
A Feature Partitioning Approach to Casebased
Reasoning in Cognitive Radios

Daniel Ali
Bradley Department of Electrical

and Computer Engineering
Virginia Tech

danielali@vt.edu

Jung-Min ”Jerry” Park
Bradley Department of Electrical

and Computer Engineering
Virginia Tech

jungmin@vt.edu

Ashwin Amanna
Bradley Department of Electrical

and Computer Engineering
Virginia Tech

aamanna@vt.edu

Abstract—Cognitive radios have applied various forms of
artificial intelligence (AI) to wireless systems in order to solve
the complex problems presented by proper link management,
network traffic balance, and system efficiency. Case-based rea-
soning (CBR) has seen attention as a prospective avenue for
storing and organizing past information in order to allow
the cognitive engine to learn from previous experience. CBR
uses past information and observed outcome to form empirical
relationships that may be difficult to model using theory. As
wireless systems become more complex and more tightly time
constrained, scalability becomes an apparent concern to store
large amounts of information over multiple dimensions. This
paper presents a quickly accessible data structure designed to
reduce access time several orders of magnitude as opposed
to traditional similarity calculation methods. A framework is
presented for case representation, which provides the core of
useful information contained within a case. By grouping possible
similarity dimension values into distinct partitions called buckets,
we develop a data structure with constant (O(1)) access time.

I. INTRODUCTION

Cognitive Radio (CR) was first introduced as a technique
to adapt a radio to its users’ needs, introduced by Mitola
[1]. Since then, software defined radio (SDR) technology
has enabled a wide variety of CR applications with different
objectives in mind.

With a diverse set of applications, CR research has cata-
pulted into an active field of study and seen many theoretic
and real world applications. Cognitive Engines (CEs) are the
main driver behind decision making in a CR system. CEs
are charged with managing more layers of the network stack,
the number of parameters and their possible values grows
the possible case size exponentially. For example, consider
a simple example of all possible parameter values as 4
vectors, each able to take on one of 10 possible values. This
results in 104 = 10000 possible combinations for a simple
scenario. Allowing these possible values to be on a continuous
dimension instead of a discrete one and the problem quickly
gains additional complexity. As a CR grows in number of
system responsibilities, the possible states of the radio grow
even faster.

Traditional Casebased Reasoning (CBR) research advocates
an aggressive casebase pruning module [2] [3]. This is an
attempt to effectively limit the size of the casebase in order
to reduce the access time of information as a whole. This can

be unnecessary as memory is becoming less of a concern and
processing time remains a more precious resource, especially
in the case of tightly timed networks such as IEEE 802.22 [4].
The strength in casebase reasoning is its ability to store past
empirical knowledge covering the relevant dimensional space
that provides the best performance. This provides motivation
of a proper design for a scalable, yet efficient data structure
for these relevant dimensions.

A critically important aspect of proper CBR usage is the
design of the case. Accurate and relevant information should
be contained within the case and a framework is presented
from [5] that provides adequate utility subspaces to accurately
define parameters and their meaning to the system as a whole.
Each space is considered a partition of its own with multiple
vectors and can be mapped into other spaces to provide
common grounds for relative comparison, such as usefulness
(i.e. utility) and similarity (e.g. Euclidean distance).

This paper’s contributions can be summarized as follows.
First a renewed look at casebased reasoning is presented in
the context of communications parameters as presented in [5].
Using these parameters this paper also contributes a new case
design that separates the aspects to be considered in case
similarity with the contents of the case. The parameters of
this similarity dimension of the case design is then bucketed
to provide a groundwork for the development of a casebased
data structure. Finally, this data structure is presented and
reduces the correlation between casebase size and access time
as well as preserve good situational descriptions and orderly
case retrieval. This is shown through several simulations.

II. CASEBASED REASONING FOR CR

When CBR was first introduced to CR it was under the guise
of Case-base Decision Theory (CBDT), which has a natural
correlation to CBR [6]. Here we consider the application of
CBDT to be synonymous with CBR. CBR incorporates a
group of case manipulation mechanisms to drive its reasoning
including case representation and indexing, case retrieval,
case adaptation, and case-base maintenance [2]. These case
manipulation techniques work on the information available in
the cases they act on, such as similarity for retrieval, or fitness
for projection. In this section, we will lay out the ground work

CROWNCOM 2013, July 08-10, Washington DC, United States
Copyright © 2013 ICST
DOI 10.4108/icst.crowncom.2013.252035

of basic wireless communication for structured storage in these
cases.

