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Abstract—Recently maritime cognitive radio network is pro-
posed to provide high bandwidth and low communication cost
for maritime users. Spectrum sensing is one of the key issues to
develop cognitive radio networks. Radio propagation is one of
the main differences between maritime and land environment.
Traditional detectors such as matched filter, energy detector and
cyclostationary detector are not robust under low signal-to-noise
ratio and at high sea state conditions. To deal with maritime
environmental challenges, an entropy-based spectrum sensing
scheme with the optimal number of samples is presented in
this paper. Since spectrum sensing is sensitive to the number of
samples, the optimal number of samples has been introduced in
the proposed scheme to get minimum sensing time and maximum
detection probability. Results reveal that existing scheme works
well for the lower sea states but failed to perform at higher sea
states. Moreover, simulation results show that the entropy-based
scheme is robust at higher sea states in comparison with the
traditional energy detector.

Index Terms—Cognitive radio network, Maritime communica-
tion, spectrum sensing, cooperative detection.

I. INTRODUCTION

NOWADAYS communication systems based on narrow
band ultra high frequency band (UHF, 300MHz-3GHz) and
very high frequency band (VHF, 30− 300MHz) are used for
close water port’s ship-to-shore communication. The satellite
communication is used for long range ship-to-shore and ship-
to-ship communication [1]. Using satellite links for voice calls
and internet access to and from the ship is very expensive when
compared to land communication. An improvement in existing
techniques and new research is needed in order to reduce the
cost of communication and provide high speed data rates at
sea.

Recently, some new communication systems, particularly
for maritime networks, have been proposed. In Singapore,
WISE-PORT (WIreless-broadband-access for SEaPORT) pro-
vides IEEE 802.16e-based wireless broadband access up to
5Mbps, with a coverage distance of 15km, which still requires
enhancement [2]. The first digital VHF network with a data
rate of 21 and 133kbps with a coverage range of 130km
was developed in Norway [3]. This system operates in the
licensed VHF channel which results in narrow bandwidth

and slow communication speed. To provide high speed and
low cost ship-to-shore and ship-to-ship communication, the
mesh/ad hoc network based on IEEE 802.16d mesh technology
was proposed in a project called TRITON [4]. The authors
developed a prototype that operates at 2.3 and 5.8GHz.

Using dedicated spectrum in maritime networks is diffi-
cult due to congested bandwidth allocation [5]. The network
devices on the shore may need to coexist with other radio
devices installed on the land. Moreover, it is also required
to synchronize the frequency bands around the world as
ships may travel between countries and continents. Spectrum
issues in maritime networks can be alleviated by incorporating
cognitive radio (CR) technology [5]. Moreover, Zhou et al.
analyzed data and concluded that much of the spectrum is
underutilized at the sea. CR is a key technology that can help
to mitigate the scarcity of spectrum by using licensed spectrum
bands opportunistically for unlicensed users. CR’s advantages
associated with opportunistic access of unused licensed band
are alleviation of spectrum scarcity, large bandwidth, long
range communication using TV band, and reduced cost for
communication. The most essential task of CR is the detection
of the licensed/primary user (PU), which is achieved by
sensing radio environment. This process is called spectrum
sensing. If the PU is absent, its spectrum is available for a
cognitive radio/secondary user (SU) and is called spectrum
hole/white space.

In this paper, the entropy based detection is investigated to
counteract the sea state effects. Optimal number of samples
are used to calculate the entropy of sensed signal as the infor-
mation measure of the received PU signal for test statistic. To
the best of the author’s knowledge, no one has yet considered
spectrum sensing in maritime CR networks.

The rest of the paper is organized as follows. Related work
is discussed in Section II. In Section III, a brief overview
of maritime cognitive radio network and channel modeling is
presented. Section IV presents a system model, optimization
problem of number of samples in entropy based detection
scheme and centralized cooperative spectrum sensing are
discussed briefly. Section V demonstrates simulation results
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Fig. 1. Architecture of maritime cognitive radio network.

and finally, conclusions are drawn in Section VI.

