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Abstract— A statistical model of land mobile radio (LMR) voice 

traffic is developed from empirical RF Spectrum measurement 

data. This model builds upon previous work, and is used to 

generate synthetic voice traffic that closely follows the daily and 

weekly patterns of the measured traffic. The model is applied to a 

Dynamic Spectrum Access (DSA) simulation. A coexistence 

algorithm that takes advantage of the modeled channel statistics 

is presented that allows an opportunistic secondary user (SU) to 

share a channel with a primary user (PU). The algorithm shows a 

clear improvement compared to the basic Listen-before-talk 

scheme that has no knowledge of a PU’s statistical traffic 

characteristics. Spectrum Opportunity Accessed and collision 

rate are used as metrics to compare the DSA coexistence 

techniques. We demonstrate the utility of a spectrum observatory 

system as being the integral part of this DSA framework, where 

the observatory continually monitors and models PU channel 

activity in order to provide the SU with useful statistical 

information about the PU’s traffic characteristics.   

Keywords-statistical model; Cognitive Radio; Dynamic 

Spectrum Access Networks (DSA); voice traffic; Land Mobile 

Radio (LMR); public safety radio; Listen-before-talk (LBT); 

Spectrum sharing; Spectrum Observatory. 

I.  INTRODUCTION 

The Land Mobile Radio (LMR) band voice channels are 
widely used by commercial users. They also play a critical role 
for public safety communications where public safety agencies 
like police departments use LMR systems for communication 
between dispatch centers and mobile field agents, and also for 
direct mobile-to-mobile communications. In the United States, 
LMR channels are allocated in the VHF (148-174 MHz) and 
UHF (450-512 MHz) bands [KOB01]. 

In previous work [BAC10], it has been shown that the 
allocated LMR spectrum is sparsely utilized by some 
commercial user groups, while users like public safety 
commonly reach near full capacity – especially during 
emergencies [TAH11].  Hence, the LMR bands are candidates 
for studying the feasibility of Dynamic Spectrum Access 
(DSA) technology such that users in a high activity channel 
(like public safety) can gain extra capacity when needed by 
sharing spectrum with low activity channels [LEE10]. For 
example, DSA technology can be applied to increase the pool 
of public safety channels during an emergency situation when 
federal, state and city agencies may converge in a geographic 
locale [FCC08][FCC09]. 

In order to permit channel sharing, knowledge of the 
Primary User (PU) activity is essential towards the goal of 
limiting the likelihood of collisions between the PU and 
Secondary User (SU) [HUA09]. Additionally, the SU is able to 
use information about the PU to assess the level of spectrum 
opportunity available in that channel so it can decide whether 
to use it or to search for a more favorable channel. Knowledge 
of the PU has to be obtained from RF spectrum measurements 
– to this end, spectrum measurements conducted at the Illinois 
Institute of Technology (IIT) are used in this study. 

Based on empirically measured LMR data, in [TAH12] a 
static long-term model and another time-varying statistical 
model for the voice traffic activity in an LMR channel were 
presented. The models in [TAH12] are applicable in 
developing algorithms for PU and SU coexistence. In this 
paper, an improved and more elaborate version of the time-
varying statistical model of LMR channel traffic is presented. 

Statistical models for LMR traffic are also applicable in 
network studies for simulating traffic [ASC09] – which, for 
example, could help in the understanding the dynamics of a 
public safety network. The model presented here is used to 
generate synthetic public safety traffic data which is then 
compared with the empirically measured traffic.  

In [MCH07][MCH08], a DSA algorithm was designed and 
field-tested that used the Listen-before-talk (LBT) algorithm. 
This achieved good results, but did not use any statistical 
knowledge of the PU channels. In [HUA08], the authors 
describe a system where the SU is able to use statistical 
knowledge of the PU’s idle times in order to achieve optimal 
SU throughput subject to a collision limit constraint; the 
advantage of knowing the PU’s traffic characteristics was thus 
demonstrated. In the second part of this paper, a DSA 
framework is presented where a spectrum monitoring and 
analysis system continually measures LMR PU channels and 
then calculates the statistical parameters corresponding to the 
model presented in the first part of the paper. The model 
parameters are provided to an SU which is able to 
opportunistically access the temporal vacancies of the PU with 
minimal collisions. This DSA framework is compared to the 
basic LBT algorithm. 