A. Framework and Parameter Definitions

From [5] we assume that there are three main areas of wire-
less situations which should be considered from a CE point
of view. There are the adjustable parameters which the CE
can control, such as power, bandwidth allocation mechanisms,
scheduling algorithms, antenna tilt, etc. These may differ with
each specific system application and is assumed to be defined
in a vector θ. Those things which the CE has absolutely no
control over, such as number of users, pathloss, the type of
fading, etc. are stored in a vector φ. These two interact to
produce measurable performance metrics, such as throughput,
QoS requirements satisfied, average number of users blocked
etc. defined as β. The three interact with the channel f as
such in Equation 1.

β = f(θ,φ) (1)

Typically f is very difficult to model accurately due to
mobile users, changing environments, user demands, and radio
capabilities, all of which can be dynamic in any given system.
Equation 1 provides a generalized and fundamental view of
various wireless scenarios which facilitates the understanding
of how this data structure can be applied. The advantage of
CBR is the ability to store sufficient empirical information on
f such that it does not need to adapt a case or create one anew.
More in depth information on these parameter definitions can
be found in [5].

B. Utility and Fitness

Throughput is an obvious metric for most wireless commu-
nications systems but is insufficient to describe the effective
utilization of θ parameters within a system. If the radio
places high importance on battery life, throughput may suffer
from lower transmission powers, however, overall utilization
would be higher than simply trying to optimize throughput. By
mapping the important aspects of the system into a common
space (a utility space), we are able to accurately compare the
usefulness of not only measurable data rate performance, but
any aspect of the system that may provide an overall trade off.
Here we use the utility and fitness functions defined in [7] and
[3]. The utility function q is defined as

q(x, ẋ; η, σ) =
1

2

{
1 + tanh

[
log
(x
ẋ

)
− η
]
σ
}

(2)

where the threshold parameter η and the spread parameter σ
are chosen such that q reaches 0.95 when the sampled metric,
x, reaches the parameter’s upper goal, ẋ. Conversely q is
0.05 when the metric is two decades away from this goal.
This function is monotonically increasing and 0 < q < 1
which can be beneficial to hill climbing approaches. We
use this function for utility as it is generalized enough to
accurately represent any aspect of the system, regardless of the
underlying values they may represent. This function allows us

TABLE I
MODIFIED CASE REPRESENTATION

Case Contents CBDT Attribute
û Problem
θ̂ Action
u Result
δ Similarity

to seamlessly compare decibel to Kbps strictly by how much
each contributes to the overall efficiency of the system.

To quantify all utilities together, a global utility, or fitness is
used to describe how well the utilities within a case are doing
as a whole. These utilities usually have weights associated
with them and are included in this fitness calculation, known
as the production function shown in Equation 3. Where ωk is
the individual weight associated with the given utility uk.

uglobal =
∏
k

uωk

k (3)

C. Case Representation

Traditionally, cases contain three main pieces of infor-
mation: the problem, a solution, and that solution’s result.
The problem describes the reason the CE was invoked in
the first place, meaning that some utility measurement was
unsatisfactory and that the system must correct for it. By
viewing this as one or many dimensions of u, a CE can
use this information to identify what aspect of the system has
become unsatisfactory. For example if the utility measurement
of throughput has dropped below 50%, the CE was invoked
and created the case. This is defined as a subset of u such
that û ⊆ u.

The action represents a subset of θ which contain new
values for adjustable parameters in the system to counter-
act the problem of the case. Through the action, defined as
θ̂ ⊆ θ, the CE can provide an updated transmission power,
different modulation schemes, or recommend a new adaptation
algorithm. Finally, the result is considered as the state of all
elements in u. This provides the CE with fresh utilization
information on throughput, data loss, overhead incurred, etc.
to determine how good it’s solution really is. Should the same
or some other parameter of u be considered unacceptable,
then the solution could be considered a ”bad” solution and
either discarded or retained for future information. A high level
description of the case’s organization and contents is presented
in Table I.

D. Similarity

Similarity is used as the basis for case retrieval in a CBR
system. Generally, two usual methods exist to measure a case’s
similarity; a calculated metric and one that is a measure of the
structural representation than a quantified metric [8]. Weighted
Euclidean distance is the most common form of similarity
calculation as it measure the distance between two points in
an n dimensional space. A weight is placed on each dimension
and is shown as Equation 4 [2].

d(w)
pq = d(w)(ep, eq) =

 n∑
j=1

w2
j (xpj − xqj)2

1/2

(4)

Where er ⊂ C is the rth case in the set of all cases in
the casebase (C) and w is the weight vector for each feature
in the case, over n features. xpj is the measure of the jth
feature in the respective case p. One of the contributions of
this work is to use a well known concept such as Equation
4 while providing a faster lookup time. This is accomplished
through bucketing and is discussed in Section III.

