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Abstract—In this paper we investigate the problem of designing
a spectrum scanning strategy to detect an intelligent Invader
who wants to utilize spectrum undetected for his/her unapproved
purposes. To deal with this problem we apply game-theoretical
tools. We model the situation as a game between a Scanner and an
Invader where the Invader faces a dilemma: the more bandwidth
the Invader attempts to use leads to a larger payoff if he is not
detected, but at the same time also increases the probability
of being detected and thus fined. Similarly, the Scanner faces
a dilemma: the wider the bandwidth scanned, the higher the
probability of detecting the Invader, but at the expense of in-
creasing the cost of building the scanning system. The equilibrium
strategies are found explicitly and reveal interesting properties.
In particular, we have found a discontinuous dependence of the
equilibrium strategies on the network parameters, fine and the
type of the Invader’s award. This discontinuity on fine means that
the network provider has to take into account a human factor
since some threshold values of fine could be very sensible for the
Invader, while in other situations simply increasing the fine has
minimal deterrence impact. Also we show how different reward
types for the Invader (e.g. motivated by using different type of
application, say, video-streaming or downloading files) can be
incorporated into scanning strategy to increase its efficiency.

I. INTRODUCTION

Over the last few decades, the increasing demand for
wireless communications has motivated the exploration for
more efficient usage of spectral resources ([11], [15]). In
particular, it has been noticed that there are large portions of
spectrum that are severely under-utilized [2]. Recently, cogni-
tive radio technologies (CR) have been proposed as a means
to intelligently use such spectrum opportunities by sensing
the radio environment and exploiting available spectrum holes
for secondary usage[6]. In CR systems, secondary users are
allowed to “borrow (or lease)” the usage of spectrum from
primary users (licensed users), as long as they do not hinder
in the proper operation of the primary users’ communications.
Unfortunately, as we move to make CR technologies com-
mercial, which will allow secondary users to access spectrum
owned by primary users, we will face the inevitable risk that
adversaries will be tempted to use CR technology for illicit
and selfish purposes [14]. If we imagine an unauthorized user
(Invader) attempting to sneak usage of spectrum without obey-
ing proper regulations or leasing the usage of the spectrum, the
result will be that both legitimate secondary users and primary
users will face unexpected interference, resulting in significant
performance degradation across the system.

The challenge of enforcing the proper usage of spectrum
requires the notion of a “spectrum policing agent”, whose pri-
mary job is to ensure the proper usage of spectrum and identify
anomalous activities occurring within the spectrum[14]. As a
starting point to being able to police the usage of spectrum,
we must have the ability to scan spectrum and effectively
identify anomalous activities. Towards this objective, there
has been several research efforts in signal processing tech-
niques that can be applied to the spectrum scanning problem.
For example, in [19], [18], the author’s presented methods
for detecting a desired signal contained within interference.
Similarly, detection of unknown signals in noise without prior
knowledge of authorized users was studied in [4], [17]. As
another example, in [14], the authors proposed a method
to detect anomalous transmission by making use of radio
propagation characteristics. In [10] authors investigated what
impact on spectrum scanning can have information about the
over-arching application that a spectrum thief might try to run.

However, these works tend to not examine the impor-
tant “interplay” between the two participants inherent in the
problem– the Invader, who is smart and will attempt to use the
spectrum in a manner to minimize the chance of being detected
and fined, while also striving to maximize the benefit he/she
receives from illicit usage of this spectrum; and the Scanner,
who must be smart and employ a strategy that strategically
maximizes the chance of detecting and fining the smart In-
vader, with minimal cost. This challenge is made more difficult
by the complexity of the underlying scanning problem itself:
there will be large swaths of bandwidth to scan, and the system
costs (e.g. analog-to-digital conversion, and the computation
associated with running signal classifiers) associated with
scanning very wide bandwidth makes it impossible to scan
the full range of spectrum in a single instance. Consequently,
it is important to understand the strategic dynamics that exist
between the Scanner and the Invader, while also taking into
account the underlying costs and benefits that exist for each
participant. This paper examines the interactions between the
Scanner and Invader by formulating the problem using game
theory. We find the optimal scanning strategy by selecting the
scanning (and, similarly, the invading) bandwidth that should
be employed in spectrum scanning.

