
A Component-based Approach for Constructing
Flexible Link-Layer Protocols

André Puschmann∗, Mohamed A. Kalil∗§, Andreas Mitschele-Thiel∗
∗Integrated Communication Systems Group, Ilmenau University of Technology, Ilmenau, Germany

§Faculty of Science, Suez University, Suez, Egypt
Email: [andre.puschmann, mohamed.abdrabou, mitsch]@tu-ilmenau.de

Abstract—In this paper, we propose a novel approach for
constructing flexible link-layer protocols which separate their
functionality into multiple components. Our work is motivated
by the fact that link-layer protocols are usually implemented
as monolithic blocks. This approach limits the possibility of
reusing common functions in multiple protocols and also nar-
rows the flexibility of combining existing blocks for creating
new protocols. Through flexibly interchangeable components,
the proposed architecture addresses these issues. We discuss
the design of the architecture and evaluate a prototype that
demonstrates cognitive radio functionality such as autonomous
link establishment, high-performance spectrum access and self-
organized link maintenance after the unexpected arrival of a
primary user.

Index Terms—Link-layer protocols, component-based design,
CR, SDR

I. INTRODUCTION

The link-layer of a communication system is the protocol
layer that is responsible for transferring data between neigh-
bouring nodes. In networks with a shared communication
channel the Medium Access Control (MAC) sublayer coor-
dinates who gets access to the medium and when. Traditional
systems usually assume that the channels are predefined and
static and not subject to change without notice.

Within the Cognitive Radio (CR) [1] paradigm however,
these assumptions do not hold, which introduces new chal-
lenges for link-layer protocol research. The main challenge
stems from the fact that there is a theoretically unlimited num-
ber of channels available for communication. Their availability
is likely to change over time due to the mobility of the nodes,
changes in the radio environment or through the appearance of
a primary user (PU) in Dynamic Spectrum Access networks.
A CR node operating in a licensed frequency band is expected
to vacate the occupied spectrum if a PU attempts to use
it. This behaviour is referred to as spectrum mobility or
handover and is crucial to avoid causing harmful interference
to the original owner of the spectrum. Moreover, opportunistic
spectrum access introduces further complexity to the problem
of link establishment, i.e. how can two nodes initially find one
another, a problem referred to as the rendezvous problem [2].

In the recent past, a number of MAC protocols for CR
have been proposed by the research community. Most of
them are designed as monolithic blocks that tightly integrate
either spectrum mobility, rendezvous or both. From a practical
perspective, this renders them complex, difficult to implement,
and lowers their reusability.

We therefore introduce the concept of a Flexible Link-
Layer (FLL) that partitions the functions of a link-layer
protocol into multiple components. A mediator object is
used to control and coordinate the interactions among these
components. This has the advantage that protocol components
actually can be reused and recombined to new protocols
which together may meet other requirements, but without
reimplementing common functionality from scratch.

To complement the conceptual work presented in this arti-
cle, we describe a prototype of the proposed approach as well
as three representative link-layer configurations that we have
developed. Moreover, we evaluate the prototype through two
practical experiments within a CR use case. We assess the time
to rendezvous as well as the handover delay. The contributions
of this article can be summarized as follows:

• Design of a component-based architecture for construct-
ing flexible link-layer protocols with interchangeable and
reusable blocks,

• Implementation of a prototype with three link-layer con-
figurations and

• Evaluation of the prototype through practical experi-
ments.

The rest of the paper is organized as follows: Section II
discusses related work on MAC and link-layer development for
CR. Section III describes the three main link-layer functions
addressed in this work. Section IV presents and discusses our
proposed link-layer design. Section V describes the implemen-
tation of the prototype which is evaluated in section VI. The
paper concludes with a description of future work in section
VII.