Equation 4 assumes that each kth feature should be com-
pared, weighted, and considered in a running average of
all features to produce an accurate description of the cases’
distances from each other in a n-dimensional case feature-
space. This becomes a problem when high granularity is
required to differentiate cases. If the delta between some
possible feature sample varies much differently than some
other feature sample, then a large skew is presented in the
distance calculations between the two features.

For example, consider a case with only two features, packet
size and overall fitness. Assuming fitness differences are
bounded ∈ (0, 1) using Equation 3 and reasonable deltas of
packet sizes (0 - 1800 bytes), we also assume that fitness is
weighted to provide 99% of the fitness of the case, versus the
1% of packet size. Even with fitness weighted as heavily as
99% and the maximum difference of fitness (1.0), packet size
is the only factor that effectively sways Euclidean distance.

To overcome this downfall of case similarity two ideas are
presented. First, we decouple the contents of a case with those
aspects that should be considered for similarity. This is defined
as δ = {δ0, δ1, ..., δNδ−1}. Secondly, we introduce the concept
of bucketing each feature of δ and partition the subspaces of
each feature as a bucket based on granularity. For example
δ0 may be modulation and each modulation would be its own
bucket. In a continuous sense, power may be separated by each
dB. If it had a max-min difference of 24, and a granularity
of 2, then there would be 12 partitions (or buckets as we call
them).

III. METHODOLOGY

A. Organization By Similarity

Section II-D explains the concept of similarity and how it
applies to our case representation. The organization of cases is
based on this concept in that it uses each feature of δ as keys to
each level of a tree. To demonstrate this organization, consider
the example where the similarity vector is based simply on
the transmitter and receiver gain. Given three samples of the
two gains, {21.4, 30.7}, {20.6, 31.5}, and {20.8, 31.3} we can
view these cases in a two dimensional space. Each member
of δ is considered a dimension and their partitions are shown
in pointer organization in Figure 1. Each transmission bucket
contains a separate pointer, each pointing to either NULL
if no cases have data values that fall in that range, or to
another array. Given that an array exists, it is either another

Fig. 1. Gain Bucket Example Organization

dimensional node (receiver gain buckets in Figure 1) or a data
container node containing specific case data (storage container
in Figure 1). This is typical of tree-like data structures that
use levels of hierarchy to index the data via branch nodes and
storing the data itself into leaf nodes. By considering each
dimension of the similarity vector and finding it’s appropriate
place in the respective bucket list, a final storage unit stores all
cases that are deemed similar by close enough values within
their respective similarity dimensions. This storage unit can
be presented to the CE for a decision consideration.

For each dimension of δ we can view these in the data
structure as levels of the tree. Each level of the tree has
a number of nodes that store their respective pointers to
another dimensional node or a leaf node. The organization of
these nodes build up a tree structure with the first dimension,
δ0 being the root node and containing pointers to possible
children.

B. Machine Interpretation

These buckets and samples that are to be stored in them,
need a way to translate a sample’s relative position in the
list into a machine understandable index. This is possible as
long as each dimension of δ is understood in terms of bucket
granularity gi. The bucket granularity allows the machine
to map the buckets described in Section II-D to a memory
offset position within the branch node’s bucket list. The basic
calculation for this index, i, for a dimensional sample, δ̂i is
expressed in Equation 5.

i(δ̂i; gi) =

⌊
δ̂i −min δi

gi

⌋
(5)

Equation 5 is used for simplicity as it uses the constant gi
to calculate memory offset indices. It is also required that each
node be able to calculate the number of children within their
own bucket list. This is needed for memory allocations for
static array structure. This calculation is presented in terms of
δi and gi in Equation 6. gi can be chosen during design time
to be constant or can be expressed as a function of δ̂i. This is
discussed in VI.

Nbuckets =
max δi −min δi

gi
(6)

For most applications, because the number of similarity
dimensions (Nδ) will be relatively small, the access time of
this organization is dependent on a pre-defined and static
number of similarity dimensions. This makes it possible to
achieve an access time on the magnitude of O(1).

