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Abstract— Herein, we study transmit beamforming techniques
in an underlay cognitive mode for the coexistence of satellite and
terrestrial networks with the satellite forward link as primary
and the terrestrial downlink as secondary. Since geostationary
satellite terminals have predetermined propagation characteris-
tics so that they always point towards the geostationary satellite,
the interference received by the satellite terminals from the ter-
restrial Base Station (BS) is confined in an angular sector. Based
on this a priori knowledge, we propose transmit beamforming
techniques at the BS to maximize the Signal to Interference plus
Noise Ratio (SINR) towards the desired Secondary User (SU)
and to mitigate the interference towards the primary satellite
terminals. Different types of Linearly Constrained Minimum
Variance (LCMV) techniques have been proposed for our con-
sidered scenario where the exact locations and the number of
satellite terminals within a specific angular sector are not known
while designing the beamformer. Furthermore, an optimization
problem is formulated for maximizing the SU rate and it is shown
that the worst case SU rate depends on the Primary User (PU)
distance, PU interference threshold and the angular separation
of the desired SU from the region of interest.
Index Terms: Transmit Beamforming, Underlay, Cognitive Radio,
Satellite-terrestrial Coexistence

I. I NTRODUCTION

The rapidly increasing demand of broadband services has
caused wireless spectrum scarcity. Recently, cognitive com-
munications has been considered a promising technology in
order to address the spectrum scarcity caused by the increasing
demand of broadband and multimedia wireless services. This
technique allows primary and secondary wireless systems to
coexist within the same spectrum without affecting the normal
operation of the primary systems. Wireless networks may
exist within the same spectrum in different ways such as
two terrestrial networks or two satellite networks or satellite-
terrestrial networks. The most common cognitive techniques in
the literature can be categorized into interweave or Spectrum
Sensing (SS), underlay, overlay and database related tech-
niques [1].

Existing spectrum sharing techniques mostly consider three
signal dimensions i.e. frequency, time and area for sharing
the available spectrum between primary and secondary sys-
tems. However, due to advancements in smart antennas and
beamforming techniques, multiple users can be multiplexed
into the same channel at the same time and in the same
geographical area [2]. In the context of a Cognitive Radio
(CR), angular dimension or directional dimension of spectral
space can be considered as more efficient way of exploiting the
space dimension to exploit the underutilized primary spectrum

for the Secondary Users (SUs). Recently, the spatial dimension
for spectrum sharing purpose has received important attention
in the literature [2–4]. In [3], the angular dimension is used
to detect the presence of a Primary User (PU) and to estimate
the Direction of Arrival (DoA) of the PU signal. In [4], a
directional SS scheme using a single radio switched beam
antenna structure is proposed to enhance the sensing efficiency
of a CR.

Beamforming is a signal processing technique used in an-
tenna arrays with the advantages of spatial discriminationand
spatial filtering capabilities [5]. Multi-antenna beamforming is
an effective means to mitigate co-channel interference andhas
been widely used in traditional fixed spectrum based wireless
systems [6–8]. In the context of a CR, beamforming tech-
niques have been investigated for the secondary network for
various objectives such as controlling interference [9], capacity
maximization [10], Signal to Interference plus Noise Ratio
(SINR) balancing [11]. The beamforming design problem in
the context of an underlay CR is challenging since the underlay
technique requires the interference caused by the SUs to be
below the interference threshold level required by the PUs.
In the existing CR literature, the beamforming techniques
have been considered mostly in the coexistence scenario of
two terrestrial networks [9–11]. In the context of cognitive
satellite communications, SS techniques for dual polarized
channels have been proposed in [12, 13]. In [14], interference
alignment technique has been proposed for spectral coexis-
tence of monobeam and multibeam satellite systems. In [15],
a receive beamformer has been proposed for the coexistence
of satellite and terrestrial networks with both links operating
in the normal reverse mode. In this paper, we apply the
transmit beamforming techniques for the spectral coexistence
of satellite and terrestrial networks with the satellite forward
link as primary and the terrestrial downlink as secondary. The
main difference is that although the reception range of the
satellite terminals is concentrated in an angular sector, we do
not specifically know the number of interferers and the DoA
of their signals.

