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Abstract— Spectrum sensing of primary users under very low 
signal-to-noise ratio (SNR) and noise uncertainty is crucial for 
cognitive radio (CR) systems. To overcome the drawbacks of 
weak signal and noise uncertainty, eigenvalue-based spectrum 
sensing methods have been proposed for advanced CRs. 
However, one pressing disadvantage of eigenvalue-based 
spectrum sensing algorithms is their high computational 
complexity, which is due to the calculation of the covariance 
matrix and its eigenvalues. In this study, power, inverse power 
and fast Cholesky methods for eigenvalue computation are 
investigated as potential methods for reducing the computational 
complexity.      

Keywords-component; Energy detector based spectrum sensing, 
eigenvalue based spectrum sensing, AWGN, frequency selective 
channel and noise uncertainty 

I. INTRODUCTION  
ognitive radio is emerging as an attractive solution to the 
problem of spectral congestion in wireless 
communications, as it allows opportunistic use of 

unoccupied spectrum by secondary users [1], [2], [3].  A key 
challenge of cognitive radio technology lies in reliable and 
efficient spectrum sensing techniques to detect the presence of 
primary users, so that secondary users can adjust their 
operating parameters to exploit the unused spectrum. Various 
methods such as energy detection, matched filter detection, 
autocorrelation [4], and cyclostationary feature detection [3] 
have emerged, but each has its own shortcomings in 
operational requirements or performance under noise 
uncertainty [1], [5].  

Recently, considerable attention has turned to eigenvalue-
based spectrum sensing, which requires only the covariance 
matrix of the received signal to be estimated, and no 
knowledge of the signal, noise power and channel are needed. 
Therefore, these methods have the potential of overcoming the 
problem of noise uncertainty [5]. Results from simulations 
have confirmed the robust performance of this method, 
especially under low signal-to-noise ratio (SNR) [1], [6]. 
However, implementing eigenvalue-based spectrum sensing 
requires high computational complexity, primarily from the 
computation of the covariance matrix and finding its 
eigenvalues [5]. Improvement on this complexity issue is 
critical to many real-time applications, such as TV white space 
utilization by cognitive radios [3]. Hence, the power iteration 
eigenvalue algorithm with deflation has been proposed in [7] 
to approximate all eigenvalues of the covariance matrix with 

reduced computational complexity. However, since only the 
largest and smallest eigenvalues are required for eigenvalue-
based spectrum sensing [2], methods and algorithms with 
lower complexity should be explored. The purpose of this 
paper is to propose a combination of iterative eigenvalue 
algorithms: the power method and inverse power method to 
estimate the maximum and minimum eigenvalues 
respectively, thus reducing the computational complexity of 
the implementation. 

In Section II, the main ideas of eigenvalue-based spectrum 
sensing will be introduced. In Section III, we outline the 
power and inverse power methods and their computational 
complexities, and improve the inverse method by using the 
Schur algorithm for fast Cholesky factorization of the 
covariance matrix. Then, numerical simulations will be shown 
in Section IV. Finally, our conclusions are presented in 
Section V. 

II. TRADITIONAL EIGENVALUE-BASED SPECTRUM SENSING 
Spectrum sensing is commonly considered as a binary 

hypothesis testing problem. Under the 0H  hypothesis, the 
primary user is absent and the primary user is present under 

1H  hypothesis: 
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Here ( )s n  is the primary user signal, ( )h n  is the channel 
impulse response and ( )w n is assumed to be additive white 
Gaussian noise (AWGN).  
The statistical covariance matrices of the received signal, 
transmitted signal and noise are defined as: 

† † †ˆˆˆ ˆ ˆ ˆ( ); ( ); ( )yy ss wwE E E= = =R yy R ss R ww  (2) 

Here † denotes the conjugate transpose. The covariance matrix 
of the received signal can be further expressed as [2]:  

†
yy c ss c ww= +R H R H R  (3) 

The channel matrix cH  is given in [2] and eigenvalues of 
yyR  and †

c ss cH R H  are defined as 1 2 ... MLλ λ λ≥ ≥ ≥  and 
1 2 ... MLρ ρ ρ≥ ≥ ≥ , respectively. Due to the transmitter 

waveform processing and/or due to the multipath channel, the 
received signal values are correlated and the eigenvalues 
appear far away from each other. Zeng and Liang presented in 
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[2] two eigenvalue based algorithms for spectrum sensing, 
which are described in the following. 