IV. EXPERIMENTATION

Here we describe the advantages of our approach using
simulation results. First, we demonstrate that a large casebase
experiences performance degradation in large cases and that
the bucketed tree effectively reduces this to non-negligible
numbers. Next, we demonstrate its usage in an OFDM scenario
with a simple CE to show a reasonable percentage of processor
time. All simulations are programmed using C++ and run on
an Intel Core 2 Duo processor @ 2.53 GHz with 6 GiB of
memory in an Ubuntu Linux x64 86 environment. The digital
signal processing library liquid-dsp is used to simulate the
wireless transmissions.

A. Casebase Growth

To demonstrate the power and flexibility of this data
structure, an artificial scenario was created to contain 100
similarity dimensions. Each dimension is described in terms
of the required elements as described in Section III-B. Each
dimension is described in the same fashion, max δi = 1000,
min δi = 100, and gi = 10 for i = 0, 1, ..., Nδ − 1, where
Nδ = 100 for these trials. Insertion time and access time
are measured for 1000 arbitrary cases in both the tree and
the linear implementation. For the linear implementation, only
similarity is calculated in these test using Equation 4 and
is not ranked, but assumed that the ranking process would
be relatively short. This is because the reasoner calling the
subroutine would most likely only want a small amount of
similar cases, and would adequately rank them during its
movement over the list.

Specific arbitrary case information is stored in a case, and
is then inserted and searched for using random similarity
dimension samples. These samples make up a path through the
tree to the case information and is evenly distributed across
their dimensional values. While this provides an even distri-
bution across each dimension’s sample space more realistic
scenarios will have differently distributed probabilities across
their dimension. The worst case scenario is used here to show
that even without a higher probability in specific areas of each
dimension the performance gains can still be seen. This is

the worst case in terms of radio performance as each case
produces unfamiliar cases, making it more difficult for the CE
to converge on a general area where some optimal performance
is observed.

B. Wireless Simulation

Next, we simulate a wireless environment with a single
transmit/receive pair and a simple reasoner with the goal of
link adaptation. By defining a common wireless situation such
as link adaptation, the reader can easily identify the usage of
the specific parameters defined in this paper. Furthermore, we
demonstrate that using this design we can at least show conver-
gence within the bucket scenarios. Because we are bucketing
the parameters of similarity a simulation was created to verify
that this would provide adequate identifying information for
a reasoner to query a case in the casebase. In this wireless
scenario, the wireless transmission link is an OFDM signal at
910 MHz using QAM. Packet length was 1024 bytes and the
number of sub-carries was 64.

Table II contains a description of each configuration for
θ, β, φ, and δ. These were chosen in order to demonstrate
in at least a simple scenario that convergence on a solution
is possible with this kind of situation description. While not
fully descriptive as a realistic scenario, it is useful to see
the convergence on at least one parameter using a randomly
generating reasoner. A wider breadth or higher level of MAC
parameters such as retransmissions, flow control, etc. can be
included in the parameter description in the appropriate place
given that the reasoner is charged with their control, however,
is not demonstrated here for simplicity.

TABLE II
PARAMETER SIMULATION DESCRIPTION

Metric Value Description

θ
Transmission Gain -90 thru 10 dBm

Modulation BPSK, QPSK, QAM8 - QAM256

Coding
None,

Convolution V27 P23-P78,
Convolution V28 P23-P78

Packet Size 512 - 2048 bytes

β
Throughput b/s

φ
Path Loss 0 thru 40 dB

Throughput 0 thru 2000

δ
Similarity Dimension min max Grain

Path Loss 0 dB 40 dB 1 dB
Throughput 0 2000 kbps 200 kbps

The similarity dimension, δ, was chosen to be a simple,
yet effective, descriptor in this scenario. Pathloss was varied
over time as a square wave to only introduce two levels of
pathloss. This could easily be extended to vary pathloss as
a sine wave, forcing it to solve solutions for a continuously
changing environment.

The utilities chosen is a small set of what could actually be
used in a real system shown in Table III. Power consumption
and signal strength are chosen for their clear trade-off pro-
duced by transmission power. Base-stations might use these
differently as well to trade-off reliable transmissions versus
overall network throughput. Throughput encompasses many
aspects of a wireless transmission, and presents a valuable
utility for system performance. Robustness is used to deter-
mine how resilient the signal is to fading and/or path loss.
When a signal is more robust, it also degrades the capacity of
the channel. This degradation will be reflected in throughput
as well and thus, does not need its own utility. The weights
for the utilities reflect an overly important view of throughput
over the others but can change with the goals of the radio. The
weights chosen here were chosen arbitrarily to simply reflect
a scenario where two aspects were far more important than
others.