The organization of this paper is as follows: in Section II,
we first define the problem by formulating a two-step game
in terms of payoff and cost functions: in the first step, each
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player chooses their bandwidths; while in the second step
each player uses the first step results to arrive at equilibrium
strategies. We supply saddle point strategies for the game’s
first step. To gain insight into the problem, for the second step,
in Section IV-A, we outline a linearized model of detection
probability and arrive at the corresponding best strategies for
each player in Section IV-B. We then explicitly obtain the
equilibrium strategies in Sections IV-C and IV-D for cases
involving complete and incomplete knowledge of the Invader’s
reward type. In Section V numerical illustrations are supplied.
Finally, in Sections VI and VII discussions, conclusions and
the proofs of the announced results are offered to close the
paper.

II. FORMULATION OF THE SCANNING PROBLEM AS A
TWO-STEP GAME

In this section we set up our problem formulation. Our
formulation of the spectrum scanning problem involves two
players: the Scanner and the Invader. The Scanner, who is
always present in the system, scans a part of the band of
frequencies that are to be monitored, in order to prevent
illegal usage by a potential Invader of the primary (Scanner)
network’s ownership of this band. We assume that the amount
of bandwidth that needs to be scanned is much larger than
is possible using a single scan by the Scanner, and hence the
Scanner faces a dilemma: the more bandwidth that is scanned,
the higher the probability of detecting the Invader, but at the
expense of increasing the cost of the RF scanning system.

We assume that if the Scanner scans a particular frequency
band IS and the Invader uses the band II then the invasion
will be detected with certainty if IS∩II 6= ∅, and it will not be
detected otherwise. Without loss of generality we can assume
that the size of the protected frequency band is normalized
to 1. The Invader wants to use spectrum undetected for some
illicit purpose. We consider two scenarios: (a) The reward for
the Invader is related to the width of the frequency band he
uses if he is undetected. If he is detected he will be fined.
So, the Invader faces a dilemma: the more bandwidth he tries
to use yields a larger payoff if he is not detected but also it
increases the probability of being detected and thus to be fined,
(b) The award for the Invader is unknown to the Scanner: he
only knows whether it is related to the width of the frequency
band the Invader uses, or not.

We formulate this problem as a two step game in the
following two subsections.

A. Formulation of the Problem in the First Step of the Game

In the first step of the game the Scanner selects the band
BS = [tS , tS + x] ⊆ [0, 1] with a fixed upper bound of
frequency width x to scan i.e. tS ≤ 1−x. The Invader selects
the band BI = [tI , tI + y] ⊆ [0, 1] with a fixed upper bound
frequency width y to intrude, i.e. tI ≤ 1 − y. So, BS and
BI are pure strategies for the Scanner and the Invader. The
Scanner’s payoff v(BS , BI) is 1 if the Invader is detected (i.e.
[tS , tS +x]∩ [tI , tI +y] 6= ∅) and his payoff is zero otherwise.
The goal of the Scanner is to maximize his payoff meanwhile

the Invader wants to minimize it. So, the Scanner and the
Invader play a zero-sum game. The saddle point (equilibrium)
of the game is a couple of strategies (BS∗, BI∗) such that for
each strategies (BS , BI) the following inequalities hold [16]:

v(BS , BI∗) ≤ v := v(BS∗, BI∗) ≤ v(BS∗, BI),

where v is the value of the game. It is clear that the game
does not have a saddle point in the pure strategy if x+y ≤ 1.
To find the saddle point we have to extend the game by mixed
strategies, where we assign a probability distribution over pure
strategies. Then instead of the payoff v we have its expected
value. The game has a saddle point in mixed strategies, and let
P (x, y) be the value of the game. Then P (x, y) is the maximal
detection probability of the Invader under worst conditions.

B. Formulation of the Problem in the Second Step of the Game

In the second step of the game the rivals knowing their
equilibrium strategies from the first step as well as detection
probability P (x, y), want to find the equilibrium frequency
widths x and y. We here consider two sub-scenarios: (a) the
Invader’s type is known: namely, it is known how the reward
for the Invader is related to the width of the frequency band
he uses if he is undetected, (b) the Invader’s type is unknown:
instead, there is only a chance that the Invader reward is related
to the width in use, else it is not related. Different type of
rewards can be motivated by using different type of application
(say, file-download or streaming video [10]).