This paper is organized as follows. Section II gives an 
overview of the measurement system. Section III describes the 
new model for LMR voice traffic; and Section IV applies this 
model to generate synthetic traffic data which is then compared 
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with empirical measurements. Section V describes the 
spectrum sharing framework between a primary LMR user and 
a secondary user, and compares the performance of this 
coexistence system with the basic LBT. Applications, 
conclusions and future work are presented in Section VI. 

II. RF MEASUREMENT SYSTEM 

A RF data acquisition and storage system was implemented 
to measure voice channels in the 450 MHz LMR band, as 
shown in Figure 1. The system consists of an omni-directional 
discone antenna set up on the roof of the 22 storey IIT tower, 
located approximately 3 miles south of downtown Chicago. 
The antenna is connected to a 450-474 MHz bandpass filter, 
and then to a USRP N200 software radio platform [ETT13] 
with a wideband frontend. During each measurement sweep, 
the USRP captures time-domain samples which are then used 
to estimate the Power Spectrum via Fast Fourier Transform 
(FFT). From the power spectrum, the power within every 
12.5 kHz LMR channel span is found by integration. These 
power values are then stored in a database and also web-
streamed live in real-time. A more detailed description of the 
system is found in [TAH12].  

 
Figure 1. System Block diagram 

For the purposes of this paper, this USRP based RF 
measurement system will be referred to as a “spectrum 
observatory” as it continually monitors the spectrum and 
channel usage in the 450 MHz LMR band on which this 
research is based. Although not the focus of this paper, parallel 
systems for measuring public safety narrowband traffic in the 
700 MHz Block D spectrum, and the 851-854 MHz NPSPAC 
frequencies have also been implemented at IIT. 

The 450 MHz LMR band spectrum observatory observes 
traffic activity in each of the 1,000 LMR channels within the 
452.75-465.25 MHz frequency range with a time resolution of 
250 ms. This sampling time of 250 ms captures most, if not all 
on-off voice traffic activity – this is because voice calls have a 
relatively slow switching time. Hence, the measurements 
obtained here have adequate time resolution necessary for 
modeling and characterizing the traffic in each channel.  

For this paper, we analyzed data collected over a five week 
period starting from September 15

th
, 2011 in the 453-465 MHz 

frequency range. The channels studied included 21 Chicago 
Police Department (CPD) public safety city-wide dispatch 
channels and one business related voice channel used by IIT. 
These channels and the date range correspond to the same data 
used for modeling work in [TAH12]; this permits direct 
comparison with the newer channel model presented here. 

III. CHANNEL MODELING 

In [TAH12], statistical models for the “idle time” durations, 
“hold times”, and “inter-arrival times” were provided. Idle time 

is defined as the time period between transmissions, when there 
is no measurable RF power in the LMR channel. Hold time is 
the duration of transmissions, that is, the time when the channel 
has power that exceeds a threshold. Inter-arrival time [BAR97] 
is the time duration between the start of one transmission and 
the next, and is equivalent to the sum of two, consecutive hold 
and idle times.  

In this paper, the term “conversation duration” is introduced 
which is the combined time duration of a group of calls that are 
spaced with very short gaps – so the series of calls are likely to 
be part of one relatively long conversation. A “idle period 
threshold time” of 10 s is chosen, which is used to group a 
series of calls into conversations – that is, if the idle period is 
lesser than 10 s between two consecutive calls (On-times), then 
the calls are part of the same conversation. Ten seconds was 
chosen since in voice communications, a pause longer than that 
generally indicates that the previous conversation has ended. 
However, for modeling purposes, it is possible to choose a 
different value for “idle period threshold time”. 