II. RELATED WORK

Currently, the main focus of research in spectrum sensing
for cognitive radio is divided into two main streams: improving
local sensing and enhancing cooperative spectrum sensing
for better data fusion results. Major local sensing techniques
considered for cognitive radios are energy detection, matched
filter detection, and cyclostationary detection. Energy detection
is the simplest technique that has short sensing time, but its
performance is comparatively poor under low SNR conditions.
Matched filter detection is another simple technique but it
requires prior knowledge about the waveform of the PU.
Cyclostationary detection provides reliable spectrum sensing,
but it is computationally complex and requires long sensing
time [6]. In cooperative spectrum sensing, all the local sensing
observations made by SUs are reported to a fusion center
and a final decision about the presence or absence of the
PU is conducted at the fusion center [7]. Based on the final
decision received by the fusion center, each SU reconfigures
its operating parameters. Spectrum sensing must produce high
probability of detection and low probability of false alarm to
achieve better network performance.

Researchers investigated entropy-based detectors to counter
the effect of noise uncertainty. In [8] Shannon entropy is calcu-
lated as information measure of the received PU signal for test
statistics. It is shown that the entropy is independent of noise
power under fixed dimension probability space. Therefore,
the entropy based detection is robust to noise uncertainties.
Spectrum sensing based on the entropy estimation of the
cyclostationary features of the received PU is proposed in
[9]. In [10] a spectral entropy based PU detection scheme
is proposed. All the existing entropy based detectors did well

under low SNR conditions but none of them considered sea-
state distribution.

The spectrum sensing requirements for maritime cognitive
radio networks have to face unique challenges of sea en-
vironment because of the following reasons: 1) radio wave
propagation over water, 2) surface reflection, and 3) wave
occlusions. Therefore, to achieve higher detection probability,
CR may need longer sensing time or some advances in the
existing spectrum sensing schemes. TV, cellular, and mar-
itime spectrum is available for maritime CR networks and
they should be intelligent enough to switch their operating
parameters to suit sea state, geographic location/region, and
communication range in order to achieve better throughput
and quality of service (QoS). UHF is used in the USA for
maritime navigation services and therefore it is important to
protect the primary band. To achieve this, high probability
of detection and low probability of false alarm are required
to detect the PU precisely and for efficient utilization of
bandwidth, respectively.

III. MARITIME COGNITIVE RADIO NETWORK AND
CHANNEL MODELING

Maritime CR networks can be divided into two types. The
first type is the ship-to-ship/ship-to-shore network (close to
shore) and the second is the ship-to-ship ad hoc network in
deep sea with the support of a satellite communication link
as shown in Fig. 1. Each ship is equipped with the devices
that are able to perform cognitive radio functions. It regularly
senses the radio environment to access the spectrum which
is not used by the PU. In networks where ships are far from
the land, it becomes impossible to access the fusion center by
using industrial, scientific and medical (ISM) band on the land.
Therefore, satellite links can be used as an alternate access
to the fusion center. In addition to terrestrial CR network’s



spectrum usage, a ship can switch its operating parameters
according to the sea state, geographic location, and density of
nodes.

Recently, spectrum measurements in white spaces have been
carried out for CR networks on the land. Most common of
those are on the television (TV) and cellular bands. On the
contrary, investigations are required for spectrum allocated for
maritime communications because of the environmental differ-
ences. Environmental differences include the obvious maritime
radio atmosphere, i.e., sea motion and antenna model. There
is almost no obstacle in the sea and the sea surface is also
flat, which causes huge path loss due to negative interference
between the line of sight (LoS) path and the reflected path [1].

A. Sea Motion

A fundamental of propagation analysis for maritime CR
networks is the generation of random sea surface. Sea move-
ment is described by the sea state divided into 10 levels
characterized by Pierson-Moskowitz [11]. Sea states 0 − 3
are generally considered as calm sea conditions. Moderate sea
conditions are in sea states 4−5. The sea states 6 and above are
the worst sea conditions having high waves which cause severe
degradation in the communication by affecting the movement
of antenna.

B. Channel Model

Unusual challenges arise for maritime wireless networks
due to variable channel statistics. The sea surface works as
a reflector for the radio propagation and as a result the
signal degrades completely along the path. In a terrestrial
environment, there are obstacles of different sizes which result
in reflection, refraction and scattering of signal in the commu-
nication channel. The path loss in terrestrial environment is
higher than in free space and defined in [12] as

LT (d) = Ls(do) + 10 α log(d/do) +Xf (1)

where do is the distance of a reference location from transmit-
ter with measured path loss Ls(do), d is the physical distance
between transmitter and receiver, α is the path loss exponent
for the radio environment and the Gaussian random contributor
Xf with zero mean and standard deviation σ, which represents
fast fading effects. The accurate estimation of the path loss
exponent is the major characterization of the communication
channel. Usually, values of the path loss exponent range from
1 to 4 depending on the physical terrain features.