1) Invader reward is related to the bandwidth used: A
strategy for the Scanner is to scan a width of frequency of
size x ∈ [a, b], and a strategy for the Invader is to employ a
width of frequency of size y ∈ [a, c], where c < b < 1/2. So,
we assume that the Invader’s technical characteristics is not
better than the Scanner’s ones.

If the Scanner and the Invader use the strategies x and y,
then the payoff to the Invader is the expected award (which
is a function U(y) of bandwidth y illegally used by the
Invader) minus intrusion expenses (which is a function CI(y)
of bandwidth y) and expected fine F to pay, i.e.

vI(x, y) = (1− P (x, y))U(y)− FP (x, y)− CI(y). (1)

The Scanner wants to detect intrusion taking into account
scanning expenses and damaged caused by the illegal use
of the bandwidth. For detection he is rewarded by fined F
imposed on the Invader. Thus, the payoff to the Scanner is
difference between the expected reward for detection, and
damaged from intrusion into the bandwidth (which is a func-
tion V (y) of bandwidth y illegally used by the Invader) with
the scanning expenses (which is a function CS(x) of scanned
bandwidth x),

vS(x, y) = FP (x, y)− V (y)(1− P (x, y))− CS(x). (2)

Note that introducing transmission cost is common for CDMA
[22] and ALOHA networks ([23], [24]). We assume that the
Scanner and the Invader know fine F , cost functions CI and
CS , the Scanner and Invader’s utilities V and U as well as low
and upper bandwidth bounds a, b and c. We look for a Nash



equilibrium, i.e. for a couple of strategies (x∗, y∗) such that
for any couple of strategies (x, y) the following inequalities
hold [16]:

vS(x, y∗) ≤ vS(x∗, y∗), vI(x∗, y) ≤ vI(x∗, y∗). (3)

2) Unknown Whether the Invader’s Award is Related to
the Width of Band in Use: In this section we assume that
the Invader can be of two types: (a) with probability q he
can be the same as in the previous section, and so y is his
strategy and payoffs are given by (1), (b) with probability 1−q
for him it is just important to work in the network without
being detected. Then, of course, he will employ the minimal
bandwidth allowed, so his strategy is y = a. The payoff to the
Scanner is the expected payoff taking into account the type of
Invader:

vE
S (x, y) = qvS(x, y) + (1− q)vS(x, a) (4)

with vS(x, y) given by (2). Here we also look for Nash
equilibrium. We assume that the Scanner and the Invader know
(as in the case with complete information) the parameters F ,
CI , CS , V , U , a, b, c as well as the probability q.

III. EQUILIBRIUM STRATEGIES FOR THE FIRST STEP

In the following theorem we gives the equilibrium strategies
for the first step, so for fixed upper bound width of the rivals.

Theorem 1: In the first step with fixed width to scan x and
to invade y, the rivals employ uniform tiling behavior. Namely,

(a) Let 1− (x+ y)M ≤ y with

M = b1/(x+ y)c (5)

where bξc is the greatest integer less or equal to ξ. Then the
Scanner and the Invader will, with equal probability 1/M ,
employ a band of the set A−S and A−I correspondingly.

(b) Let 1−(x+y)M > y. Then the Scanner and the Invader
will, with equal probability 1/(M + 1), employ a band of the
set A+S and A+I correspondingly, where

A−S = {[k(x+ y)− x, k(x+ y)], k = 1, ...,M},
A−I = {[k(x+ y)− y − ε(M + 1− k), k(x+ y)− ε(M − k)],

k = 1, ...,M}, 0 < ε < x/M,

A+S = A−S ∪ [1− x, 1],

A+I = {[(k − 1)(x+ y + ε), (k − 1)(x+ y + ε) + y],

k = 1, ...,M} ∪ [1− y, 1], 0 < ε <
1− y −M(x+ y)

M − 1
.

The value of the game (detection probability) P (x, y) is given
as follows:

P (x, y) =

{
1/M, 1− (x+ y)M ≤ y,
1/(M + 1), 1− (x+ y)M > y.

