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Abstract—Despite the remarkable progress in radio access
technology to support the rapidly increasing wireless data de-
mand, coverage analysis remains as one of the indispensable
topics on which mobile operators still need innovations, above
all, in terms of operational efficiency together with performance.
Manual coverage detection and prediction is an inefficient and
costly task. In this paper we show how Radio Environment
Maps (REMs) developed as part of the research on cognitive
wireless networks can be used as a basis for a powerful coverage
estimation and prediction solution for present-day cellular net-
works. Applying powerful spatial interpolation techniques on the
information coming from location-aware devices, REMs provide
a realistic and remote representation of the ground-truth. The
proposed approach automatically identifies the number, location
and shape of the existing coverage holes and therefore constitutes
a perfect example of a novel application of the Cognitive Radio
concept on next generation cellular networks. Results on urban
and rural environments show that the use of REM brings
promising gains in coverage hole detection and prediction with
respect to the case where only measurements are used.

Keywords—Coverage hole detection, minimization of drive tests,
spatial information exploitation, REM.

I. INTRODUCTION

One of the most crucial and complex tasks when deploying
a Radio Access Technology (RAT), is coverage planning. De-
spite a very careful coverage planning during the deployment
phase, the existence of coverage holes during the operational
phase is a common and almost unavoidable problem that
operators need to address with high priority. For this purpose,
first, it is necessary to detect the coverage holes (a process
called as coverage hole detection), and then deploy a so-
lution which remedies/removes the coverage problem in the
uncovered zones. The deployed solution must be cost-efficient
and well-performing. In order to achieve such a solution, we
need the precise information on the location and shape of
the coverage holes. Obtaining this information is called as
coverage hole prediction. Obviously, the effectiveness of the
deployed solution, highly depends on the performance of the
detection and the prediction.

The focus of this paper is coverage hole detection and
prediction. We show that methods originally developed for
interference management in the context of cognitive wireless
networks can be used very effectively for dealing with cover-
age holes in cellular networks. Further, we argue that these au-
tomated cognitive techniques offer significant benefits over the
current approaches, which rely heavily on human interaction.

The traditional way to deal with the coverage estimation task
is to: (1) perform drive tests, which consist of collecting geo-
located measurements of different metrics/indicators with a
motor vehicle equipped with specialized mobile radio measure-
ment equipments and Global Positioning System (GPS), and
to (2) analyze the collected measurements for coverage hole
detection and prediction. This analysis is performed manually
by human experts. Drive tests are inefficient and very expen-
sive solutions but they allow the operators to have realistic
information on the “ground-truth”. Therefore, it is mandatory
for the operators to make the most of the information collected
through drive tests, and to minimize the use of them. To this
end, the cellular network-related standardization body, the 3rd
Generation Partnership Project (3GPP), has included a feature
on Minimization of Drive Tests (MDT) since Release 9 [1].
Due to the cost reduction promised by MDT, it is seen as
one of the highest-priority features of next generation cellular
networks, and therefore a considerable amount of effort is
put forward for its standardization, product development and
marketing.

The basic concept of MDT is that the User Equipments
(UEs) report their geo-located measurements to the network
upon operator request. The main difference between traditional
UE measurement reporting and MDT is twofold: (1) the geo-
location information of MDT is based on the GPS technologies
available in mobile devices whereas the geo-location infor-
mation of traditional UE measurements are at the cell level;
(2) MDT measurements are collected and stored in a data
repository called Trace Collection Entity (TCE) at the oper-
ator’s Operation and Management Center (OMC) [2], hence
allowing the operator to have direct access on the measure-
ments, whereas the traditional UE measurements are processed
by the base stations for Radio Resource Management (RRM)
purposes and are inaccessible to the operator at the OMC level.
The collected MDT measurements are at operator’s direct
disposition to ease any kind of (automated as well as manual)
network operation, management and optimization task.

Geo-location information calls for the concept of loca-
tion/environment awareness put forward by Mitola in the
context of Cognitive Radio [3]. Inspired by this connection,
a cognitive tool called as Radio Environment Maps (REMs)
has been introduced and developed for diverse wireless net-
work operation, management and optimization tasks. The
concept of REM was first introduced in [4] where it has been
presented as an integrated database, mainly for opportunis-
tic/hierarchical/dynamic spectrum access purposes (i.e. TV
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whitespaces). The REM stores geo-location information, radio
measurements, environmental information and past experi-
ence. Shortly after, a more comprehensive/cognitive version of
REMs, also called as Interference Cartography (IC), has been
proposed for a mesh-like REM structure where the location
points are found on a rectangular grid (i.e. the pixels). In this
type of REM, the main idea is to: (1) spatially interpolate
the collected geo-located measurements in order to predict
the measurement values at those pixels where the operator
does not have measurements, and to (2) request additional
measurements at intelligently chosen pixels to enhance the
quality of those predictions [5]–[7]. This paper falls in this
latter line of work and unless otherwise stated, REM will
mean IC.