The path loss in maritime environment increases with the
sea state and it increases rapidly in the sea state 5 and above.
Path loss in the maritime communication channel during
shadowing is proposed in [13] as

PL(h, f) = PL(do) + 10× [(0.498log10(f)

+0.793)× h+ 2]× log10(d/do) +Xf (2)

where f is the frequency in GHz, the observable sea height
is h in meters, d is the physical distance between transmitter
and receiver in meters, PL(do) is the path loss simulated at 1
m, and the random variable Xf with zero mean and standard

deviation σ which is also represented as a function of wave
height:

σf = [0.157f + 0.405] ∗ h. (3)

IV. SPECTRUM SENSING IN MARITIME COGNITIVE RADIO
NETWORKS

A. System Model

In this paper, the UHF band is assumed as the PU’s
band. It is broad and can offer bandwidth of more than
100MHz opportunistically in maritime networks [5]. The
communication range for these frequencies is up to 10km.
Ships satisfy all the requirements for acting as the SU which
includes spectrum sensing capability and reconfiguration of
operating parameters. The base station at the shore acts as the
fusion center. The system model for the performance analysis
is shown in Fig. 1 in which the maritime wireless network
with n SUs is considered.

The ultimate goal of spectrum sensing is to determine the
presence of a PU using a binary hypothesis model, i.e., the
basic model for spectrum sensing by the SU, which is defined
as

r(t) =

{
w(t) in case of H0,
s(t) + w(t) in case of H1

(4)

where r(t) is the signal received by the SU, s(t) is the
transmitted signal of the PU, w(t) is the additive white
Gaussian noise (AWGN), H0 indicates only noise, and the
presence of a PU is H1.

B. Entropy based spectrum sensing with optimum number of
samples

Entropy is dependent on the signal power and is highly
susceptible to noise uncertainty in time domain. Therefore,
the entropy is calculated in frequency domain. For this reason
discrete Fourier transform (DFT) is applied on the received
signal r(t), we obtain

R(k) =

{
W (k) in case of H0,

S(k) +W (k) in case of H1
(5)

where k = 0, 1, ...N and N is the size of DFT. R(k), S(k) and
W (k) denote the complex spectrum of r(t) of (5), s(t) and
w(t), respectively. The spectrum magnitude of the measured
signal can be represented by the random variable Y for which
estimation of probability density function (PDF) is required.
Therefore, entropy based frequency modelâs detection strategy
can be expressed as

HL0(Y ) vs. HL1(Y ) (6)

where HL0(Y ) and HL0(Y ) denotes the entropy with number
of states L in hypothesis H0 and H1, respectively.

For simplicity, the histogram method is used to estimate
the probability of each state. The number of states of random
variable Y is equal to the number of bins L. Let kl be the total
number of occurrences of lth bin. Then N =

∑L
l=1 kl where

N is the number of samples. The frequency of occurrences
of lth bin is represented as probability pl, i.e., pl = kl/N .



The bin width ∆ = Ym/L where Ym denotes the maximum
spectrum amplitude of the signal [8].

Then, the entropy can be written as

E(Y ) = −
L∑

l=1

pl logpl. (7)

After the entropy is calculated for the receiver signal is
calculated, we employ the threshold decision rule:

D =

{
E(Y ) > λE in case of H0,
E(Y ) ≤ λE in case of H1

(8)

where λE is the threshold. That the calculated entropy is
greater than the threshold value implies the absence of PU
and vice versa.

It is obvious that the detection probability is increased with
the increase in the number of samples in entropy-based local
sensing. It is shown in [8] that the entropy detector which
needs 10000 samples to achieve the same detection probability
while energy detection needs 18000 samples. It is important
to find the optimal number of samples for the sea environment
to achieve better detection probability. Therefore, one of the
optimization problems can be formulated as:

Find : N∗

Minimize : τs

Subject to : Pd ≥ αL

Pf ≤ βL

(9)

where N∗ is the optimal number of samples for entropy-
based detection, τs is the sensing time, αL and βL are the
corresponding local target probability of detection and false
alarm, respectively.