A. Algorithm 1: Max-Min eigenvalue based sensing (MME) 

Statistical covariance matrix can be estimated using the 
sample covariance matrix, which is obtained by averaging N  
sample covariance matrices: 

2
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n ML

N n n
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= −

= ∑R y y  (4) 

Here n  indicates the last sample used in the calculation of 
each covariance estimate. 
The sample autocorrelations of the received signal which are 
defined as follows: 
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where *  denotes complex-conjugation. The sample covariance 
matrix can then be expressed as  
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Next, the largest and smallest eigenvalues max min( , )λ λ of the 
sample covariance matrix ( )yy NR  are computed and the ratio 
of max min/λ λ is compared with the threshold 1γ which is 
calculated according to the distribution of the noise sample 
covariance matrix. The threshold value is calculated using 
desired false alarm probability (i.e. FAP ), N , M  and L as 
follows [2]:  

2 2/3
1

1 11/62

( ) ( ). 1 (1 )
( )( ) FA

N ML N ML F P
NMLN ML

γ
−

− + +
= + −  −  

 (7) 

1F  is the cumulative distribution function (CDF) of the Tracy-
Widom distribution of order 1, which was derived using 
random matrix theorem [8] as: 
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∫  (8) 

where ( )q u  is the solution of the nonlinear Painleve II 
differential equation 3''( ) ( ) 2 ( )q u uq u q u= +   

TABLE 1 gives the values of 1F  at some points. Also 1
1F −  

can be obtained using same table  
TABLE I.  NUMERICAL TABLE FOR THE TRACY-WIDOM 

DISTRUBITON OF ORDER 1 
t -3.90 -2.78 -1.91 -1.27 -0.59 0.45 2.02 

F1(t) 0.01 0.10 0.30 0.50 0.70 0.90 0.99 

When max min 1( / )λ λ γ> , the primary signal is assumed to be 
present, otherwise it is assumed that there is no transmitted 
signal in the band of interest at this time. 

B. Algorithm 2: Energy with min eigenvalue based sensing 
(EME) 

The sample covariance matrix ( )yy NR  and the smallest 
eigenvalue minλ of the sample covariance matrix are calculated 
in the same way with Algorithm 1. The average energy of the 
received signal is computed like in the traditional energy 
detector as: 
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The threshold value 2γ is calculated with the inverse Q-
function 1Q−  using random matrix theorem [11] as follows 
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When min 2( ( ) / )T N λ γ> , the signal is assumed to be present, 
otherwise it is expected that there is only noise in the band of 
interest. 

In the calculation of the threshold values for the two 
algorithms, M, N , L and FAP  parameters are only used. No 
previous knowledge of the estimated noise variance is needed; 
hence, these two algorithms are very robust against noise 
uncertainty. 

C. Computational complexity of the traditional eigenvalue 
based spectrum sensing techniques 

The main computational complexities of the aforementioned 
methods arise from computation of the covariance matrix and 
finding its largest and smallest eigenvalues. In the first part, 
calculation of the covariance matrix of received signal from  
(4) includes  2 2M L N  complex multiplications and 

2 2 ( 1)M L N − additions. However, since the covariance matrix 
is block Toeplitz and Hermitian, the complexity of the first 
part can be obtained as MLN  multiplications and 

( 1)ML MN − additions. For the second part, calculation of the 
eigenvalues requires 3 3( )O M L  multiplications and additions 
[2]. An additional complexity of 2 2( )O M L might also be 
required to sort all eigenvalues to determine the minimum and 
maximum. The total complexity is 3 3( )MLN O M L+  from (6). 
Since N is usually much greater than ML , the complexity 
required for computing the covariance matrix may dominate. 
In [10], Liu et al. suggest a cooperative sensing method to 
reduce N without significantly deteriorating the performance 
of the spectrum sensing algorithms. However, assuming the 
simplest scenario of no cooperation and single receiver 
antenna, and considering the value of ML becoming 
substantially large for real life applications, the computational 
complexity of eigenvalue decomposition can no longer be 
neglected.  