II. RELATED WORK

Component-based development [3] is a design paradigm
that originates from software engineering. It aims at designing
and developing loosely coupled functional blocks that can be
reused and recombined in order to reduce development costs
and to improve the overall system quality. The application of
component-based techniques to the design of communication
system is mainly motivated by the desire to support flexibility
and runtime reconfigurability in such systems. Especially the
success of wireless sensor networks has led to the development
of a large number of MAC and routing protocols for various
hardware platforms. The incompatibility and limited interop-
erability among different solutions has motivated researchers

CROWNCOM 2013, July 08-10, Washington DC, United States
Copyright © 2013 ICST
DOI 10.4108/icst.crowncom.2013.252057



to propose common abstraction layers that hide details of the
underlying hardware. The Sensornet Protocol for examples,
proposed by Polastre et al. in [4], provides a unified neighbour
management and message pool and allows to implement
different link and networking protocols for sensor networks.
Klues et al. have further developed their idea and proposed a
MAC Layer Architecture (MLA) with power management sup-
port in [5]. The architecture consists of reusable components
that implement common MAC features as well as low-level
components that abstract details of the underlying sensor node
hardware.

A similar approach has been taken by Ansari et al. in [6] for
the development of MAC protocols using a hardware-software
co-design approach based on FPGA boards. The main advan-
tage of FPGA-based MAC designs is their high performance.
However, ease of development, which is extremely important
for the design of novel experimental and research oriented
systems, is usually sacrificed. Moreover, the integration and
connection to other components of a CR architecture, such as
an environment database, becomes complicated.

Software-based solutions offer greater flexibility but suffer
from the disadvantages of digital signal processing on general
purpose hardware and high communication delays to and from
the radio hardware. Noteworthy work towards an experimental
platform based on GNU Radio has been presented by Yang
et al. in [7] and Nychis et al. in [8]. In [9], Mandke et al.
describe a flexible wireless network testbed for MAC and PHY
layer research called Hydra. Though not explicitly targeted for
CR applications, the architecture could be used to implement
reconfigurable link-layer protocols using Click.

As has been shown by previous research in the field of
sensor networks and to some extent also in MAC development,
the benefits associated with component-based techniques are
favourable for the design of flexible communication systems.
A possible reason why this methodology hasn’t been applied
to the field of CR link-layer protocols is the actual lack of
practical implementations in that domain.

III. LINK-LAYER FUNCTIONS

Besides providing traditional medium access control, the
link-layer of a CR node has to consider aspects which are
unique to this technology and not present in conventional
communication systems. Moreover, ad-hoc networks introduce
further challenges due to the absence of a supporting network
infrastructure. This paragraph gives an brief overview about
the three main link-layer functions required to control the life
cycle of a CR node:

• Link Establishment: Link establishment which is often
also called rendezvous is usually required when network
nodes are initially turned on, or leave the service area cov-
ered by a network. In infrastructure-based environments
this is often achieved through a dedicated control channel.
In ad-hoc networks, however, a centralized control entity
is often impractical. Therefore, nodes must be able to
establish links among themselves on their own using a
rendezvous protocol.

• Link Access: Access strategies are inevitable whenever
multiple nodes in a network wish to communicate over

a shared medium. A MAC protocol coordinates when,
which and for what amount of time a certain terminal
can access the medium.

• Link Management: One of the main challenges for CRs is
to peacefully coexist with other devices, particularly with
PUs. Therefore, if a CR accesses a licensed channel and
the PU (re-)occupies the same channel, the CR is required
to vacate the band in order to protect the licensed com-
munication. This function is usually controlled through a
spectrum mobility protocol.

IV. FLEXIBLE LINK-LAYER ARCHITECTURE

CR MAC protocols are usually implemented as monolithic
protocols that tightly integrate spectrum mobility, rendezvous
or both into the core of their design. This approach limits the
possibility of reusing common functions in multiple protocols
and also narrows the flexibility of combining existing blocks
for creating new protocols. From a practical perspective,
monolithic designs are also complex and difficult to implement
and maintain.