Geostationary (GEO) satellites are located in the geosyn-
chronous orbit above the equator and therefore transmit in
a northerly direction if we consider the European continent.
The GEO satellite terminals have therefore the special prop-
agation characteristic to always point towards the GEO satel-
lites (south). While considering the coexistence of a satellite
network with the terrestrial cellular network, the reception
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range of all the satellite terminals is concentrated in an
angular sector. Therefore, the interference provided by the
Base Station (BS) to the satellite terminals depends on the
directional properties of the transmitted beam designed atthe
BS. Furthermore, this interference becomes more prominent
as we move towards the polar region from the equator due
to lower elevation angles of the satellite terminals [1]. Itcan
be noted that the interference from satellite to the terrestrial
receiver is considered negligible due to different sensitivity
levels of terrestrial and satellite receivers [16].

In this work, we propose different types of transmit beam-
forming techniques for the considered coexistence scenario.
The proposed beamforming techniques can be implemented at
the terrestrial BS to maximize the SINR towards the desired
terrestrial user and to mitigate the interference towards the
primary satellite terminals. The prior knowledge that all the
GEO satellite terminals have certain angular reception range
is the cognition that we exploit in this study. Since this
is an inherent characteristic of SatComs, no interaction is
needed between primary and secondary systems. One way
of mitigating interference towards the PU terminals is by
controlling the power of secondary transmission. However,
the secondary rate has to be sacrificed while protecting the
PU terminals. In this context, we formulate an optimization
problem to maximize the SU rate by guaranteeing sufficient
protection of PU terminals with a given transmit power budget.

The remainder of this paper is structured as follows: Sec-
tion II presents the considered system and signal models.
Section III describes the considered problem and proposes
different transmit beamforming techniques in the context of
the proposed scenario. Section IV provides the simulation
environment and evaluates the performance of the proposed
beamformers with the help of numerical results. Section V
concludes the paper.
Notation: Throughout this paper, boldface upper and lower
case letters are used to denote matrices and vectors respec-
tively, E[·] denotes expectation,(·)H and (·)T denote the
conjugate transpose and transpose respectively.

II. SYSTEM AND SIGNAL MODEL

We consider a practical coexistence scenario of satellite
and terrestrial networks as shown in Fig. 1. We assume that
both networks are operating in normal forward mode with the
satellite link as primary and the terrestrial link as secondary
i.e., satellite terminals are PUs and terrestrial terminals are
SUs. In this context, a Fixed Satellite System (FSS) with
the fixed satellite terminals (i.e., dishes) is considered to
provide broadcasting services. From practical perspectives,
the coexistence of terrestrial WiMax system and the FSS
system operating in the C band (3.7-4.2 GHz, downlink) can
be considered under this scenario. In this work, our main
objective is to mitigate the interference from the terrestrial BS
towards satellite terminals by applying transmit beamforming
techniques at the terrestrial BS. Furthermore, we consider
the situation of protecting satellite terminals located beyond
the considered angular sector from the secondary interference
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Fig. 1: Satellite terrestrial coexistence scenario
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Fig. 2: Layout of the considered scenario (N,W,S and E denote
North, West, South and East)

picked up by their backlobes. The layout of the considered
scenario is shown in Fig. 2. The interference channel we
are dealing in this scenario is the channel from terrestrial
BS to the satellite terminals and the secondary channel is
from terrestrial BS to the terrestrial terminals. By using some
form of scheduling techniques, multiple terrestrial userscan
be supported under this system model.