III. PROPOSED EIGENVALUE BASED ALGORITHMS 
Since only the largest and smallest eigenvalues are required, 

there exist a few algorithms which approximate the extreme 
eigenvalues of a matrix by exploiting its Hermitian or Toeplitz 
structure [11]-[17]. However, some of them suffer from high 
computational complexities or numerical instability, whilst 
others are difficult to implement in practice. Therefore, we 
consider the power method and inverse power method, due to 



their low computational complexities and ease of 
implementation.   

A. The Power Method to find the largest eigenvalue 
The power method is an iterative algorithm which 

approximates the largest dominant eigenvalue of a symmetric 
positive definite matrix in ( )O kML operations, where k  is the 
number of iterations under a certain error threshold. The 
theoretical basis of the algorithm is as follows [18]: 

Let { }, n
i i iλv  be the m  eigen-pairs of a symmetric positive 

definite matrix yyR . Since yyR  is symmetric, we assume that 
the eigenvectors { }m

i iv form an orthogonal basis of ℝN . 
Hence, if we begin with an initial eigenvector guess v , v  can 
be expressed as a linear combination of the basis iv : 
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where 1 0α ≠ . Assume 1v  to be the largest and distinct 
eigenvector (in absolute), then multiplying k

yyR yields 
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Let 1λ be the dominant eigenvalue, then divide (12) by 1
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Since 1λ > iλ , for 2,...,i m= , the term in summation vanishes 
for some large positive integer k . Hence, the term on the left 
(known as the Rayleigh quotient) eventually converges to the 
largest eigenvector 1v scaled by some non-zero constant 1α .      

The power method thus runs as follows: 

Input: yyR , the matrix;  0v , an initial guess of an eigenvector 
such that 0v = 1 

  For k  = 1, 2, 3, …, do 

    1yy k−←w R v   

   k ←v w w  

   
†

k k yy kλ ← v R v  

   End for 

Output: kλ , the approximation of the maximum eigenvalue    of 
yyR after the thk iteration. 

 

B. The Inverse Power Method to find the smallest eigenvalue 
The inverse power method is an iterative algorithm which 
approximates the smallest eigenvalue, without finding and 
sorting all eigenvalues. 

Theorem 1: Let yyR be a non-singular m m×  matrix i.e. iλ are 
non-zero for all 1 i m≤ ≤ , then 1

yy
−R  has eigenvalues 1/ iλ for 

all 1 i m≤ ≤  [14], [16]. 

Proof: ∈ yyR is non-singular, there exists 0iλ ≠  and there 
exists 0x ≠  such that 
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Hence, by definition of eigenvalue, all 1/ iλ are eigenvalues 
of 1

yy
−R .  The inverse power method is therefore applying the 

power method on the inverse of the matrix for approximating 
the smallest dominant eigenvalue.  However, computing 1R yy

−

explicitly is numerically expensive and unstable, and generally 
takes 4 4( )O M L operations using naive Gaussian elimination. A 
common implementation of the inverse power iteration uses 
LU decomposition, which has a lower complexity of 

3 3(4 / 3 )O M L
. 

Hence, the overall computational complexity of 
the inverse power method is 3 3( )O M L , as the complexity of  
LU factorization dominates. However, since a covariance 
matrix is Hermitian, the LU decomposition can be simplified to 
Cholesky decomposition, i.e. †

yy =R CC ,where C  is an upper 
or lower triangular matrix. For a general Hermitian positive 
definite matrix, this process takes 3 3( / 3)O M L operations. 

C. Fast Cholesky factorization of Toeplitz Matrix 
As such, there are many well-known algorithms which 
factorize Toeplitz or Toeplitz-like matrices in less than 

3 3( )O M L  steps, amongst them the popular Levinson 
algorithm and Schur algorithm, both of which achieve 
triangulation of a Toeplitz matrix (or its inverse) with 

2 2( )O M L operations [19]. While both classes of algorithms are 
of comparable computational complexities, the Schur 
algorithm has the additional advantage of being able to exploit 
parallel computing to further reduce its computational latency 
to a linear relation [20], [21], [22]. Therefore, we propose the 
Schur algorithm for fast Cholesky factorization of our 
covariance matrix. An outline of the Schur algorithm for 
finding the Cholesky factor of positive definite Toeplitz 
matrices is presented here based on [23], [24], [25] and [26].  