We therefore introduce the concept of Flexible Link-Layer
(FLL) and propose to partition the functions of a link-layer
protocol into multiple components. Based on the functions
defined in Section III, the proposed link-layer architecture is
based on three pillars (see Figure 1). Each pillar may be rep-
resented by one or more protocol components. Additionally,
the Link-Layer Controller (LLC) connects the components
together and acts as a mediator between the protocols.

Flexible Link−Layer

Link−Layer Controller

L
in

k
E

st
a
b
li
sh

m
en

t

L
in

k
A

cc
es

s

L
in

k
M

a
in

te
n
a
n
ce

Fig. 1. The three pillars of the flexible link-layer architecture.

A. Design Rationale

FLL aims at simplifying the design, the implementation and
the evaluation of link-layer architectures for future wireless
communication systems. Rather than addressing all require-
ments of a given application scenario inside a single protocol,
it divides the functions into separate blocks, which, connected
through well-defined interfaces, cater for them.

The actual behaviour and the logic of the link-layer is
modelled inside the LLC through a mediator object which
is responsible for controlling and coordinating the interactions
among the protocols. The mediator pattern [10] is a design
paradigm from software engineering that avoids unnecessary
coupling and dependencies and therefore facilitates component
reuse.



Link established

Link lost

Unconnected

Rendezvous Active

Connected

MAC Active

Fig. 2. Example state machine executed inside the LLC.

The interaction within and among components and the
transitions between them are triggered through events which
may be sent out from multiple sources such as (1) other com-
ponents of the link-layer, e.g. after an action such as a radio
reconfiguration has been completed, (2) other components of
the software radio, e.g. a spectrum sensing component which
has detected an active PU or (3) any other component in the
system, e.g. a user application which reports a change of the
experienced quality of service.

The main advantages of the component separation can be
summarized as follows:

• Reusability: Components which are often needed can
be reused in multiple systems rather than developed
from scratch every time. The Carrier Sense Multiple
Access (CSMA) random access scheme for instance is
the basis for many CR MAC protocols. Thus, a block that
implements such a protocol should be reused in multiple
systems.

• Flexibility: Reusable blocks can be combined in a
flexible manner to build new protocols or to adapt ex-
isting ones. To give an example, an existing protocol
comprising a MAC component based on static channels
could be complemented, without changes to the MAC,
by a rendezvous block which establishes links between
network nodes if the radio would need to operate in
dynamic scenarios. On the other hand, a CSMA-based
MAC (which is known to suffer from poor performance
in overload situations) could be replaced by a TDMA-
based protocol during runtime if the channel congestion
exceeds a certain threshold.

B. System Example

To support the understanding of the flexible link-layer
concept and to demonstrate the interaction among multiple
components consider the following example: imagine a basic
MAC protocol has been successfully implemented that oper-
ates on a statically configured radio channel. If this system was
to be extended to employ the rendezvous concept to operate
on a dynamically changing set of channels, the protocol
designer would have two options to choose. Either integrating
the rendezvous functions into the existing MAC protocol or
developing an separate rendezvous component that interacts
with the existing MAC.

Figure 2 depicts a simple mediator object that is modelled
using a Finite State Machine (FSM). The FSM has only

TABLE I
LINK-LAYER CONFIGURATIONS AND COMPONENT REUSE.

hhhhhhhhhhhhhCOMPONENT

CONFIGURATION
1 2 3

Stop-and-Wait MAC (Aloha) ×
CSMA MAC × ×
Random Rendezvous × ×
Hybrid Spectrum Mobility × ×

two states, either it is connected to another node or it is
not. Note that the two main states are compound states that
activate/deactivate the corresponding protocol components in
their substates.

If a node is turned on, the rendezvous protocol runs until
a link could be established successfully. During normal op-
eration, the MAC protocol coordinates the packet exchange
between nodes. It gives the control back to the rendezvous
block if the link gets lost, due to PU activity for example.
In this case the transitions between the states of the FSM are
triggered through an internal event issued by the rendezvous
block as well as an external event issued by the spectrum
sensing block.