(6)

IV. THE EQUILIBRIUM STRATEGY FOR THE SECOND STEP

In this section, which is split into four subsections, we find
the equilibrium strategy for the second step explicitly. First
in Subsection IV-A we linearize our model to get an explicit
solution, then in Subsection IV-B the best response strategies
are given for known Invader type, and they are employed in
Subsections IV-C and IV-D to construct equilibrium strategies
for known and unknown Invader types correspondingly.

A. Linearized model for the second step

In order to get an insight into the problem, we consider a
situation where the detection’s probability P (x, y) for x, y ∈
[a, b] is approximated by a linear function as follows:

P (x, y) = x+ y. (7)

We assume that the scanning and intrusion cost as well as the
Invader’s and Scanner’s utilities are linear in the bandwidth
involved, i.e. CS(x) = CSx, CI(y) = CIy, U(y) = Uy,
V (y) = V y where CS , CI , U, V > 0. Then the payoffs to the
Invader and the Scanner, if they use strategies x ∈ [a, b] and
y ∈ [a, c] respectively, become:

vI(x, y) = U(1− x− y)y − F (x+ y)− CIy,

for known Invader’s type:
vS(x, y) = F (x+ y)− V y(1− x− y)− CSx,

for unknown Invader’s type:

vE
S (x, y) = q(F (x+ y)− V y(1− x− y))
+ (1− q)(F (x+ a)− V y(1− x− a))− CSx.

(8)

Note that linearized payoffs have found extensive usage for a
wide array of problems in wireless networks [9], [23], [25],
[26], [27]. Of course, such approach simplifies the original
problem and only gives an approximated solution. Meanwhile
it can also be very useful: sometimes it allows one to obtain
solution explicitly, and allows one to look inside of the
structure of the solution as well as the correlation between
parameters of the system.

B. Best response strategies for the Invader’s reward related
to bandwidth used

In this section we give best response strategies for the
Scanner and the Invader, i.e. such strategies that BRS(y) =
arg maxx vS(x, y) and BRI(x) = arg maxy vI(x, y).

Theorem 2: In the second step of the game the Scanner
and the Invader have the best response strategies BRS(y) and
BRI(x) are given as follows:

BRS(y) =


a, y < (CS − F )/V,

any from [a, b], y = (CS − F )/V,

b, y > (CS − F )/V,

(9)

BRI(x) =


a, T − 2a ≤ x,
L(x), T − 2c < x < T − 2a,

c, x ≤ T − 2c

(10)

with
L(x) = (T − x)/2, T = (U − F − CI)/U. (11)



Fig. 1. The Nash equilibrium as an intersection of the best response curves

C. Equilibrium: the Invader’s Award is Related to the Width
of Band in Use

The equilibrium in the second step of the problem exists
since the payoff to the Scanner is linear on x and the payoff
to the Invader is concave on y. The equilibrium can be found
by (3) as a couple of strategies (x, y) which are the best
response to each other, i.e. x = BRS(y) and y = BRI(x),
i.e. the intersection of the best response curves (Figure 1).
Such intersection always exists and is unique as shown in the
following theorem.

Theorem 3: Let the Invader’s award be related to the width
of band in use. This game has unique Nash equilibrium in the
second step, and it is given by Table I with R = (CS−F )/V.

D. Equilibrium: Unknown whether the Invader’s reward is
related to bandwidth used

For marginal probabilities of the problem with unknown
Invader’s type (where indeed there is complete confidence in
the Invader’s type) we already have the solution. Namely, if
q = 1 then the Invaders’ reward depends on width in use. So,
the equilibrium is unique and given by Theorem 3. If q = 0
then the Invaders’ reward does not depend on width in use.
Thus, the equilibrium is unique again and it is (BRS(a), a).
For the inside probabilities the equilibrium is given by the
following theorem

Theorem 4: Let it be unknown whether the Invader’s award
is related to the bandwidth used. This game has unique Nash
equilibrium in the second step, and it is given by Table I with
R = (CS−F − (1−q)V a)/(qV ) and L−1(R) = T −2(CS−
F − (1− q)V a)/(qV ).