It is known that a symmetric Toeplitz matrix Τ  fulfills the 
following relationship: 

 

T− =T ZTZ D  (15) 
where Z is a shift-down matrix and D the  displacement of T ,  
which can be further expressed as: 

 

T=D GΣG  (16) 
where  

 

[ ]1 0
0 1
 

= = − 
Σ G u v  (17) 

with 0 1 2 1[ , ..., , ]T
n nt t t t− −=u , 1 2 1[0, ..., , ]T

n nt t t− −=v  and it  being 
the i th column vector of T .  

A Schur algorithm operates only on the generating vectors 
u  and v  instead of the entire Toeplitz matrix to compute the 
columns of the Cholesky factor.   



Assume we have [ ]=G u v , we can make the first element 
of v  to be 0  by applying a hyperbolic transformation tH  on 
G  such that: 

 

[ ]t =H G u, v   (18) 

Where   0 1 2 1[ , ..., , ]T
n nu u u u− −=u      and 1 2 1[0, ..., , ]T

n nv v v− −=v     
With tH  satisfying the relation T

t tH ΣH = Σ . Hence, the 
transformed generator tH G  is also a generator for Τ  : 

 

T T
t t(H G) Σ(H G) = GΣG  (19) 

The transformed vector u  is the first column of the 
Cholesky factor of Τ .  Also introduce T

S = −T T u u   to be the 
Schur complement of Τ . Then, we observe that applying the 
shift matrix Z  to the generator after the hyperbolic 
transformation yields 

 

T T T T
S− = − SZu u Z vv T ZT Z     (19) 

which actually generates the Schur complement.  As a result, 
applying further hyperbolic transformations on expression (19) 
introduces zero to the first element of v . This is the second 
column of the Cholesky factor of Τ .  Successive iterations of 
the above process yield the Cholesky factor of the Toeplitz 
matrix. The positivity of the Schur complement SΤ at each 
stage ensures that the hyperbolic transformation matrix tH can 
be found.  

IV. SIMULATIONS AND NUMERICALRESULTS 
The numerical stability of the inverse power method using 

Cholesky and Schur algorithms is investigated and shown in 
Figure 1. Different sizes of sample covariance matrices are 
generated with three different smoothing factors as  L ={4, 8 
and 16} to see the deviation of the two algorithms. In Figure 1, 
the inverse method using both the Schur algorithm and 
Matlab’s Cholesky function are shown and compared with the 
traditional eigenvalue process. We observe no significant 
numerical instability for the Schur algorithm, as the matrix 
dimension increases. Numerical instability of Schur algorithm 
for high size of covariance matrix has been discussed in [21], 
[25], where in [25]. In particular, Stewart and Van Dooren 
provided in [25] a detailed analysis which showed that 
implementation of the hyperbolic transformation plays a 
pivotal role in ensuring the numerical stability of Schur 
algorithm. However, since in our study the size of the sample 
covariance matrix ( )ML is small, the Schur algorithm is 
numerically stable. When applying the inverse power iteration 
with the Schur algorithm for spectrum sensing, we observe 
almost the same performance as when using the traditional 
eigen-decomposition method.  

The detection probabilities of simple energy detector, as 
well as traditional and proposed eigenvalue based spectrum 
sensing methods have been evaluated using two different 
channel models (i.e., Indoor and ITU-R Vehicular A channels 
[27]). The 1 dB noise uncertainty case is considered as the 
worst-case scenario in terms of noise variance estimation.   In 
all the addressed cases, the time record length is 10000  
complex samples, the smoothing factor of 16L  and 1000  

Monte Carlo simulations are applied to evaluate the detection 
probability reliably. The bandwidth is chosen as  20 MHz and 
the Vehicular A channel model has 6 taps and its maximum 
delay spreads is about 2.5μs. The number of iterations k  is 
chosen as 100 in the following figures to obtain similar 
detection probability performances. The oversampling process 
uses a lowpass FIR filter designed with Kaiser window. 