Figure 2 illustrates the states in the new model. “Quiet 
state” refers to idle times longer than “idle period threshold 
time”. Within the “busy state”, several calls, with On-periods 
described as “hold times” and Off-periods between them 
labeled as “short gaps”, occur. “Short gaps” correspond to idle 
times less than 10 s. The model distribution for “busy state” is 
obtained from the histogram of “conversation durations”; a 
histogram of “quiet periods” (idle times > 10 s) corresponds to 
the distribution of the “quiet state”; and one histogram for 
“hold times” and another for “short gaps” describe the behavior 
of the measured traffic within the “busy state” conversations. 

 

Figure 2. State Diagram for LMR channel model 

Hence, the channel can be modeled with four histograms to 
be mapped and curve-fitted with common probabilistic 
distributions. The histograms being: (a) histogram of quiet 
periods; (b) histogram of conversation durations; (c) histogram 
of hold times; (d) and histogram of short gaps. Figure 3 shows 
the four histograms for a CPD LMR channel as measured 
empirically over a 24 hour time window. Notice that the quiet 
periods are all greater than 10 s, while the short gaps are all less 
than that due to the state assignments defined by Figure 2. 

Each of the four call duration quantities was compared with 
exponential, generalized Pareto, lognormal, and Gamma 
distributions and maximum likelihood estimation was used to 
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calculate the parameters of the probability density function 
(pdf) each time. For the histogram of “quiet periods”, the time 
axis is first offset back to the origin before estimation is 
performed. For each of the four sets of quantities, the 
Kolmogorov-Smirnov (K-S) goodness of test [MAS51] with a 
5% significance level was performed to compare the fit of 
measured data with the estimated cdf for each type of 
distribution (i.e., lognormal, Gamma, etc). The p-value of the 
K-S test statistic is an indicator of how well the distribution fits 
– the higher the p-value, better the fit. Table 1 shows the 
average p-values for the four call duration quantities when 
fitted with the four common probability distributions, across 
the 22 LMR channels. 

 
Figure 3. Histograms of state durations (measured data for CPD channel) 

From Table 1, the lognormal distribution is seen to best 
match with the histograms for both the “hold times” and “short 
gaps. The Gamma distribution gives the highest p-values for 
the “quiet periods” and “conversation lengths”; meaning these 
two quantities can be closely modeled by a Gamma 
distribution. For simplicity, however, in this paper, for the 22 
LMR channels measured, a single distribution function, that is 
the lognormal, is used to model the statistics for each of the 
four sets of random quantities. 

Table 1. Average p-value from K-S test to examine goodness of fit 

 Log-normal Gamma Pareto  Exponential 

Conversation 0.581 0.667 0.641 0.491 

Quiet-periods 0.671 0.723 0.723 0.465 

Hold Times 0.276 0.138 0.091 0.069 

Short gaps 0.219 0.184 0.168 0.1332 

 

In [TAH12], it was shown that the traffic in a channel is 
non-stationary. It was shown that the probability of the channel 
being stationary within an interval declines in an approximate 
linear fashion as the length of the time window increases. Thus, 
the parameters of the pdf distributions of the model presented 
above should be frequently updated to properly track the 
changes in traffic patterns within the LMR channel.  

From analysis of the non-stationarity aspects of the data in 
[TAH12], it was found that the channel can be considered 
mostly stationary for window lengths of between 30 to 120 

minutes. Hence, to track a channel over a long period of time, 
the 8 parameters corresponding to the 4 lognormal distributions 
of the model need to be updated at a frequency of anywhere 
between 30 minutes to 120 minutes. Figure 4a shows the 
channel activity over 3 days beginning September 15

th
, 2011 

for the same CPD channel as in Figure 3. A smoothing filter 
was used for plotting purposes only, to reveal daily trends and 
dynamics. The model developed in this section was then 
applied to the channel activity data from the spectrum 
observatory, and every 120 minutes, the 8 parameters were re-
estimated and 8 time series’ of parameters were obtained. From 
these, four selected time series’ of parameters are plotted in 
Figure 4b, to illustrate that the model is able to track a channel 
for long periods of time, even as the channels statistics keep 
changing over time. The fifth graph (green) in 4b is the plot of 
the ratio between the number of “quiet periods” observed and 
the number of “short gaps” within each 120 minute time 
window. This ratio, although not required for generating 
synthetic data (Section IV) and hence not part of the model, 
gives useful information that allows a SU in a DSA scenario to 
track how many usable “quiet periods” it is likely to find while 
attempting to share the channel with the PU. 