V. NUMERICAL ILLUSTRATIONS

As a numerical illustration of the scenario when the In-
vader’s reward depends on the bandwidth in use we consider
U = V = 1, a = 0.01, b = 0.3, CS = 0.4, CI = 0.1.
Figures 2 and 3 demonstrate the equilibrium strategies as
a function of the fine F for the Invader’s characteristics
c = 0.2, 0.3. Increasing fine makes the Scanner and the Invader
employ larger and smaller bands correspondingly. The Scanner
would alter his strategy by a sudden jump at a threshold value
(F = 0.1(0.2) for c = 0.2(0.3)). In spite of the fact that
the Invader would vary his strategy continuously, his payoff
experiences a sudden drop. This also leads to an increase in

Fig. 2. Equilibrium strategy x and y when the Invader’s reward depends on
the bandwidth in use

Fig. 3. The equilibrium payoffs vS and vI when the Invader’s reward depends
on the bandwidth in use

detection probability by a jump. Since the Scanner already
gets the upper band, while the Invader still does not get to the
lower band, further increasing of the fine leads to continuous
decreasing of the detection probability due to the smaller
bandwidth employed by the Invader (Figure 4).

Figure 5 and 6 demonstrate the equilibrium strategies as a
function of probability q (i.e. uncertainty about the Invader’s
reward type) and fine F = 0.2. The result essentially depends
on the Invader’s characteristics. For c = 0.2 the equilibrium
strategies do not depend on the probability q. For c = 0.3 they
are constant for q < 0.68, while increasing of the Scanner
strategy by a jump at switching point q = 0.68 drops also
the Invader’s payoff by a jump. This “jumping nature” for the
Invader’s payoff means that when assigning a fine one has to
take into account the fact that sometimes a simple increase in

Fig. 4. Probability of detection when the Invader’s reward depends on the
bandwidth in use



Case Condition Condition x y Detection probability
i1 R < a L(b) < a b a a+ b
i2 R < a a ≤ L(b) ≤ c b L(b) b+ L(b)
i3 R < a c < L(b) b c c+ b
i4 R > c L(a) < a a a 2a
i5 R > c a ≤ L(a) ≤ c a L(a) a+ L(a)
i6 R > c c < L(a) a c a+ c
i7 a ≤ R ≤ c L(b) ≤ R ≤ L(a) L−1 (R) R L−1 (R) +R
i8 a ≤ R ≤ c L(a) ≤ a a a 2a
i9 a ≤ R ≤ c a < L(a) < R a L(a) a+ L(a)
i10 a ≤ R ≤ c c < L(b) b c c+ b
i11 a ≤ R ≤ c R < L(b) < c b L(b) b+ L(b)

TABLE I
THE NASH EQUILIBRIUM (x, y) WITH L−1(R) = L−1 ((CS − F )/V ) = T − 2(CS − F )/V .

Fig. 5. Equilibrium strategy x and y with uncertainty about the Invader’s
award

Fig. 6. The equilibrium payoffs vS and vI with uncertainty about the
Invader’s award

fine might not change the Invader’s behavior, but that once a
threshold value is hit, his behavior will change dramatically.

VI. DISCUSSION

In this paper we suggest a simple model of finding the
optimal bandwidth to scan for detection of an Invader and
found the solution of this model explicitly. We have shown
that the optimal width essentially depends on the scenario and
under some conditions a small varying of network parameters
and fine could lead to jump changes in the optimal strategies,
as well as in the payoffs of the rivals. This mixture between
continuous and discontinuous behavior of the Invader under
the influence of fine implies that the network provider has to
carefully make a value judgement: some threshold values of
fine could have a huge impact on the Invader, while in the other

Fig. 7. Probability of detection with uncertainty about the Invader’s award

situations a small increase will have a minimal impact on the
strategies used. A goal for our future investigation, of course,
is to investigate the non-linearized detection probability. Also,
since our investigation showed that the optimal scanning
essentially depends on the Invader’s characteristics, we intend
to extend our model to the case of incomplete information
on the characteristics as well as to multi-scanner [5], [7] or
multi-invader systems [8].
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VII. APPENDIX

A. Proof of Theorem 1

Suppose that the Invader uses a band BI with width y and
the Scanner with equal probability employ a band from the set
A−S (A+S) for 1− (x+ y)M ≤ y (for 1− (x+ y)M > y).
The intervals composing A−S and A+S are separated from
each other by at most y. So, at least one band from A−S

for 1− (x+ y)M ≤ y and from A+S for 1− (x+ y)M > y
intersects with BI . So, detection probability is greater or equal
to 1/M for 1− (x+ y)M ≤ y and it is is greater or equal to
1/(M + 1) for 1− (x+ y)M > y.