As can be noticed easily, the IC concept fits perfectly into
both the MDT and the Cognitive Radio framework. While
the MDT measurements provide the exact input needed for
constructing the REM, the REM brings environment awareness
to today’s cellular networks as a step forward for tomorrow’s
“cognitive cellular networks”. Although the notion of REM
also contains a temporal component, i.e. dynamic REMs,
where the REM is updated iteratively with new measurements,
here we consider a semi-static REM which represents the
snapshot of an environment which changes slowly. Since our
focus is particularly on outdoor coverage scenarios in urban
and rural areas, which changes quite slowly (typically in the
order of days to months), the choice of semi-static REMs is
justified.

In this paper, we expand our previous work [8], which
presents a Bayesian kriging-based REM for coverage hole
detection in outdoor urban and rural environments. In [8],
a pixel-level performance assessment was done, i.e. every
single uncovered pixel was considered as a coverage hole,
independently of the situation of the surrounding pixels. How-
ever, N neighboring uncovered pixels do not constitute N
coverage holes but a single coverage hole. Therefore, in this
paper, differently form [8], we define a coverage hole as N
neighboring uncovered pixels, and we use this definition in
performance evaluations. This definition was introduced by
the authors in [9], where a local coverage hole prediction is
presented. In this paper, we substantially extend the solution
to the cellular coverage analysis and the evaluation process,
with additional scenarios and more extensive analysis of the
results. To the best of our knowledge, automated coverage
analysis based on spatial statistics has been studied extensively
so far for sensor networks but not for cellular networks. So this
paper’s line of work is the first to introduce spatial statistics in
cellular coverage studies and to perform realistic performance
evaluations. However, the significance of this work reaches
beyond: considering that MDT measurements are currently on
their way to overcrowd the operator databases, operators are in
need of cost effective, feasible and well-performing solutions
that allow them make use of the valuable information for
high quality network performance, and this paper provides a
cognitive radio-inspired candidate solution. The outlined REM
methodology is also potentially very efficient implementation
and optimization framework for the future cognitive (self-
organizing) femto cellular and HetNet systems, which will be
gradually emerging as as a part of overall network architecture
of cellular operators.

The rest of this paper is organized as follows. Section II
presents the proposed methodology for the coverage hole

detection, i.e. measurements used, the considered scenarios
and developed algorithm for coverage analysis. Section III
presents the REM construction method and the metrics used to
represent the results. Section IV presents the performance of
the proposed methodology in the automated coverage analysis.
Finally, Section V summarizes our main conclusions.

II. SCENARIOS AND METHODOLOGY

The data we have used for this study consist of 3G received
pilot powers, i.e. Received Signal Code Power (RSCP) values.
The geo-located RSCP measurements are obtained with a
very accurate planning tool which uses a sophisticated ray-
tracing propagation model developed and used for operational
network planning [10]. The propagation model uses specific
environment information such as terrain profile, height, clutter,
buildings etc. and is calibrated through repeated drive tests.
Therefore, the RSCP data obtained from this tool and used in
this work can be considered as real measurements reflecting the
ground-truth on the coverage situation in the area of interest.

Considering that we are currently in the deployment phase
of Long Term Evolution (LTE) technology, it is more relevant
and timely to address coverage issues in LTE rather than in 3G
which has been in use since nearly 10 years now. Therefore,
we align our coverage detection and prediction work with LTE.
For this purpose, we translate/map the RSCP measurements in
3G to their equivalent metric in LTE, namely the Reference
Signal Received Power (RSRP).

RSCP is the received power on the Common Pilot Channel
(CPICH) measured over the 5 MHz 3G carrier bandwidth, and
the RSRP is the linear average of the received powers on
the time-frequency resource elements that carry cell-specific
reference signals over the 15 kHz LTE carrier bandwidth.
Assuming that we use the same overall bandwidth (5 MHz)
for both systems, we can apply the solution presented in [11]
to obtain the wideband RSRP, which is the sum of the
RSRP values measured over all reference subcarriers in the
bandwidth. Due to the similarity between RSRP and RSCP,
authors in [11] propose to compute the wideband RSRP based
on the measured RSCP values through the following equation:

RSRP5 MHz = RSCP+10 log

(
RSTx power

CPICH Tx power

)
+∆pl+∆lb

(1)
where ∆pl is the over-the-air path loss difference between the
carrier frequencies of the two technologies and ∆lb is the link
budget difference between LTE and 3G systems. ∆lb includes
Node B and device antenna gains, receiver’s noise figure and
feeder loss differences.