A penalty function technique [14] is useful to solve con-
strained optimization problem given in (9). The penalty func-
tion is formulated for the constrained optimization problem
given in (9), and then a simplex search method, which is
an unconstrained algorithm, is applied. The penalty method
applied to (9) can be described as follows:

minimize θ1(N)
where

θ1(N) = τs(θ1(N)) + c1(αL − Pd)2

+c2(βL − Pf )2
(10)

in which θ1(N) indicates the new objective function to be
optimized. c1 and c2 are the penalty parameters and should be
greater than zero.

V. SIMULATION RESULTS

The simulation has been carried out to investigate the
performance of spectrum sensing in maritime cognitive radio
network. The simulation consists of the sea wave movement
model and path loss model as discussed in Section III. It is
assumed that SUs are experiencing additive white Gaussian
noise (AWGN) with the same variance and the path loss de-
pends on the radio environment during communication. Each
SU uses the entropy-based detection scheme with the optimal
number N∗ and energy detector for its local observation

Fig. 2. Comparison of path loss model in land and different sea states.

having an average SNR γ. Let SUs be unaware of relevant
PU information such as the position, moving direction and
velocity.

Fig. 2 shows the path loss for 2.492GHz for different radio
environments including land and sea environments. Sea states
considered to measure path loss are 4.0, 6.0, and 7.0 having
wave heights 2, 4, and 11m above sea surface, respectively.
The physical distance between the transmitter and the receiver
varies from 0 to 20km and its reference distance is 1m. Results
show that path loss in the maritime environment is comparable
to one in the land environment up to the sea state 4.0. Severe
path loss is observed at the sea states higher than 4.0. Path
loss almost gets double at sea state 6.0 in comparison with
sea state 4.0. For the sea state 7.0, path loss is almost 5 times
when compared with either sea state 4.0 or land environment.
It becomes worse at higher sea states.

The probability of detection using energy detection and
optimal entropy-based detection with the same number of
samples was investigated to determine its sensitivity for de-
tecting a PU’s presence for a range of SNR from −10dB
to 20dB. According to the draft IEEE 802.22 standard [15],
the probability of false alarm should be less than or equal to
0.1. Therefore, the decision threshold λE was set to maintain
Pf = 10−1. Fig. 3 (a) and (b) show that the probability of
detection at the land and sea state 4.0 is similar to each other
because both of them suffer almost the same path loss. In Fig.
3 (c), when the sea state is 6.0, the probability of detection in
case of entropy- based detector is a little higher than energy
detection even under low SNR conditions. However, for the
sea state 7.0, the probability of detection is near to zero over
the entire range of SNR in case of energy detector because of
severe path loss but the entropy-based detector can still detect
PU signal under good SNR conditions as shown in Fig. 3 (d).

The practical interest in maritime cognitive radio network
is to determine the relationship between Pm or Pd and



Fig. 3. The impact of SNR on the probability of detection(a) Land Network, (b) Sea state 4, (c) Sea state 6 and (d) Sea state 7.

Pf . Complementary receiver operation characteristic (ROC)
curves plot Pf against Pd for a given average SNR and the
time bandwidth product TW with varying thresholds. The
complementary ROC curves at the land, sea state 4.0, sea state
6.0, and sea state 7.0, when using the energy detector and
entropy-based detector with the optimal number of samples
N∗ as local detectors, are shown in Fig. 4. In this scenario,
it is assumed that the average SNR of SU is −5 dB. The
result shows that the complementary ROC performance of the
entropy-based detector with optimal N is better than that of
energy detector in above-mentioned four cases. However, for
sea state 6.0 and higher, it cannot detect the primary user with
high probability under low Pf .

VI. CONCLUSION

In this paper, the optimal number of samples for entropy-
based detection for maritime cognitive radio network has been
calculated. Simulation results show that the performance of
energy detector and entropy-based detector is almost same for
land environment. However, for the sea states 4, 6 and 7, the
entropy-based detector with the optimal number of samples
N∗ performs better than the energy detector. For sea state 7
and higher, although the entropy-based detector can detect PUs
with high probability in comparison with energy detector but
still constraints of the probability of detection and false alarm
are not satisfied.

One way to improve the sensing performance at higher
sea states is to design a new advanced signal processing
algorithm in order to detect a distorted signal. An advanced
algorithm like cyclostationary feature detection needs a rel-
atively long time for sensing in comparison with the energy
detector and entropy-based detector. Therefore, for the future
work, adaptive spectrum sensing can be studied, in which sea
state can be predicted based on the past history and current
weather conditions and then runs a proper sensing algorithm,
e.g., energy detection for a relatively calm sea and advanced
sensing algorithm for higher sea states.