The advantage of following the FLL approach in this
example is that both the MAC and rendezvous protocol can be
reused in other system configurations without reimplementing
them.

V. IMPLEMENTATION

In this section, we develop an experimental prototype to
showcase the applicability and feasibility of the proposed
architecture. In total, we have implemented three link-layer
configurations with a different range of functions and level
of complexity. The configurations are listed in table I. All
components were implemented only once and were reused in
all other system configurations.

In the remaining part of this article, we will concentrate
on link-layer configuration three which is the most complex
system. It extends the example described in section IV-B by a
Mobility component. The demonstrator has been implemented
on the basis of Iris [11], [12], an open-source SDR framework.
However, the concept can also be realised with GNU Radio
or any other reconfigurable radio platform.

We now describe each component of the example link-layer
configuration in a separate paragraph.

A. Link-Layer Controller

Figure 3 shows the mediator object - again implemented
as a FSM - that models the interactions between the proto-
col components. After powering on, the radio starts in the
Unconnected state and tries to set up a connection with
another node. The two main states are again compound states
that activate/deactivate the corresponding protocol components
in their substates. In this example the Rendezvous protocol
remains active until it establishes a link to another node which
causes a transition to the Connected state.

The connected state is also a compound state with two
orthogonal regions which are executed in parallel (see the



Link established

Link lost
Connected

Mobility Active

MAC Active

Unconnected

Configure BC

Rendezvous Active[!BC]

[BC]

Fig. 3. Finite state machine implemented inside the link-layer controller

dashed line). This means that both, MAC and Mobility are
active at the same time. The spectrum mobility protocol now
tries to negotiate a Backup Channel (BC) with its peers while
the MAC can be used for normal communication.

The radio is constantly monitoring the spectrum in order
to detect any PU activity in its surrounding. The spectrum
sensing component then issues a Link lost event which causes
the FSM to transit into the unconnected state again. Whether
the rendezvous protocol is activated again or the radio tunes
to the BC depends on the result of the negotiation process.

In this configuration, the radio reconfiguration is only taking
place in the Unconnected state either while hopping over the
set of available channels during rendezvous or to tune to the
BC.

B. Rendezvous

If the radio is initially turned on or if connectivity is
interrupted, a rendezvous protocol is required to establish links
among the nodes of a network. We have implemented a ren-
dezvous component for Iris and the corresponding beaconing
protocol that is agnostic to the actual sequence generation
algorithm. In this example, we are using a random algorithm
[2] in which a node that wishes to join a network randomly
hops over the set of available communication channels mi

until rendezvous occurs. In each time slot, each node selects a
channel c with probability 1/mi. This procedure runs until two
nodes have selected the same channel and one of the nodes has
received a rendezvous beacon transmitted by the other one. If
a third node wishes to join the network, the same protocol can
be used as well.

C. Medium Access Control

During normal operation of the radio, the MAC protocol is
responsible for coordinating the access to the channel shared
by multiple users in the network. The MAC component is
only allowed to access the channel in this state. It is inactive
(i.e. does not produce any output data) in all other states. All
outgoing packets are buffered inside the MAC until the node
is connected again.

The actual MAC protocol is implemented as a Stack compo-
nent inside the Iris framework. In this example a CSMA-based
protocol is used [13].

USRP2

SDR, FLL

USRP2

SDR, FLL

Video
stream

2m

2m

CR 1
CR 2

PU

USRP2

Fig. 4. Experimental system setup: two CR nodes and one PU.

D. Spectrum Mobility

The main task of the Spectrum Mobility component is to
maintain network connectivity and to guide the behaviour
of the radio in case the current operating channel is no
longer available for secondary use. This function is crucial
to avoid causing harmful interference to the PU as well as
to minimize performance degradation during the spectrum
handover procedure.