In the solution presented in [11], the authors assume the
usual cell planning strategy for a new technology roll-out
deployment, where the existent sites are reused, antennas
have the same coverage size and beamwidths, with the same
antenna azimuths and tilt settings. Therefore, it is assumed that
transmitter and receiver antenna gains are the same for both
technologies. The extension of results given by Equation (1)
to a 20 MHz LTE system is straightforward: we change the
considered bias, which would imply also a change in the
considered RSRP threshold.

In this paper we consider two different environments: (1) an
urban area in the south west of Paris, whose received signal
power map is presented in Figure 1(a), and (2) a rural area
about 20 km south of Paris, whose received signal power map



is presented in Figure 1(b). In what follows we refer to these
maps as the real coverage urban and rural maps, respectively.
Both maps have a grid granularity of 25 m× 25 m. We refer
to this grid area as a pixel.
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(a) Urban scenario.
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(b) Rural scenario.
Fig. 1. RSRP real coverage maps measured in dBm for a grid size of
25 m× 25 m.

Operators do not have the whole information on the
ground-truth as in Figures 1. Instead, they have a partial map
where they lack coverage information in some pixels. Figure 2
represents an example of such a partial coverage map that the
operator could potentially have, for p = 50% of pixels with
available information for the urban scenario case. In Figure 2,
black pixels represent those grid areas where operator lacks the
RSRP information1. With such a map at hand, the operators
carry out detailed analysis to perform coverage detection and
prediction. These analysis are performed manually by human
experts, combining information coming from other sources
such as alarm tickets, customer complaints etc. Needless to
say, this process is long, expensive and cumbersome. To add
to these drawbacks, additional drive tests may be needed
in cases/areas where the available information is deemed
insufficient and the coverage problem too important. What we
propose instead, is to replace this manual process by an effi-
cient automated process that uses the available measurements,
avoiding or minimizing drive tests together with the expenses
and delays they imply. The proposed automated process applies
Bayesian kriging to the partial map of Figure 2 to obtain a
REM which provides RSRP predictions in the black pixels.
This automated process is managed by a software framework,
called as the REM manager, located at the OMC. Therefore,
the proposed methodology does not imply any modification in
the existing network entities. This makes its deployment very
straightforward and cost-effective.

We define a minimum RSRP threshold δ = −124 dBm and
those pixels where the received RSRP is below this threshold
are considered to be out of coverage. Applying this threshold
to the real coverage map we obtain a binary map of Figure 3,
for the urban case, where the uncovered pixels are represented
in gray, and the covered pixels are represented in white. Let
M denote the matrix representation of the real coverage map
with M(r, c) as the RSCP value at the rth row and the cth
column, for r = 1, ..., R and c = 1, ..., C. P , with P(r, c) as
its entry at the rth row and cth column, which is constructed
as follows and represented in Figure 3:
• Each value in M, M(r, c), where r ∈ R and c ∈ C

is compared to δ
1In Figure 2, the measurement pixels are chosen randomly for reasons

of simplicity. In reality, the measurement locations are expected to follow
certain mobility patterns. Note that incorporation of realistic mobility patterns
in measurement locations is part of the ongoing research work.
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Fig. 2. RSRP measurements available for interpolation in the urban scenario.

• If M(r, c) < δ we set P(r, c) = 0
• If M(r, c) ≥ δ we set P(r, c) = 1

Another important parameter to define is the minimum
number of neighboring uncovered pixels which an operator
considers as an area with coverage problems where some
actions have to be taken. We refer to this area as a coverage
hole and we use a typical value of N = 4 neighboring pixels,
given the size of our grid. Two pixels are considered neighbor
pixels when there is at least a common edge between them.
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Fig. 3. Binary coverage map for δ for the urban scenario.

Algorithm 1 presents the solution we have developed to
analyze the binary coverage matrix, P , to determine the
existent coverage holes. We construct a new matrix N , where
at the end all the values will be zeros, except those determined
as belonging to a coverage hole.

III. REM CONSTRUCTION AND PERFORMANCE
EVALUATION

The coverage analysis performed by the REM manager
consists of the following steps:

1) The REM manager collects all the available RSRP
measurements for the coverage analysis. In case the
percentage of available measurements p is below a
minimum required threshold, it can send measure-
ment requests to the UEs over the region of interest
and wait until the required minimum percentage level
is reached. Here, it is worth pointing out that since
we consider a semi-static scenario, time is not an
issue. In any case, the delay implied by waiting for
the UE measurements will always be smaller than the
required time to perform drive tests.