ACKNOWLEDGMENT

This work was supported by the CITRC (Convergence Infor-
mation Technology Research Center) support program (NIPA-
2013-H0401-13-1003) supervised by the NIPA (National IT
Industry Promotion Agency) of the MKE. It was partially
supported by Seoul R&BD Program (SS110012C0214831),
the Converging Research Center Program and Basic Sci-
ence Research Program through the NRF funded by the
MEST(2009-0093695, 2010-0025316), and Special Disaster
Emergency R&D Program from National Emergency Man-
agement Agency (2012-NEMA10-002-01010001-2012).

REFERENCES

[1] J. S. Pathmasuntharam, J. Jurianto, P. Y Kong, Y. Ge, M. Zhou and
R. Miura, “High Speed Maritime ship-to-ship/ shore Mesh Networks,”



Fig. 4. Probability of detection vs. the probability of a false alarm at (a) Land Network, (b) Sea state 4, (c) Sea state 6 and (d) Sea state 7.

in Proc. IEEE Int. conf. on ITS Telecommunications, pp. 1-6, Sophia
Antipolis, France, 2007.

[2] “First in the World: Wireless Mobile Wimax Access In Singapore Seaport
Now a Reality,” 6 March 2008. [Online].

[3] F. Bekkadal, “Emerging maritime communications technologies,” in Proc.
IEEE Int. conf. on ITS Telecommunications, pp. 358-363, Lille, France,
2009.

[4] J. S. Pathmasuntharam, P-Y. Kong, M-T. Zhou, Y. Ge, H. Wang, C-
W. Ang, W. Su, and H. Harada, “TRITON: high speed maritime mesh
networks,” in Proc. IEEE Int. Symp. Pers., Indoor and Mobile Radio
Commun., pp. 1-5, Cannes, France, 2008.

[5] M-T Zhou and H. Harada, “Cognitive maritime wireless mesh/ ad hoc
networks,” J. of Netw. and Comput. Appl., vol. 35, no. 2, pp. 518-526,
2012.

[6] T. Yucek, and H. Arslan, “A survey of spectrum sensing algorithms for
cognitive radio applications,” Commun. Surveys Tuts., vol. 11, no. 1, pp.
116-130, 2009.

[7] I. F. Akildiz, B. F. Lo, and R. Balakrishan, “Cooperative spectrum sensing
in cognitive radio networks: a survey,” Physical Commun., vol. 4, no. 1,
pp. 40-62, 2011.

[8] Y. L. Zhang, Q. Y. Zhang, and T. Melodia,“A frequency-domain entropy-
based detector for robust spectrum sensing in cognitive radio networks,”
Commun. Letters, vol. 14, no. 6, pp. 533-535, 2010.

[9] S. L. Sabat, S. Srinu, A. Raveendranadh, and S. K. Udgata, “Spectrum
sensing based on entropy estimation using cyclostationary features for
Cognitive radio,” in Proc. IEEE Int. Conf. on Communication Systems
and Networks (COMSNETS), pp. 1-6, Bangalore, India, 2012.

[10] H. Xia, G. Zhang, and Y. Ding, “Spectral Entropy Based Primary User
Detection in Cognitive Radio,” in Proc. IEEE Int. Conf. on Wireless
Communications, Networking and Mobile Computing, pp. 1-4, Beijing,
China, 2009.

[11] W. J. Pierson, Jr and L. Moskowitz, “A proposed spectral form for fully
developed seas based on the similarity theory of S. A. Kitaigorodskii,” J.
Geosci. Res., vol. 69, no. 24, pp. 5181-5190, 1964.

[12] W. Elliott, “Results of a VHF propagation study,” IEEE Trans. Antennas
Propag., vol. 29, no. 5, pp. 808-811, 1981.

[13] I. J Timmins and S. O’Young, “Marine Communication Channel Mod-
eling using the Finite-Difference time domain method,” IEEE Trans. Veh.
Technol., vol. 58, no. 6, pp. 2626-2637, 2009.

[14] J.A. Snyman, “Practical Mathematical Optimization,” Springer Sci-
ence+Business Media, Inc. New York: 2005.

[15] IEEE Computer Society, “IEEE Std 802.22-2011 Part 22: Cognitive
Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications: Policies and Procedures for Operation in the TV Bands,”
IEEE Standard for Information technology, pp.1-672, 2011.