 
Figure 4. (a) Occupancy vs time in the CPD channel over 3 days. 

(b) Variation of model parameters in 120 minute intervals over the 3 days 

IV. SYNTHETIC TRAFFIC GENERATED FROM MODEL 

In this section, the model developed in Section III is used to 
generate synthetic traffic data for a CPD channel. The traffic 
generated is then compared with the empirical data in order to 
validate the model. The 8 time-series of parameters estimated 
from the LMR spectrum observatory measurements for the 
CPD channel over a 3 day period are applied to a simulation 
algorithm to generate 3 days worth of synthetic voice traffic 
data that mimics the activity in the CPD channel. The 
algorithm runs as follows: 

1) Update the 8 statistical parameters for the model’s four lognormal 

distributions in the current time window with data from LMR 

spectrum observatory. 



2) Generate a random number from the pdf of “conversation 

durations”. This will be the duration of one conversation. 

3) Generate calls within this conversation: 

a. Generate a random number for call hold duration from the 

pdf of “hold times”. 

b. Generate a random number for the short idle time before the 

next call from the pdf of “short gaps”. 

c. If the series of On-Off calls fill up the conversation duration 

from step 2, advance to step 4; otherwise iterate to 3a. 

4) Generate a random number to be used as the long quiet state after 

the conversation ends from the pdf of “quiet periods”.  

5) Simulation time-limit reached? If No, advance to step 6. If Yes, 

then End simulation. 

6) Check if the simulation time has reached the end of the current 

time window. If Yes, advance to the next time window and iterate 

to step 1; if No, iterate to step 2. 

The same scheme is easily extendable to any of the 22 
LMR channels and also for any time period spanning weeks 
and even months. However, for illustration purposes, only 3 
days of synthetic traffic data is plotted in Figure 5. Figure 5 
plots the empirically measured traffic activity in the CPD 
channel alongside the computer-generated traffic where the 
model parameters were updated (algorithm step 1) every 30 
minutes. Both the plots are smoothed with a 20 minute moving 
average filter to reveal daily features and traffic dynamics. The 
synthetic traffic is seen to follow the empirical traffic very 
closely in Figure 5, thus validating the modeling procedure 
developed here. 

 

Figure 5. Comparison of Computer-generated traffic with Empirically-
measured activity for a CPD channel 

Further model validation is demonstrated by the plots in 
Figure 6. In this case, 5 days’ worth of synthetic data was 
generated using a time window length of 45 minutes for the 
same CPD channel. Figure 6a counts the total number of calls 
within each 45 minute time window and compares the values 
obtained for synthetic and empirical traffic data. Close match is 
again observed, despite the random nature of the statistical 
model used to generate the synthetic traffic. The count of calls 
within a time window is a good metric for model validation as 
it does not follow directly from the statistical state 
distributions, but rather is a consequence of the model’s 

dynamics. Similarly, 6b uses another high-level metric – that is 
the count of separate conversations within each time window. 
Again, good correspondence in the number of conversations 
counted is seen between the synthetic and empirical traffic 
datasets. Thus, the model has been demonstrated to closely 
track the LMR channel for arbitrarily long periods of time, 
given that good statistical estimates for the model parameters 
are available from a spectrum observatory. 

 

Figure 6. Model validation by comparing call statistics of Computer-generated 
traffic with that of traffic measured by the spectrum observatory in a CPD 
channel. (6a) Total number of calls in each 45 minute time window.  
(6b) Total number of separate conversations in each 45 minute time window. 