Suppose that the Scanner uses a band BS with width x and
the Invader with equal probability employ a band from the set
A−I (A+I ) for 1 − (x + y)M ≤ y (for 1 − (x + y)M > y).
The intervals composing A−I and A+I are separated from
each other by more that x. So, at most one band from A−I

for 1− (x+ y)M ≤ y and from A+I for 1− (x+ y)M > y
intersects with BS . So, detection probability is less or equal
to 1/M for 1 − (x + y)M ≤ y and it is is less or equal to
1/(M + 1) for 1− (x+ y)M > y and the result follows.

B. Proof of Theorem 2
Note that vS(x, y) = x(F + V y − CS) + y(F − V + V y).

So, for a fixed y the payoff vS(x, y) is linear on x. Thus,
BRS(y) = arg maxx vS(x, y) is defined by sign of F +V y−
CS as it is given by (9).

Note that vI(x, y) = (U(1− x)−F −CI)y2 −Uy2 − xF .
So, for a fixed x the payoff vI(x, y) is a concave quadratic
polynomial on y getting its absolute maximum at y = (U(1−
x) − F − CI)/(2U). Thus, the maximum of vI(x, y) within
[a, c] is reached either on its bounds a and c or at y = (U(1−
x)−F −CI)/(2U) if it belongs to [a, c] as it is given by (10).

C. Proof of Theorem 3
First note that (x, y) is a Nash equilibrium if and only if it

is a solution of equations x = BRS(y) and y = BRI(x) with
BRS(y) and BRI(x) given by Theorem 2.

By (11) we have that (10) is equivalent to

BRI(x) =


a, L(x) ≤ a,
L(x), a < L(x) < c,

c, c ≤ L(x).
(12)

Let a > (CS − F )/V . By (9) BRS(y) ≡ b. This, jointly
with (12), implies (i1)-(i3).

Let (CS − F )/V > c. By (9) BRS(y) ≡ a. Then (12)
implies (i4)-(i6).

Let a ≤ (CS − F )/V ≤ c. First note L(x) is linear
decreasing function from L(a) for x = a to L(b) for x = b.

(a) Let L(b) ≤ (CS −F )/V ≤ L(a). Then the equation
L(x) = (CS − F )/V has the unique root within
[a, b]. Thus, (9) and (12) yield (i7).

(b) Let L(a) ≤ (CS−F )/V . Then, L(x) < (CS−F )/V
for x ∈ (a, b]. So, by (10), BRI(x) < c for x ∈ [a, b].
Besides, by the assumption, the equation L(x) =
(CS−F )/V does not has root in [a, b]. Thus, by (9)
BRS(y) ≡ a. So, (12) implies (i8) and (i9).

(c) Let (CS−F )/V < L(b). Then L(x) > (CS−F )/V
for x ∈ [a, b). Thus, by (10), BRI(x) > a for
x ∈ [a, b]. Besides, by the assumption, the equation
L(x) = (CS − F )/V does not has root in [a, b]. So,
by (9), BRS(y) = b, and, (12) implies (i10) and (i11).

D. Proof of Theorem 4
Note that vE

S (x, y) = (F−CS+(1−q)V a+V qy)x+qy(F−
V +V y)+(1−q)a(F −V +V a). So, for a fixed y the payoff
vE

S (x, y) is linear on x. Thus, BRE
S (y) = arg maxx v

E
S (x, y)

is given as follows

BRE
S (y) =


a, y < R,

any from [a, b], y = R,

b, y > R

with R = (CS − F − (1 − q)V a)/(qV ). This, jointly with
Theorem 2 and the proof of Theorem 3, implies the result.