For simplicity of analysis, we consider a single SU over
a terrestrial link, multiple PUs within the considered sector
of interest1 and one PU beyond this sector. Furthermore, we
consider the SU and PU terminals to be equipped with a single
antenna. LetM be the number of antennas in the secondary BS
antenna array andK be the number of PUs in the considered
sector. Lets be a symbol which is to be transmitted from
the secondary BS antenna at a particular time instant with
E[ssH ] = 1 andw be theM×1 beamforming weight vector at
the BS antenna array. Then the transmitted signal vector from
the secondary BS antenna array can be written as:xs = ws.
The value ofw can be written as:w =

√
pv, p representing

the power supplied to each antenna of the array and||v|| = 1.
Let hp be the channel vector from the BS to the satellite

terminal i.e., PU andhs be the channel vector from the BS
to the terrestrial terminal i.e., SU. Then the received signal at

1The sector of interest is the considered angular sector in the northern part
of the BS.



the SU can be written as:

ys = h
H
s xs + zs, (1)

wherehs is given by;hs = αsa(θs), wherea(θs) is the array
response vector withθs being a direction of arrival (DoA) for
the SU signal,αs is the path loss coefficient corresponding
to the DoA θs and zs is the independent and identically
distributed (i.i.d.) Gaussian noise with zero mean and unit
variance. The array response vectora(θ) for a Uniform Linear
Array (ULA) can be written as:

a(θ) =
[

1, e
−j2πdsin(θ)

λ , ..., e
−j2π(M−1)dsin(θ)

λ

]T

(2)

Similarly, the interfering signal at the PU terminal can be
written as:

yp = h
H
p xs + zs, (3)

wherehp is given by;hp = αpa(θp), wherea(θp) represents
the array response vector for DoAθp with θp being DoA
for the PU signal andαp ∝ d−n

p is the path loss coefficient
between the secondary BS and the PU terminal withdp being
the distance andn being a path loss exponent.

III. PROPOSEDTRANSMIT BEAMFORMING TECHNIQUES

Based on the system model defined in Section II, we try to
address the following problems in this work.

1) How to mitigate the interference towards a certain
angular sector based on the a priori knowledge of the
propagation characteristics of GEO satellite terminals ?
The beamforming weights at the BS should be designed
in such a way that the transmitted power towards this
angular sector is minimized.

2) Another problem is to design beamforming weights such
that the SINR towards the desired SU is maximized.
In other words, the SUs also should maximize the
utilization of cognitive transmission.

3) Furthermore, it may be the case that the satellite termi-
nals located beyond the sector of interest may receive
the interfering signal from their backlobes. This may
hamper the operation of the primary system. To solve
this problem, we need to ensure that the interfering
signal strength picked up by the backlobe of the satellite
terminal is below the interference threshold level of the
terminal.

4) Problem (3) can be solved by controlling transmitted
power at the BS. However, this may affect the SU
rate. This leads to defining and solving an optimization
problem which we describe in the next section.

To address these problems, we propose three different tech-
niques in the following section.

A. Proposed Techniques

1) Scaled LCMV Technique:In the standard LCMV beam-
former, the weights are chosen to minimize the output variance
or power subject to the response constraints [17]. To allow the
transmitted signal towards the desired user’s directionθ with
responseg, the weight vector can be linearly constrained in

such a way thatwH
a(θ) = g, whereg is a complex constant

[5]. Similarly, the transmissions towards the sector of interest
can be minimized by choosing the weights in such a way
that the output power or variance i.e.w

H
Rdw is minimized

with Rd being aM ×M downlink spatial covariance matrix
[17]. We assume thatRd is perfectly known2 while designing
the beamformer. In this paper, we calculate it based on the
knowledge of the array response vectors of the desired SU
and the PU terminals3. To include the multiple constraints in
the considered problem, the following constraint equationcan
be written:CH

w = f , whereC is aM × (K + 1) constraint
matrix, f is L× 1 response vector,L = K + 1 is the number
of constraints. We consider the following constraint equation
in our scenario:


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(4)

Then the LCMV beamforming problem can be written as:

min
w

w
HRdw

subject to C
H
w = f (5)

The solution of the above problem can be written as [19]:

wLCMV = R
−1
d C(CH

R
−1
d C)−1

f (6)