V. FRAMEWORK FOR PU AND SU COEXISTENCE & 

SIMULATION RESULTS 

A simulation environment for spectrum sharing was created 
consisting of PU traffic (either empirical or synthetic) in a 
channel. A LMR spectrum observatory constantly monitors the 
PU traffic and obtains model parameters to describe the 
channel-traffic’s statistics once every 30 minutes. This 
observatory is an integral part of the DSA framework. An SU 
attempts to make use of the Spectrum Opportunity available – 
that is, the fraction of time that the PU is vacant from the 
channel. Two test cases are studied – in case 1, the SU has no 
knowledge of the PU and receives no information from the 
spectrum observatory; in case 2, the observatory provides the 
SU with channel model parameters once every 30 minutes, and 
the SU assumes that these parameters describe the channel 
condition sufficiently well for the following 30 minutes. 

In case 1, the SU uses a simple LBT algorithm to access the 
channel. The SU senses the channel first; if the PU is absent or 
if the channel is observed to transition from busy to vacant, 
then a countdown timer of random duration Tc is started. If the 
PU does not return during this countdown interval, the SU 
transmits for a random duration Tx. During the transmission 
state, the SU cannot do channel sensing, and hence collisions 
can occur if the PU returns. Tc is a uniform random variable 
between [Tslot, TCmax] and Tx is uniform between [Tslot, TXmax], 
where Tslot is the time-slot used in the simulation and TCmax and 
TXmax are, respectively, the maximum countdown timer and the 



maximum transmit duration. The TCmax, TXmax are constant 
during every time window throughout the simulation duration, 
and are not functions of the PU traffic’s model. For the 
simulation Tslot=0.25 s, TCmax=4 s and TXmax=2 s. The latter two 
parameters were chosen rather arbitrarily. The only design 
consideration was that TCmax> TXmax, to minimize the likelihood 
of interference that occurs when the SU collides with the PU; 
since the maximum sensing duration was selected to be larger 
than the maximum transmit duration. 

The secondary opportunistic spectrum access user in 
simulation case 2 employs a smart LBT algorithm. Here the 
maximum sensor countdown timer, TCmax, and the maximum 
transmission duration, TXmax, are recalculated during every 30 
minute interval using the PU traffic model parameters provided 
to the SU by the LMR spectrum observatory. Many different 
functions with varying levels of sophistication can be used to 
obtain the two SU parameters, TCmax and TXmax. However, the 
goal of this short paper is to demonstrate the utility of modeling 
PU traffic and the advantages of incorporating, within the DSA 
framework, a spectrum observatory that measures empirical PU 
traffic and calculates the model parameters. Hence, for 
simplicity, non-complex equations are used to calculate TCmax 
and TXmax from the PU model parameters. Equations (1) and (2) 
are used to calculate TCmax and TXmax. Equation (2) is the 
lognormal cdf function where µ and σ correspond to the 
channel model parameters for the distribution of “short gaps” 
in the PU traffic. For both TCmax and TXmax p=0.6 was used as 
inputs to (1) and (2). As stated above, both these LBT control 
parameters are recalculated at the start of each new window. 
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Two metrics are used to test the performance of the 
coexistence techniques employed by the SU – Spectrum 
Opportunity Accessed (SOA) and Fraction of Collisions (FoC) 
affecting the PU. These metrics are obtained by (3) and (4), 
respectively. For both case 1 and case 2 DSA scenarios, SOA 
and FoC are calculated and plotted. 
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Figure 7 displays the results of the DSA coexistence 
simulation for cases 1 and 2. The smart SU (case 2) which 
utilizes the PU traffic’s model parameters achieves higher 
throughput than the simple LBT (case 1) that has no knowledge 
about the PU’s statistics. Figure 8 shows how the SOA and 
FoC values change over the two day period when the smart 
case 2 SU operates in the channel. Overall, the case 2 smart SU 
is able to achieve an SOA of 53.3 % while the PU experiences 
a FoC of only 3.6%. In contrast, the simple LBT (case 1) SU 
algorithm attains a lower SOA of 43.6% but causes higher 
interference to the PU (FoC is 6.2%). Hence, for this particular 
channel, the smart SU easily outperforms the simple LBT 
coexistence technique. This shows the advantage of having a 
spectrum observatory within the DSA framework to measure 

and model the PU channel statistics for appropriate use by 
intelligent SUs. 