Algorithm 1 Binary matrix analysis for coverage hole detec-
tion

count = 0
prev row = 0
current row = 0
N = 0
for each r do

for each c do
if P(r, c) = 0 then

if P(r, c) = first CH pixel in c then
count := count + 1;
N (r, c) = count;

end if
if P(r, c− 1) = 0 then
N (r, c) = N (r, c− 1)

end if
current row[lenght(current row + 1)] = c;

end if
v = intersection(current row, prev row);
for i := 1 to v do

l = min(N (r − 1, v(i)),N (r, v(i)));
m = max(N (r − 1, v(i)),N (r, v(i)));
(N == m) = l;

end for
prev row = current row;
current row = 0;

end for
end for

2) Using the available measurements, the REM manager
performs the Bayesian interpolation [12] to predict
the RSRP values in those pixels where it lacks mea-
surements. A more detailed description of Bayesian
interpolation for REM construction is given in [8],
[13]. Finally, the REM manager constructs the REM
by combining the available real measurements and
the predictions.

To present the gains obtained by the REM in coverage
analysis, we define the following metrics, where predicted
coverage hole refers to a coverage hole detected in the REM,
and real coverage hole refers to those coverage holes in the
real map.
• The average number of detected coverage holes is the

number of the real coverage holes that are correctly
detected, averaged over the iterations. A coverage hole
is considered as correctly detected if c% of the pixels
of this coverage hole belong to a predicted coverage
hole (so called in the reminder the “corresponding”
real coverage hole).

• Coverage hole detection probability is the probability
for a real coverage hole to be correctly detected, as a
function of c. This probability is evaluated by dividing
at each snapshot, the number of detected coverage
holes by the total number of real coverage holes, and
averaging the resulting ratio over the iterations.

• Coverage hole prediction accuracy. This metric eval-
uates, in average, the accuracy of the coverage hole
prediction process. In other words, we evaluate to
what extent the shape and the size of the detected
coverage hole correspond to the reality. This metric is
computed as follows: for each detected coverage hole,
the number of correctly detected pixels (belonging to
the corresponding real coverage hole) is divided by

the total number of pixels of the corresponding real
coverage hole. This ratio is then averaged over the
number of real coverage holes at each iteration and
over the iterations.

• False alarm coverage hole detection measures the
number of detected coverage holes that do not cor-
respond to any real coverage hole.

IV. COVERAGE HOLE SIMULATION RESULTS

In order to have statistically significant results for the above
metrics, their statistics are computed over 100 independent
snapshots. Results presented in this section have been cal-
culated for different percentages of available measurements,
p = {50, 60, 70, 80, 90}% used in the interpolation process.
Having 80% − 90% of measurements may seem excessive.
However, when we translate p into a more tangible metric, such
as the number of measurements per square meter, we obtain
q = {0.08, 0.096, 0.112, 0.128, 0.144} UE measurements per
square meter, which is a small amount due to the static nature
of the problem and the size of the grid.

In what follows, we evaluate the performance of the pro-
posed coverage analysis approach. Figures 4 and 5 represent
the average number of detected coverage holes for both cases,
when using only network measurements and when using the
REM for the urban and the rural scenarios, respectively. In
both figures, the dashed black line represents the number of
real coverage holes. Results presented in both figures were
obtained for c = 70%. As it was expected, for both cases, when
the REM is used, the predicted coverage holes increase with
the number of measurements used in the interpolation process,
p. These figures give the notion of the average misdetection in
the coverage hole detection, since the difference between the
number of real coverage holes (dashed lines) and the bars are
the average real coverage holes misdetected.

Specifically, for the case of the urban scenario, in Figure 4,
it can be observed that in average, more than the half of the
coverage holes are predicted when the REM is applied, even
for the case of low amount of available measurements, p =
50%. For this case, the prediction probability increases in more
than 15% when the REM is applied, in comparison to the case
when only measurements are used. A similar behavior can be
observed for the rural scenario, presented in Figure 5, where
nevertheless, statistics are less representative due to the amount
of coverage holes, 5, and their size. Anyhow, when p = 50%
the use of the REM increases the probability of predicting the
coverage hole in 10%.