In the proposed coexistence scenario, it is assumed that the
angular sector in which the geostationary satellite terminals
facing south are located is known to the beamformer but the
exact locations and the number of PUs are not known to the
beamformer. Since the LCMV technique requires discrete DoA
values of the PUs, we uniformly sample the considered angular
range in the interval ofθi = ∆/K, where∆ = θmax − θmin,
θmax and θmin being the maximum and minimum values of
the considered range. We then place one PU in each quantized
angle and calculate the beamforming weights based on this
set up using (6). We can then use these beamforming weights
to study the performance of the LCMV beamformer in the
proposed scenario. If the primary satellite terminals are present
beyond the sector of interest, the back lobe of the terminals
may pick up the interference power transmitted from the BS.
To protect the PUs from this interference with a certain thresh-
old, we can design a scaled LCMV beamformer by sacrificing
some amount of transmit power in the desired direction. For
the scaled LCMV, the weights of the LCMV beamformer given
by (6) can be scaled as:wLCMVs = ǫ ∗ wLCMV, ǫ being a
scaling parameter. The value ofǫ may range from a nonzero
small positive value to1. When ǫ = 0, the beamformer
response to all the directions becomes zero and therefore, the
value of ǫ should be greater than zero. It can be noted that

2In practice, the downlink covariance matrix can be calculated from uplink
covariance matrix by using different transformation approaches [18].

3To have the knowledge of DoAs of the PUs while designing the beam-
forming weights, we quantize the known angular sector in the uniform interval
as described later in the following paragraph.



the transmit power sacrifice in the desired direction increases
with the decrease in value ofǫ.

2) Modified LCMV Technique:In the standard LCMV
technique, the response constraints towards the PUs are set
as zeros and the response constraint towards the desired user
is set as 1. In this scenario, the PUs are assumed to be located
within an angular sector and the BS designs its beam pattern
to mitigate the interference towards this sector. To consider
the scenario of protection towards the backlobes of the PUs,
we modify the standard LCMV optimization by putting one
more constraint and formulate a new optimization problem.
The new constraint is set in such a way that the interference
picked up by the backlobe of the satellite terminals is below
the interference threshold of the terminal. LetIT be the
interference threshold set by the designers for the satellite
terminals from the perspective of the interference picked up by
the backlobe. It can be noted that as long as the interference
picked by the backlobe of the terminal is below this level, there
is no disturbance in the normal operation of primary system by
the existence of secondary systems within the same spectrum.

The modified LCMV optimization problem is written as:

min
w

w
H
Rdw

subject to C
H
w = f

w
H
Rpw ≤ IT , (7)

whereRp = {a(θb)}{aH(θb)} is the matrix containing the
response vector towards the PU at the DoA ofθb located
beyond the sector of interest. Using Lagrangian multiplier
method for solving the optimization problem (7), the La-
grangian can be written as:

L(w, λ, η) = w
H
Rdw+λ(CH

w−f)+η(wH
Rpw−IT ) = 0.

(8)
After differentiating the above Lagrangian function with re-
spect towH and making equal to zero, the value ofw can be
written as:

w = −λC(Rd + ηRp)
−1. (9)

Substituting the value ofw from (9) in the 1st constraint of
optimization problem (7), the value ofλ can be written as:

λ = −(CH(Rd + ηRp)
−1

C)−1
f . (10)

From (9) and (10), the value ofw can be written as:

w = (Rd + ηRp)
−1

C[CH(Rd + ηRp)
−1

C]−1
f . (11)

The above solution presents the value ofw in terms of
Lagrangian multiplierη. Furthermore, the complementary
slackness condition for inequality constraint can be written
as:

η(wH
Rpw − IT ) = 0. (12)

If η = 0, the solution (11) reduces to the solution of standard
LCMV optimization problem given by (6). Ifη 6= 0, the
following condition should be satisfied

w
H
Rpw − IT = 0. (13)

The optimal value ofw can be found using (13) and (11)
but the process involves complex steps. Therefore, based on
above derived expressions, we solve the problem (7) using
a simple iterative algorithm. The iterative algorithm is given
below.

An iterative algorithm for solving optimization
problem (7)

1) Initialize η = 0 and calculate the value ofw using
standard LCMV solution (6).