 
Figure 7. Throughput achieved in case 1 with simple LBT (green) compared to 

throughput when case 2 smart SU (red) is used. The available spectrum 
opportunity in the channel as it varies over the 2 days is indicated in blue. 
This is the same CPD channel analyzed in Figures 3 through 6. 

 
Figure 8. Blue plot shows Spectrum Opportunity Accessed (SOA) by the smart 

SU in case 2, and red plot shows the Fraction of Collisions (FoC) 
experienced by the PU during the case 2 channel sharing simulation. 

The set of simulations was repeated for each of the 22 LMR 
channels, over a longer 14 day time-span. This was done with 
both real empirically measured traffic (Table 2) and synthetic 
computer-generated traffic (Table 3). Tables 2 and 3 present 
the average SOAs achieved by the simple LBT and the smart 
SU during the 22 channel simulation run. A higher SOA value 
means higher SU throughput. Tables 2 and 3 also show the 
average FoC values obtained across the 22 channels. A higher 
FoC value indicates higher interference experienced by the PU. 

 Both with real and synthetic data, it is seen every time that 
the smart SU with PU traffic model information outperforms 
the simple LBT algorithm and attains a higher SOA. The 
average FoC is approximately the same for both algorithms. So 
for similar interference levels, the smart SU achieves higher 
throughput and higher spectrum opportunity utilization for the 
22 LMR channels. This validates the performance of the smart 
SU algorithm, and demonstrates the advantages of the SU 
possessing statistical knowledge of PU traffic. 



Table 2. Performance of DSA coexistence techniques where real empirical 

data is used for PU Traffic; all 22 LMR channels tested in simulation 

 Average across 22  LMR Channels 

Spectrum Opportunity 

Accessed (simple LBT) 

0.460 

Spectrum Opportunity 
Accessed (smart SU) 

0.572 

Collisions experienced by 

PU (simple LBT) 

0.072 

Collisions experienced by 
PU (smart SU) 

0.071 

Table 3. Performance of DSA coexistence techniques where Computer-

generated data is used for PU Traffic; all 22 LMR channels tested 

 Average across 22  LMR Channels 

SOA (simple LBT) 0.448 

SOA (smart SU) 0.564 

FoC (simple LBT) 0.073 

FoC (smart SU) 0.072 

VI. CONCLUSIONS AND FUTURE WORK 

An improved model for the voice traffic in public safety 
channels in the LMR band was presented. This model consists 
of busy and quiet states; the busy state in turn is subdivided 
into two sub-states, namely holds and gaps. The histograms of 
the dwell time in each state were compared to common 
distributions, and lognormal distribution was selected to model 
each state. Time-series’ of parameters for the four distributions 
allow the model to track the traffic in any channel for long time 
periods. The model was validated by employing it to generate 
synthetic traffic whose characteristics and dynamics matched 
closely with empirical traffic measurements. For future work, 
the model needs to be refined by identifying distributions that 
correspond more closely to the histogram of “conversation 
durations”. 

The model was then applied in a dynamic spectrum sharing 
scenario where a secondary user with knowledge of the PU 
traffic’s model parameters was able to coexist with minimal 
interference and at the same time make high utilization of the 
available spectrum opportunity. This smart SU was shown to 
attain a higher performance level than the simple LBT 
coexistence technique that employs no knowledge of the PU’s 
traffic characteristics. The key point in this work was to 
demonstrate an application for continuous spectrum monitoring 
systems. The spectrum monitor played an integral part of the 
spectrum sharing framework by measuring the PU’s traffic 
characteristics, modeling them and then reporting the 
parameters to the SU. Without the spectrum observatory, the 
smart SU would not have performed any differently than the 
simple LBT SU. 

As part of ongoing and future work, we are investigating 
spectrum sharing algorithms that make better use of the PU’s 

channel statistics, and that aims to achieve even higher 
secondary user throughput with low interference. Also, a new 
method to classify multiple voice LMR channels based on the 
model parameter values is being investigated. This would allow 
an SU to maximize throughput by selecting PU channels that 
are predicted to provide the highest spectrum opportunities. 
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