TABLE III
UTILITY DESCRIPTION

Utility β̇ p Weight
Power Consumption -65 dBm -65 / -15 dBm 0.49

Signal Strength -15 dBm -15 / -65 dBm 0.01
Throughput 800 kb/s 100 / 800 kb/s 0.49
Robustness 13 13 / 2 Coding 0.01

Path loss may seem like a simple way to measure the
environmental effects, as other measures exists such as free
space path loss (FSPL), physical distance, multi-path, noise
floor, path-loss exponent, however, these measurements are all
assumed static and wouldn’t provide useful information from
case to case. These just represent physical layer properties
and as reasoners are tasked with more responsibilities, they
can add more information to this, such as number of users,
area type (rural, city, etc.), and anything else pertinent to the
environment’s description.

V. RESULTS

Within the wireless scenario, we allow a random case
generator to provide cases for the case base. It generate a
random power, tries it in the simulation, calculates the fitness,
then stores the information in a case, in the case-base. This
is done to show the system is able to converge on an optimal
solution, simply by generating random cases, and querying for
the most similar cases. The general trend of each simulation
was that as the case generator added more cases, the returned
set of cases contained cases with higher fitness than the current
situation and would subsequently be applied.

A. Organization by Similarity Performance

As a casebase grows, performance of the reasoner should
not be noticeably impacted by accessing its learned informa-
tion. The implementation provided here provides a relatively
timely insertion and access time as compared to a traditional
list-based casebase. The relative impact of the number of
cases can be seen in Figure 2. The linear relationship between
the number of cases and access time is clearly shown for a

linear data structure, representing traditional approaches for
case storage. For the implementation of the similarity tree
used in this work, a much more constant access time can be
observed providing the basis of justification that information
access time can be improved orders of magnitude greater if
organized using the bucketed approach. Insertion time is also
shown to have relatively little impact on casebase interfacing
and is shown here as it provides a slightly different algorithm
than access.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 10 100 1000 10000
M

ea
su

re
d

T
im

e
(s

ec
)

Number of Cases

Similarity Tree
Traditional List

Fig. 2. Average Tree-based and List-based Access Time

It should be noted that this experimentation was done
using a controlled simulation to provide the basis of the
improvement. More complex reasoning engines may take more
time depending on the approach taken to sort through what
it considers relative cases. This adds to each measurement
some aspect of latency, however, the relationship and improved
access time order between the linear and bucketed approach
remains the same. Insertion time can also affect the system,
however, was measured and did not significantly impact per-
formance. Because this experiment was run using a desktop-
level operating system, other influences could have contributed
to a non-optimal curve for each trial, such as page faulting or
thread scheduling, however, the general trends are preserved
in Figure 2.

B. Time Varying Simulation Results

By changing path loss based on a square wave, we introduce
two distinct path loss levels in the environment, shown in
Figure 3. Each case takes a measurement of an action, records
the problem and solution and stores it. By repeatedly forcing
a query on the casebase at run-time we are able to see
that the data structure eventually converges and produces the
best possible solution it could find. It can be seen that even
with a simple CE, by retaining simply retaining which cases
performed better and then querying them, a fairly adequate
trend is visible. Better reasoning mechanisms could know
whether the solution is optimal or not.

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 0 50 100 150 200 250 300 350 400 450 500
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1
P

ow
er

 (
dB

m
)

F
itn

es
s

Frame Number

Pathloss
Returned Casebase Power

Fitness

Fig. 3. Time Varying Path Loss Scenario

VI. LIMITATIONS AND FUTURE WORK

One drawback to this kind of bucketed approach is the loss
of getting the kth nearest neighboring case. Each bucket returns
only the cases within the bucket. Should two relatively similar
cases fall just on either side of a granularity bound, one or the
other is returned, but not both. We believe that by adequately
defining the similarity dimensions and its granularity, this
problem can go relatively unnoticed. This side effect required
more specified scenarios in which to test them in.

To extend this work, a static similarity granularity is used
for each dimension of δ, however, this need not be the case.
gi can be considered as a function of δi’s relative location in
the dimension space, allowing for arbitrary bucket sizes that
can grow or shrink as it moves through the possible similarity
space. While weighting was use in the utility calculation the
experiments presented here did not reflect any weighting on
similarity. Traditionally, Equation 4 uses a weight to allow
one dimension more influence than the others. In terms of
bucketing, this can be incorporated into the mapping function
from raw parameter space to the dimensional space. These
experimentations also used a random case generator to step
through the possible parameter space available to the CE.
Better approaches are available for use and should be used
in parallel with this CBR.