2) Check whether the second constraintw
H
Rpw ≤ IT

of problem (7) is satisfied or not. If the condition is
satisfied, proceed with step 5, otherwise follow step 3.

3) Increment the value ofη by the value of step size∆ and
calculate the new value ofw by substitutingηi+1 −→
ηi +∆ in (11) and the check the condition with step 2.

4) Repeat steps 3 and 2 until the desired condition is
satisfied.

5) Use the calculated value ofw for evaluating the perfor-
mance of beamformer in the considered scenario.

B. SU Rate Maximization

Let us denote the transmit signal covariance matrix byRt,
which can be defined as

Rt = E[xsx
H
s ] = pvvH = ww

H (14)

The optimization problem for maximizing the rate of SUs by
allowing the sufficient protection for the primary user can be
written as:

max
p≥0 ||v||=1

log(1 + SINR(θs, p, ds))

subject to Σpi ≤ PT , i = 1, ...,M

Ip(θ
(j)
p , p, dp) ≤ ITH , j = 1, ...,K (15)

whereSINR(θs, p, ds) represents the SINR of the desired SU
and it is a function ofθs, transmit power across each antenna
p, and the distanceds between the BS and the desired SU,
PT is the total power budget. Furthermore,Ip(θ

(j)
p , p, dp) is

the interference received at thej-th PU due to secondary
transmission and it is a function ofθp, p, and the distancedp
between the BS and the PU,ITH is the interference threshold
required by the PUs.

The SINR for the desired SU considering the case of a single
BS with uniform power allocation across multiple antennas
can be written as:

SINR(θs, p, ds) = h
H
s Rths =

pλ2d−n
s

(4π)2
{aH(θs)vv

H
a(θs)},

(16)
whereλ is the wavelength of electromagnetic signal. Similarly,
the interference received at the primary user due to secondary
transmission can be written as:

I(θ(j)p , p, dp) = h
H
p Rthp =

pλ2d−n
p

(4π)2
{aH(θ(j)p )vvH

a(θ(j)p )}.
(17)

Using (16) and (17), the optimization problem in (17) can be



written as:

max
p≥0 ||v||=1

log(1 + α2
sp{aH(θs)vv

H
a(θs)})

subject to Σpi ≤ PT , i = 1, ...,M

pλ2

(4πdp)2
{aH(θ(j)p )vvH

a(θ(j)p )} ≤ ITH , j = 1, ...,K

(18)

To solve the above optimization problem, firstly, we convert
into a simple form as described below. Maximizing the term
log(1 + α2

sp(a
H(θs)vv

H
a(θs)) is equivalent to maximizing

|√paH(θs)v|. Sincew =
√
pv, the objective function can be

written as:|aH(θs)w|. Similarly, the interference power to the
PU can be written as:α2

p|aH(θp)w|2. Furthermore, we design
w in such a way that the termaH(θs)w has real value without
loss of any generality. Therefore, the optimization problem in
(18) after including additional constraint for the PU located
beyond the considered sector can be written as:

max
w

Re[aH(θs)w]

subject to ||w|| ≤
√

PT

Im[aH(θs)w] = 0

|αba
H(θb)w| ≤

√

IT

|αpa
H(θ(j)p )w| ≤

√

ITH , j = 1, ...,K
(19)

The above optimization problem is in the form of Second
Order Cone Programming (SOCP) problem [20] and can be
solved using standard convex optimization software CVX [21].

IV. N UMERICAL RESULTS

Let us consider a geographic sector which lies in the
angular range from10◦ to 85◦ with reference to the secondary
BS. All the geostationary satellite terminals located in this
sector face south (with respect to the position of the BS) for
communicating with the geostationary satellite. We consider a
single desired user at an angle of−30◦ and a ULA at the BS
with the layout shown in Fig. 2. Furthermore, we consider
a single satellite terminal at an angle of−15◦ to analyze
the effect of secondary transmission on the backlobe of the
satellite terminal. The simulation and link budget parameters
for both the links (i.e., link between the BS and SAT terminal
and the link between the BS and terrestrial terminal) are
provided in Table I. To design a LCMV beamformer, we
need the DoAs of the PUs. For this purpose, we quantize the
considered angular sector in the interval of5◦ and consider
one terminal in each quantized angle as mentioned in Section
III-A.