In this example, we have realized a hybrid spectrum mo-
bility strategy according to the classification suggested by
Christian et al. in [14]. We have combined proactive spectrum
sensing and negotiation with reactive spectrum handoff. In
other words, the negotiation process inside the Mobility Active
state is executed before the arrival of the PU. However, the
actual reconfiguration of the radio inside the Configure BC
state is carried out after the detection of the PU. To negotiate a
backup channel between a pair of nodes, we have implemented
an algorithm which first requires that all nodes broadcast a
control beacon including the set of available channels. A mas-
ter node is then selected based on the node identification. The
master then determines a common BC among all nodes and
informs them about the decision. The result of the negotiation
process is stored inside a the LLC which maintains the current
operating channel as well as the backup channel for its network
cluster. The control packets are transmitted in-band along with
ordinary data packets.

VI. EVALUATION

In this section, we evaluate the prototype implementa-
tion through practical experiments. Thereby, we measure the
time to rendezvous and the handover delay. Furthermore,
we describe the component reuse across the three link-layer
configurations.

A. Experiment Setup and Description

The experiment consists of two CR nodes operating in the
2.4 GHz ISM band. Both are running the prototype imple-
mentation with link-layer configuration three described in the
previous section. Each node is equipped with one USRP2
device. The spectrum is divided in 25 adjacent channels with a
bandwidth of 2 MHz each (2400+ i · 2 MHz with i ∈ [0..24]).



TABLE II
HARDWARE CONFIGURATION AND SYSTEM PARAMETERS

PARAMETER VALUE

RF hardware USRP2 and XCVR2450

Sampling rate 2 Msamples/s

No. of channels 5 to 25
fcenter 2.401− 2.451 GHz

Channel bandwidth 2 MHz

Modulation scheme QPSK

Subcarriers (data) 64 (44)

Rendezvous slot length 500 ms

Both nodes observe the same set of channels and have the
same naming structure which corresponds to the shared system
model [2].

A third node acts as a PU broadcasting a pseudo-random
OFDM signal and arbitrarily switching between one of the
available channels.

The nodes implement the behaviour described in the previ-
ous section. If they are initially powered on, they immediately
attempt to rendezvous with one another in one of the available
channels. As soon as they are connected, a common BC is
negotiated.

A video streaming application running on both nodes is
transmitting from one node to another. In case they detect
an active PU on the current operating channel, the MAC
immediately suspends any active transmission and transits into
the unconnected state in order to protect the licensed user from
harmful interference.

The LLC now tunes the radio to the negotiated backup
channel. After that, the MAC protocol can resume its ongoing
communication.

Note that in this experiment, we assume a similar radio
environment at both, the sending and the receiving node. Both
nodes are within sensing range of the PU and are therefore able
to detect the transmission. However, they perform the sensing
and spectrum handover autonomously and are not supported
by a central coordinator or common control channel.

The hardware configuration as well as the parameter settings
of the radio are summarized in table II.

B. Time To Rendezvous

Time To Rendezvous (TTR) is the main metric to assess the
performance of a rendezvous algorithm. Typically expressed
in slots, it is the amount of time it takes for two or more nodes
to initially find one another and set up a link.

In our experiments, we configured the slot length to be
500 ms. In each slot, the radio was tuned to a randomly
selected channel and one rendezvous request beacon was
sent. Upon receiving a beacon, a node immediately returns
a rendezvous reply packet and the procedure is stopped.

We have set the number of operating channels to 5, 10,
15, 20 and 25 and repeated the experiment 15 times for each
configuration.

The results of this experiment are plotted in figure 5. As one
can see from the graph, the mean number of slots required for
successful rendezvous varied between 5 and 15 with a total

number of channels of 5 and 25, respectively. This fits well
with the results obtained through a Python simulation with
100.000 runs.