VII. RELATED WORKS

He et. al implements case-based reasoning for WRAN
802.22 applications but can be extended to include a variety
of other options to optimize [3]. This will lead to the reasoner
making more informed decisions without having to sacrifice
time due to the size of the case-base. These cases can be
used over time and can store a large amount of data for
many different scenarios. Wess et. al presents a similar idea,
but focuses on how to effectively bridge the gap between
structural and surface similarity [9] [10]. The idea of using
an n-dimensional hypercube for storing cases in a given
search space has been presented previously [11]. These works,
however, assumed splitting the search space into subspaces

based on the number of cases to be stored in each subspace,
allowing an indefinite granularity. Our work however, holds
a static value on granularity such that even if a few cases
are extremely similar, they do not need multiple layers of
structures to distinguish them unless they fall on either side
of a dimension’s granularity bound.

VIII. CONCLUSION

A new approach to storing CR case information via a
bucketed approach is introduced. By showing a reasonable
and extendable framework, we provide the details of how
to appropriately classify information by grouping dimensional
information together. By first showing the advantages of using
a tree-based data structure that aligns itself with this approach,
we demonstrate a specific scenario in which it could be
used. In both experiments the bucketed, tree-based approach
proved to be several orders of magnitude faster in terms of
access time. Insertion time was increased relative to traditional
methods, however, this increase is negligible in terms of a CE’s
cognition cycle.

This work was partially sponsored by the NSF through grant
CNS-0746925.

REFERENCES

[1] Joseph Mitola Iii. An Integrated Agent Architecture for Software Defined
Radio. PhD thesis, 2000.

[2] S.K. Pal and S.C.K. Shiu. Foundations of soft case-based reasoning.
Wiley series on intelligent systems. John Wiley & Sons, 2004.

[3] An He, Joseph Gaeddert, Kyung Kyoon Bae, Timothy R. Newman,
Jeffrey H. Reed, Lizdabel Morales, and Chang-Hyun Park. Development
of a case-based reasoning cognitive engine for ieee 802.22 wran applica-
tions. SIGMOBILE Mob. Comput. Commun. Rev., 13:37–48, September
2009.

[4] C. Stevenson, G. Chouinard, Zhongding Lei, Wendong Hu, S. Shell-
hammer, and W. Caldwell. Ieee 802.22: The first cognitive radio
wireless regional area network standard. Communications Magazine,
IEEE, 47(1):130 –138, january 2009.

[5] Joseph D. Gaeddert. Facilitating Wireless Communications through In-
telligent Resource Management on Software-Defined Radios in Dynamic
Spectrum Environments. PhD thesis, Virginia Polytechnic Institute &
State University, Blacksburg, VA, January 2011.

[6] Thomas W. Rondeau. Application of Artificial Intelligence to Wireless
Communications. PhD thesis, Virginia Tech, Blacksburg, VA, 2007.

[7] Youping Zhao, Joseph Gaeddert, Lizdabel Morales, Kyung Bae, Jung-
Sun Um, and Jeffrey H. Reed. Development of radio environment map
enabled case- and knowledge-based learning algorithms for ieee 802.22
wran cognitive engines. In Cognitive Radio Oriented Wireless Networks
and Communications, 2007. CrownCom 2007. 2nd International Con-
ference on, pages 44 –49, aug. 2007.

[8] Warren T., Zhang L.Z., and Mount C. Similarity measures for retrieval in
case-based reasoning systems. Applied Artificial Intelligence, 12(4):267–
288, 1998.

[9] Ramon Lopez De Mantaras, Derek Bridge, and David Mcsherry. Case-
based reasoning: an overview. AI Communications, 10:21–29, 1997.

[10] Stefan Wess, Klaus dieter Althoff, and Guido Derwand. Using k-d trees
to improve the retrieval step in case-based reasoning. In Stefan Wess,
Klaus-Dieter Althoff, & M. M. Richter, pages 167–181. Springer-Verlag,
1993.

[11] Richard H. Stottler, Andrea L. Henke, and James A. King. Rapid
retrieval algorithms for case-based reasoning. In Proceedings of the
11th international joint conference on Artificial intelligence - Volume
1, pages 233–237, San Francisco, CA, USA, 1989. Morgan Kaufmann
Publishers Inc.

