AIC compensation as a function
of the number of samples under an SIR of -30 dB and a SNR of 0 dB.

C. Varying Blocker Power

In this section, we analyze the performance gains of both
energy and cyclostationary detectors in the presence of strong
blockers for different SIR levels. The sensing time is fixed
to N = 5000 samples, and the SNR is set to 0 dB. The
SIR level is varied between -10 dB and -36 dB. Fig. 6 shows
the ROC curve for cyclostationary detectors with and without
the compensation. At high SIRs, the reference signal of the
adaptive filter is weak as the intermodulation term has low
power. As a result, the AIC fails to compensate for the non-
linear effect of the LNA, and therefore the performance of
both compensated and non-compensated CD coincide. How-
ever, with increasing blocker power, the AIC converges as
the strength of the reference signal is relatively high. The
performance gains due to the AIC increase with increasing
blocker power, which is equivalent to decreasing SIR levels.
On the other hand, Fig. 7 shows a similar behavior of ED
in terms of the compensation levels as a function of the SIR.
However, the performance of compensated CDs do not degrade
as much as compensated ED from an SIR level of -10 dB
to -26 dB. As a result, one can conclude that compensated
cyclostationary detectors are more robust to weak blockers
than compensated energy detectors.

VI. CONCLUSIONS

When the receiver LNA is operating in its non-linear regime,
we showed in this paper that wideband spectrum sensing
can suffer severe degradation in its detection performance in
the presence of strong blockers. We have analyzed the effect
of these nonlinearities on both cyclostationary detectors and
energy detectors. We have proposed an interference cancella-
tion based compensation method to subtract the effect of the
blockers at any subband of interest by means of an adaptive
algorithm whose performance has been evaluated numerically.
The performance gains of both detectors with and without the
compensation have been analyzed for varying blocker levels
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Fig. 6. ROC curves for compensated and non-compensated cyclostationary-
based detectors in the presence of third-order nonlinearities with varying
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and compensated ROC curves, respectively.
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Fig. 7. ROC curves for compensated and non-compensated energy-based
detectors in the presence of third-order nonlinearities with varying blocker
strengths. Solid lines and dashed lines correspond to non-compensated and
compensated ROC curves, respectively.

and sensing time. Without compensation, we have shown
that energy detectors lose their advantage over cyclostationary
detectors even in the absence of noise uncertainty. Further,
we have shown that compensated cyclostationary detectors
are more robust to weak blockers than compensated energy
detectors. Overall, the results indicate that the developed
adaptive interference cancellation approach can reduce the
effects of RF nonlinearities in spectrum sensing receiver in
a considerable manner.
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