Figures 6 and 7 represent the coverage hole detection
probability for c = {50, 70, 90}% when the REM is used.
It can be observed that, when half of the coverage hole pixels
are required to be detected, c = 50%, the coverage hole is
detected in more than 80% and 70% of the cases for urban
and rural scenarios, respectively, even for low amounts of
available measurements, i.e. p = 50%. For the urban scenario,
in Figure 6, it can be observed that for the highly demanding
case of c = 90%, the coverage hole is detected in more
than 45% of the snapshots when p is above 70%, and the
detection probability doubles for p = 90%. For the rural case,
as presented in Figure 7, given the fact that coverage holes
are big, e.g. N bigger than 10 pixels, it is complex to achieve
the highly demanding requirement of detecting c = 90% of
the pixels forming the coverage hole. Nevertheless, when 90%
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the REM in the urban scenario.
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Fig. 5. Comparison of existent and predicted coverage holes with and without
the REM in the rural scenario.

of measurements are available, the probability of detecting the
coverage hole for c = 90% reaches a value higher than 80%.

In Figure 8, we compare the coverage hole prediction
accuracy obtained for both, the urban and the rural scenarios.
Dark blue bars represent results obtained for the urban scenario
and light blue bars represent the results for the rural case. As
the number of pixels with available measurements, p, goes
higher, the probability of correctly estimate the signal power
in those pixels where the operator lacks information, increases.
Figure 8 shows that, in average, more than 50% of the coverage
hole pixels are correctly predicted when using the REM in
both scenarios, even when p = 50%. The average percentage
of detecting the coverage hole pixels is higher than 90% when
p = 90%.

Finally, Figure 9 represents the average number of false
alarm coverage holes predicted by the REM for both, the urban
and the rural scenarios. The dark and light blue dashed lines
represent the real coverage holes in the real map for the urban
and rural cases, respectively. Specifically, the rural scenario
presents a large amount of false alarm coverage holes when
the available measurements are low (p = 50%) because the
interpolation process is not able to correctly integrate in its
prediction model the effects of deep shadowing barriers, as it is
the case in the (bottom part of the rural scenario, Figure 1(b)).
Nevertheless, as the amount of measurements increases, the
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50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Percentage of pixels with available measurements (%)

C
H

 d
et

ec
tio

n 
pr

ob
ab

ili
ty

 (
%

)

 

 

REM c=50%
REM c=70%
REM c=90%

Fig. 7. Average probability of coverage hole detection for different percent-
ages c of pixels for which measurements are available, when using REM in
the rural scenario.

false alarm probability notably decreases as well, reaching a
close to zero value when p = 90%. For the urban case, the
average false alarm coverage holes detected are low, around 3,
even for p = 50%.

On the overall, we observe that the gains brought by the
proposed approach (with respect to the “measurements only”
case) are higher with the decreasing percentage of available
measurements. This proves that the proposed approach fulfills
its purpose of providing a cost-efficient solution without a
compromise on the performance. Its detection performance
gets significantly better if we relax the minimum requirements
for coverage detection (small values of c) but even in that case,
the prediction accuracy is high enough to guarantee an overall
high-quality detection and prediction performance. Comparing
the rural and urban cases, we observe that coverage hole de-
tection performs better for cases where the coverage holes are
small in size and large in number (typical urban environment)
compared to the opposite case where the coverage holes are
small in number and large in size (typical rural environment).
As for coverage hole prediction, the quality is high in both
cases. A possible solution for rural coverage hole detection
is then to adopt a multi-resolution approach: carry out a high-
level global coverage detection with low granularity at first (as
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Fig. 8. Prediction accuracy with REM for the urban and rural scenarios.
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described in this paper), followed by a local analysis with high
granularity on those regions that need further precision. The
multi-resolution approach constitutes one of the main further
research areas in this line of work.

V. CONCLUSIONS

In this work we presented a remote and automated solution
for coverage detection and prediction for cellular networks.
Our approach is firmly based on cognitive radio techniques,
and shows how methods developed for adaptive future wireless
networks can bring significant benefits also to the management
of the present-day wireless systems. We studied the perfor-
mance gains introduced by the use of REMs in the automated
coverage analysis problem. REM is built by applying powerful
spatial interpolation techniques (Bayesian kriging) to the avail-
able measurements, and it is used to detect those areas with
potential coverage problems and predict the shape of those
areas. The proposed automated solution replaces the long and
expensive task of manual coverage hole analysis and it allows
the operators to rapidly deploy solutions which overcome the
coverage problem. The obtained results demonstrate that the
REM-based automated coverage detection and prediction is
a promising approach for future cognitive cellular networks,
which is worth further studies/investigations.

As future work, we have two main lines of research, on
the one hand, we want to introduce, in the evaluation process,
the density of population patterns as well as the measurements
accuracy in terms of location. On the other hand, we see the
application of multi-resolution REMs for the coverage hole
detection problem as an interesting possibility we would like
to explore.
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