A similar experiment has been carried out in [15] with a set
of four USRP nodes and GNU Radio. The conclusion that has
been drawn was that rendezvous was never successful without
sending multiple beacons within one slot, no matter how many
channels or which transmit probability was used. During our
work we never experienced such a behaviour. A possible
explanation for this could be a high radio reconfiguration delay
resulting in a blind phase of the radio, effectively missing
beacons during that time.

Experiment
Simulation

T
im

e 
T
o
 R

en
d
ez

v
o
u
s 
[s

lo
ts

]

2

4

6

8

10

12

14

Number of channels
5 10 15 20 25

Fig. 5. TTR vs. number of channels using random rendezvous.

C. Handover Delay

In this section, we study the handover delay of the system
with varying spectrum sensing intervals. The handover delay
is defined as the time the system needs to recover from an
active PU. This period includes the time needed to detect the
PU activity, suspend the own transmission, query and tune to
a new channel and resume the transmission at the sender and
the receiver. The delay is measured at the receiver node by
calculating the data throughput every 100 ms. We have varied
the sensing interval between 500 ms and 1 s and repeated the
experiment 25 times for each interval.

The results of the experiment are shown in table III. We
observed that the minimum handover delay is almost the same
for all sensing intervals. Assuming that in this case the PU
activity could be detected successfully shortly after it has
been activated, 300 ms can be seen as the minimum reaction
time. While the minimum value is almost constant for all
interval times, the average value clearly indicates the positive
impact of a shorter sensing interval. In all cases, the maximum
handover delay was larger than twice the actual interval time.
This is because of a non-zero probability of misdetection
at either the transmitter or receiver. In such a case, two or
more cycles were needed to successfully detect the presence
of the PU. The average handover delay obtained during the
experiments is significantly lower than similar measurements
done by Denkovski et al. in [16]. The authors reported a
handover duration of around 1.3 s which is mainly needed



TABLE III
EXPERIENCED HANDOVER DELAY IN SECONDS USING DIFFERENT

SENSING INTERVALS, AVERAGED OVER 25 RUNS

INTERVAL MIN AVG MAX SD

1000 ms 0.4 1.31 3.4 0.86
750 ms 0.4 0.89 1.8 0.47
500 ms 0.3 0.74 1.5 0.35

for component reconfiguration. In their work, however, the
channel handover was trigged by a change to the radio access
policy.

D. Component reuse

Even though flexibility and modularity are difficult to mea-
sure, they are best shown by looking at a practical example
that benefits from the component reuse feature. We have
implemented three different link-layer configurations which
are built out of four different protocols. The configurations of
all three systems are listed in table I. All components could
be reused without further modification and only the mediators
needed to be implemented. In total we’ve implemented four
components plus three mediators which sums up to seven
blocks.

By using a conventional protocol engineering approach, we
would have needed to reimplement blocks for each system
although they were already present. This would have created
lots of redundant code and would have complicated any
modification to an existing protocol. Without the provided
concept, we would have needed to write seven components
plus the additional code that implements the interaction among
the protocols, a total of ten software blocks. We therefore
conclude that the proposed protocol separation reduces the
amount of components and source code required to implement,
in this specific example by 30%.

VII. CONCLUSION

In the past, most link-layer protocols had to be developed
from scratch every time a new feature was needed. With the
shift towards a component-based paradigm, the flexible link-
layer concept proposed in this article allows to reuse protocols
and components across different system configurations. A
link-layer configuration is represented through a mediator
object which encapsulates the communication and interaction
between two or more protocols. This results in an overall lower
development time for new protocols and inherently increases
their quality. To showcase the feasibility of this approach,
we have implemented a prototype for Iris and evaluated its
flexibility through the realization of three representative link-
layer configurations. Using the last configuration, we have
practically demonstrated CR functionality such as autonomous
link establishment, high-performance spectrum access and
self-organized link maintenance after the unexpected arrival
of a PU. Empirical results show that the component-based

approach achieves comparable performance to monolithic de-
signs but at the same time reduces the amount of code that
needs to be developed. We are currently enhancing the design
and experimenting with a new TDMA-based MAC protocol
with fixed channel access delays.