Figure 3 shows the beam patterns of the standard LCMV,
scaled LCMV, modified LCMV and the SU rate maximiza-
tion approach. For the scaled LCMV technique, the scaling
parameterǫ = 0.1 was considered. From the figure, it can
be noted that the beam pattern for scaled LCMV has a
gain of 20 dB below the beam pattern for standard LCMV
for all the considered angular range. In this way, we can

reduce the transmitted signal towards the backlobe of the
PU terminal by20 dB with the sacrifice of20 dB transmit
power in the desired direction. This method may be suitable
for terrestrial systems with terminals having higher sensitivity
and for satellite systems with terminals having higher front to
back ratio. The beamforming weights for the standard LCMV
were computed using (6) and for the modified beamformer
using the algorithm presented in Section III. Furthermore,the
beamforming weights for the SU rate maximization approach
were obtained by solving optimization problem (19) using
CVX software [21]. The interference threshold towards the
backlobe of the PU terminal (IT ) located at−15◦ was set
to be−50 dB and the interference threshold towards the PU
terminals (ITH ) 4 located in the considered angular region was
set as−80 dB.

Figure 4 shows the performance comparison of modified
LCMV and the standard LCMV beamformers in terms of
the SINR. The beamforming weights calculated as described
above were applied in the considered simulation environment
where the exact positions and number of the PU terminals
were unknown to the beamformer. During the simulation, the
value of IT was considered to be80 dB less than the power
transmitted in the desired direction. From the figure, it canbe
noted that modified beamformer reduces the SINR towards the
direction of the satellite terminal located at DoA of−15◦, thus
protecting the satellite terminal from secondary interference.
The reduced value of the SINR in the direction of the primary
satellite terminal depends on the choice of the parameterIT .
This parameter should be chosen so as to meet the permissible
interference level picked up by the backlobe of the satellite
terminal in practical scenarios.

In the SU rate maximization approach, the transmit power in
the desired direction depends on the chosen power threshold
constraint in the direction of the PU terminals. To evaluate
the performance of beamformer’s response in the desired
direction with respect to the change in the power threshold,
simulations were carried by varying power threshold from
−50dBW to 0dBW in the DoAs of the PUs. For this purpose,
the PU terminals were considered within the angular sector
from 45◦ to 85◦ with each terminal at5◦ interval. Figure 5
presents the plot of transmitted power in the desired direction
versus power threshold in the PU’s direction. Furthermore,
different plots have been presented considering desired users
in different angular positions (30◦, 20◦, 10◦, 0◦). It can be
noted that the transmit power in the desired user’s direction is
the maximum when the constrained threshold power is kept at
−10dBW for all the cases. Furthermore, it can be noted that
the transmit power in the desired direction increases as the
angular difference between the desired SU and the considered
sector becomes large (i.e., maximum at0◦ in Fig. 5).

To evaluate the performance of the beamformer with respect
to the distance of the PU terminal from the BS, simulations
were carried out considering the interference threshold of

4It should be noted that the response constraint towards these PU terminals
in case of LCMV based approaches is zero.



−150dBW . In this simulation settings, we include the path
loss effect with path loss exponentn = 2 in the optimization
problem and find the optimal value of the beamformer’s
response. Figure 6 shows the worst case SU rate versus PU
distance from the BS. The distance of the PU was varied from
0.5km to 10km, transmit power constraint was considered to
be 20W and the desired user was considered at−30◦. From
the figure, it can be noted that the SU rate increases with the
increase in the PU distance. The rate of increase is fast at the
lower values of the distance and slow at the higher values of
the distance.