 
Figure 1.  Difference of computed smallest eigenvalue using Schur or 
Cholesky based inverse power methods in comparison with eigen-
decomposition method, for varying matrix dimension under different SNR 
cases. 

The detection probabilities of traditional and proposed 
eigenvalue based spectrum sensing with non-oversampled 
signal under Indoor  channel and 4x-oversampled signal under 
ITU-R VehicularA with 0.1 target FAP  are depicted in Figure 
2 and Figure 3, respectively.  

 
Figure 2.  Simulated detection probabilities using traditional and proposed 
eigenvalue-based spectrum sensing algorithms with 1M =  (non-
oversampled), 16L = and Indoor channel. Theoretical performance of energy 
detector without noise uncertainty and with 1 dB noise uncertainty included as 
reference. 



 

Figure 3.  Simulated detection probabilities using traditional and proposed 
eigenvalue-based spectrum sensing algorithms with oversampling by 4M = , 

16L = , and ITU-R Vehicular A channel. Theoretical performance of energy 
detector without noise uncertainty and with 1 dB noise uncertainty included as 

reference. 

Frequency selective channels increase the detection 
probability of eigenvalue based spectrum sensing algorithms.  

Quite similar detection performance is obtained with both 
traditional and proposed eigenvalue based spectrum sensing 
techniques, in all the addressed cases. TABLE II shows the 
computational complexities of traditional and proposed 
eigenvalue based spectrum sensing techniques. TABLE III,   
TABLE IV and TABLE V include some numerical results for 
all the considered algorithms. Depending on the values of L, M 
and N , significant reduction of the computational complexity 
can be reached. The stability of our proposed iterative 
algorithms for spectrum sensing is also confirmed under the 
given simulation cases.  

V. CONCLUSION 
An improvement to the computational complexity of 

eigenvalue-based spectrum sensing has been presented in this 
paper, based on the simple power iteration and inverse power 
iteration using the Schur algorithm. In general, the max/min 
eigenvalue method provides consistently better 
performance/complexity tradeoff than the energy with min 
eigenvalue method. On the other hand, the Schur algorithm 
has in many cases significanlty lower complexity than the 
Cholesky approach. The overall computational complexity can 
be reduced from 3(( ) )O ML  to 2(( ) ) ( )O ML O kML+ using the 
Schur algorithm. For instance from TABLE V, when the 
number of samples is 310  with 4x-oversampling, the overall 
computational complexity (multiplication and addition) of the 
traditional algorithm 1 is 326144 whereas it is 74496 Schur 
algorithm. Hence upon using the Schur algorithm, the 
complexity is reduced by about 80 percent.    

In the future, improvements to the stability of Schur 
algorithm can be explored [19]-[25], as well as 
implementation of a class of asymptotically superfast 
algorithms [22],[26] or eigenvalue algorithms based on 

superfast Toeplitz solvers [16], [17], which might further 
reduce the computational complexity to 2

2( (log ) )O ML ML . 
Besides numerical algorithms, other aspects of cognitive radio, 
such a cooperative sensing should also be investigated to 
reduce the computational complexity. 
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TABLE II.  COMPUTATIONAL COMPLEXITY OF POWER ITERATION BASED SPECTRUM SENSING 

 

TABLE III.  SOME NUMERICAL VALUES OF COMPUTATIONAL COMPLEXITIES FOR SENSING METHODS (M=1,  NON- OVERSAMPLED)  

ALGORITHMS Cov. 
Matrix 

Eigen. 
Decom. 

Ave. 
Test 
Stat. 

Total 
max min 

Trad. 
Alg. 

Alg. 1 
(max. eig. / min. eig.) 

 
MLN  3 3( )O M L   

3 3( )MLN O M L  

Alg. 2 
(average / min. eig.) MLN  3 3( )O M L  MN  3 3( )MLN O M L MN   

Prop. 

 Alg. 

 

Alg. 1 
(max. eig. / 
min. eig.) 