ACKNOWLEDGMENT

This work has been carried out within the International
Graduate School on Mobile Communications (Mobicom), sup-
ported by the German Research Foundation (GRK1487) and
the Carl Zeiss Foundation.

REFERENCES

[1] S. Haykin, “Cognitive Radio: Brain-empowered Wireless Communica-
tions,” IEEE Journal on Selected Areas in Communications, vol. 23,
no. 2, Feb. 2005.

[2] N. Theis, R. Thomas, and L. DaSilva, “Rendezvous for Cognitive
Radios,” IEEE Transactions on Mobile Computing, Feb. 2011.

[3] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Addison-Wesley Professional, Oct. 2002.

[4] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica,
“A unifying link abstraction for wireless sensor networks,” in ACM
Conference on Embedded Networked Sensor Systems (SenSys), San
Diego, California, Nov. 2005.

[5] K. Klues, G. Hackmann, O. Chipara, and C. Lu, “A Component-Based
Architecture for Power-Efficient Media Access Control in Wireless
Sensor Networks,” in ACM Conference on Embedded Networked Sensor
Systems (SenSys), Sydney, Nov. 2007.

[6] J. Ansari, X. Zhang, A. Achtzehn, M. Petrova, and P. Mähönen, “A
Flexible MAC Development Framework for Cognitive Radio Systems,”
in IEEE Wireless Communications and Networking Conference (WCNC),
Mar. 2011.

[7] L. Yang, Z. Zhang, W. Hou, B. Y. Zhao, and H. Zheng, “Papyrus: A
Software Platform for Distributed Dynamic Spectrum Sharing Using
SDRs,” ACM Computer Communication Review (CCR), Jan. 2011.

[8] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and P. Steenkiste, “Enabling
MAC Protocol Implementations on Software-defined Radios,” in Pro-
ceedings of the 6th USENIX Symposium on Networked Systems Design
and Implementation, Apr. 2009.

[9] K. Mandke, S.-H. Choi, G. Kim, R. Grant, R. Daniels, W. Kim, R. Heath,
and S. Nettles, “Early Results on Hydra: A Flexible MAC/PHY Multihop
Testbed,” in IEEE 65th Vehicular Technology Conference (VTC), Apr.
2007.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[11] P. D. Sutton, J. Lotze, H. Lahlou, S. A. Fahmy, K. E. Nolan, B. zgl,
T. W. Rondeau, J. Noguera, and L. E. Doyle, “Iris: An Architecture
for Cognitive Radio Networking Testbeds,” in IEEE Communications
Magazine, vol. 48, no. 9, Sep. 2010, pp. 114–122.

[12] Software Radio Systems Ltd., “The Iris project page,” available under
http://www.softwareradiosystems.com/redmine/projects/iris; last visited
on Apr. 15, 2013.

[13] A. Puschmann, M. A. Kalil, and A. Mitschele-Thiel, “A Flexible CSMA
based MAC Protocol for Software Defined Radios,” Frequenz Journal
of RF-Engineering and Telecommunications, vol. 6, Oct. 2012.

[14] I. Christian, S. Moh, I. Chung, and J. Lee, “Spectrum Mobility in
Cognitive Radio Networks,” IEEE Communications Magazine, vol. 50,
no. 6, pp. 114–121, Jun. 2012.

[15] M. D. Silvius, A. B. MacKenzie, and C. W. Bostian, “Rendezvous
MAC Protocols for Use in Cognitive Radio Networks,” in IEEE Military
Communications Conference (MILCOM), Oct. 2009.

[16] D. Denkovski, V. Pavlovska, V. Atanasovski, and L. Gavrilovska, “Novel
Policy Reasoning Architecture for Cognitive Radio Environments,” in
IEEE Global Telecommunications Conference, Miami, USA, Dec. 2010.