To show the overall effect of PU distance from the BS
and the angular deviation from the considered sector, we have
presented a three dimensional plot in Fig. 7. The distance range
is considered from0.5km to 5km and the angular deviation
range was considered from5◦ to 30◦ i.e., the DoAs of the SUs
were considered in the range from40◦ to 15◦. The interference
power threshold at the PU terminal5 was considered to be -
150dBW. The SU rate was calculated by considering the worst
case placement of the SU i.e., at a distance of5km from the
BS. As the interference threshold towards the PU is decreased,
the beamformer has to reduce its transmitted power and in turn
the secondary rate is reduced. To show this effect with the help
of optimization problem in (19), we have plotted the SU rate
versus interference threshold at the PU terminal in Fig. 8. For
this purpose, the interference threshold at the PU terminalis
increased from−200dBW to −80dBW. The power budget
constraint was considered to be20W and the worst case SU
distance was taken as5km from the BS.

While comparing the LCMV approaches with the SU rate
maximization approach from Fig. 3, it can be noted that the
later technique can provide slightly higher transmit powerin
the desired direction while the LCMV techniques can create
very low interference towards the PU terminals located in the
region of interest. It can be noted that there is less flexibility
of introducing additional constraints such as power budget,
interference threshold etc. in the LCMV based approaches.
Furthermore, another difficulty for LCMV approach lies in
acquiring the downlink covariance matrix. In SU rate max-
imization approach, there is more flexibility of introducing
new constraints although the SU rate is dependent on the
PU distance, interference threshold as well as the angular
deviation from the sector of interest. It can be deduced that
the choice of a particular technique mainly depends on the
required performance level, the flexibility of introducingnew
constraints and the complexity of the technique.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we have proposed a coexistence scenario of
the satellite and terrestrial networks with the satellite link as
the primary and the terrestrial link as the secondary. Different
transmit beamforming techniques have been proposed in an
underlay cognitive mode for maximizing the SINR towards the

5It should be noted that this is the maximum tolerable interference power
at the PU terminal including the effect of path loss.
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Fig. 3: Beam patterns of different transmit beamforming techniques

TABLE I: Simulation & Link Budget Parameters
Parameter Value
Carrier frequency 4 GHz
BS to SAT terminal link
BS Tx power 20 dBm
BS antenna Gain 10 dB
Distance bet SAT terminal and BS 0.5 km to 10 km
Path loss range∝ d

−2 98.47 to 124.49 dB
SAT Terminal Gain range 20 to -9.5047 dB
Noise power @ 8 MHz -104.96 dBm
INR range at SAT terminal 0.96 to 56.49 dB
BS to terrestrial terminal link
BS Tx power 20 dBm
BS antenna Gain 10 dB
Distance bet desired terminal and BS 0.05 km to 5 km
Path loss range∝ d

−2 78.46 to 118.48 dB
Terrestrial terminal antenna gain 5 dB
Noise power @ 8 MHz -104.96 dBm
SNR range for desired signal at BS 21.48 to 61.50 dB
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Fig. 4: SINR comparisons of the modified LCMV and standard LCMV in
the considered scenario
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Fig. 5: Transmit power in the desired direction versus power threshold
using optimization problem (19)
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Fig. 6: Worst case SU rate versus PU distance from the BS
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Fig. 7: Worst case SU rate versus PU distance and angular deviation from
the sector of interest

desired SU and minimizing the interference towards the PUs.
The choice of a technique in the considered scenario depends
on the desired performance level as well as the flexibility of
applying different constraints to the optimization problem. It
can be concluded that the modified LCMV technique can pro-
vide the increased SINR towards the desired terminal and can
mitigate the interference towards the specific angular sector
by also providing sufficient protection towards the primary
terminals located beyond the sector of interest. Furthermore,
the considered SU rate maximization technique provides the
flexibility of applying different constraints while maximizing
the SU rate. It has been noted that the worst case SU rate
is dependent on the PU distance, the permissible interference
threshold at the PU terminals as well as the angular deviation
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Fig. 8: Worst case SU rate versus interference threshold at the PU terminal

of the desired user from the considered angular sector. We
consider including robustness in the proposed techniques in
the presence of angular uncertainty as our future work.
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