 

Cholesky 
factorization MLN  

( )O kML
 

 
3 3( / 3)O M L
 

 
 
 
- 

3 3( ) ( / 3)MLN O kML O M L   

Schur 
Algorithm 

2 2( )O M L  2 2( ) ( )MLN O kML O M L   

Alg. 2 
(average / min. 

eig.) 

 
Cholesky 

factorization 
 

 

MLN  

 

- 

3 3( / 3)O M L
 

 

MN  

3 3( / 3)MLN O M L MN   

Schur 
Algorithm 

2 2( )O M L  2 2( )MLN O M L MN   

ALGORITHMS Smoothing 
Factor (L) 

Number of samples (N) 

103 5x103 104 2x104 

Trad. 
Alg. 

Alg. 1 
(max. eig. / min. eig.) 

 

8 8 512 40 512 80 512 160 512 

16 20 096 84 096 164 096 324 096 

Alg. 2 
(average / min. eig.) 

8 9 512 45 512 90 512 180 512 

16 21 096 89 096 174 096 344 096 

Prop. 

 Alg. 

 

Alg. 1 
(max. eig. / 
min. eig.) 

Cholesky  
8 8 971 40 971 80 971 160 970 

16 18 965 82 965 162 970 321 856 

Schur  
8 8 864 40 864 80 864 160 864 

16 17 856 81 856 161 856 321 856 

Alg. 2 
(average / 
min. eig.) 

 
Cholesky  

 

8 9 171 45 171 90 171 180 170 

16 18 365 86 365 171 370 341 370 

Schur  
8 9 064 45 064 90 064 180 064 

16 17 256 85 256 170 256 340 256 



 

TABLE IV.  SOME NUMERICAL VALUES OF COMPUTATIONAL COMPLEXITIES FOR SENSING METHODS (M=2X-OVERSAMPLED) 

 

TABLE V.  SOME  NUMERICAL VALUES OF COMPUTATIONAL COMPLEXITIES FOR SENSING METHODS (M=4X-OVERSAMPLED) 

 

ALGORITHMS Smoothing 
Factor (L) 

Number of samples (N) 

103 5x103 104 2x104 

Trad. 
Alg. 

Alg. 1 
(max. eig. / min. eig.) 

 

8 20 096 40 512 164 096 324 096 

16 64 768 84 096 352 768 672 768 

Alg. 2 
(average / min. eig.) 

8 22 096 45 512 184 096 364 096 

16 66 768 89 096 372 768 712 768 

Prop. 

 Alg. 

 

Alg. 1 
(max. eig. / 
min. eig.) 

Cholesky  
8 18 965 40 971 162 970 322 970 

16 46 123 82 965 334 120 654 120 

Schur  
8 17 856 40 864 161 856 321 856 

16 36 224 81 856 324 224 644 224 

Alg. 2 
(average / 
min. eig.) 

 
Cholesky  

 

8 19 365 45 171 181 370 361 370 

16 44 923 86 365 350 920 690 920 

Schur  
8 18 256 45 064 180 256 321 856 

16 35 024 85 256 341 024 681 024 

ALGORITHMS Smoothing 
Factor (L) 

Number of samples 

103 5x103 104 2x104 

Trad. 
Alg. 

Alg. 1 
(max. eig. / min. eig.) 

 

8 64 768 84 096 352 768 672 768 

16 326 144 192 768 902 144 1 542 144 

Alg. 2 
(average / min. eig.) 

8 68 768 94 096 392 768 752 768 

16 330 144 202 768 942 144 1 622 144 

Prop. 

 Alg. 

 

Alg. 1 
(max. eig. / 
min. eig.) 

 

Cholesky  
8 46 123 82 965 334 120 654 120 

16 157 780 174 120 733 780 1 373 800 

Schur  
8 36 224 81 856 324 224 644 224 

16 74 496 164 224 650 496 1 290 496 

Alg. 2 
(average / min. 

eig.) 

 
Cholesky  

 

8 46 923 91 365 370 920 730 920 

16 155 380 180 920 767 380 1 447 400 

Schur  
8 37 024 90 256 361 024 721 024 

16 72 096 171 024 684 096 1 364 096 
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