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Abstract—Energy efficiency is crucial in wireless communi-
cation systems, especially in cognitive radio (CR) systemsin
which the exclusive functionality of spectrum sensing inevitably
incurs additional energy consumption. In this paper, we study
energy-efficient link adaptation for the secondary users (SUs)
with heterogeneous quality of service (QoS) requirements in
an interference-limited CR system. Two classes of SUs with
different QoS are considered: delay-sensitive SUs (DS-SUs) and
delay-tolerant SUs (DT-SUs). We focus on energy efficiency (EE)
maximization taking into account the SUs’ heterogeneous QoS
and PU interference constraint. The problem of EE maximization
is formulated as a nonlinear fractional programming problem,
which is transformed into an equivalent parametric programming
problem. Moreover, optimal solution to joint subcarrier assign-
ment and power allocation is derived with the bisection method
and dual decomposition method (DDM) in convex optimization
theory. Simulation results illustrate the significant performance
improvement of our scheme over an existing one which aims at
maximizing system throughput rather than EE.

I. I NTRODUCTION

Cognitive radio (CR) technology, which is regarded as an
effective way to combat the shortage of spectrum resource,
has drawn increasing attention in recent years [1], [2]. In aCR
system, secondary users (SUs) are able to sense the licensed
channels of primary users (PUs) and opportunistically utilize
the idle channels unused by PUs, which significantly improves
the efficiency of spectrum utilization.

As an efficient modulation technique, orthogonal frequency
division multiplexing (OFDM) has aroused great interests
with extensive applications of high speed multimedia services
due to its strong anti-multipath fading and high spectrum
efficiency. In a OFDM-based CR system, the inevitable out-
of-band (OOB) emission causes side-lobe interference (SLI)
while PUs and SUs are operating in adjacent subcarriers,
which degrades performance of the whole network. In addi-
tion, imperfect channel sensing which incurs miss detection
and false alarm of active PUs’ transmission also degrades the
performance. In [3] and [4], SUs’ channel is divided into a
number of frequency-flat subcarriers, and system throughput
based on the sensing information is maximized taking into
account SLI. In [5], throughput of a CR system is maximized
by jointly optimizing both power allocation and detection
operation considering the influence of miss detection and
false alarm. The author of [6] studied the cross-layer design

for the SUs system with heterogeneous QoS requirements in
interference-limited CR systems.

With the proliferation of intelligent devices (e.g. smart
phones) with more powerful capabilities, energy consumption
becomes a critical issue, which makes energy-efficient trans-
mission in wireless communication system an eye-catching
topic [7]. In [8], an energy-efficient power allocation scheme
for OFDM-based CR network is investigated, and the energy
efficiency (EE) is maximized taking into account the total
transmit power and interference constraints. The problem of
EE in heterogeneous CR networks with femtocells is studied
in [9], where the energy-efficient resource allocation is formu-
lated as a Stackelberg game and the Stackelberg equilibrium
solution is obtained by a gradient-based iteration algorithm.
In [10], the non-cooperative spectrum sharing problems are
considered in cognitive wireless mesh networks formed by a
number of clusters, where the stochastic learning process is
employed to model the competition behaviors of SUs in a
dynamic environment and the average amount of bits received
correctly per unit of energy consumption is considered as the
reward function.

There have been volumes of existing literatures on CR
networks with heterogeneous QoS requirements or energy-
efficient link adaptation, however, most of previous works are
separately focus on either throughput maximization for CR
networks considering the heterogeneous QoS requirements or
EE maximization for CR networks without heterogeneous QoS
requirements. In other words, few of existing works jointly
considered both heterogeneous QoS requirements and energy-
efficient link adaptation in CR networks.

In this paper, we study the energy-efficient link adaptation
for an OFDM-based CR system with heterogeneous QoS
requirements. The contribution of our work is summarized as
follows.

• We investigate link adaptation aiming at EE maximization
in a CR network with heterogeneous QoS requirements
(e.g. transmission delay).

• By transforming a nonlinear fractional programming
problem into an equivalent parametric programming, we
maximize the EE of a CR network constrained by total
power consumption, interference and heterogeneous QoS
requirements of delay-sensitive SUs (DT-SUs).

The rest of this paper is organized as follows. In Section
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II, the system model and problem formulation are presented,
where the SLI and the DS-SUs’ delay requirements are de-
scribed. Mathematical analysis is given in section III. The
DDM and bisection method are then elaborated to solve the
energy-efficient link adaptation problem in section IV. Section
V presents the numerical results and we conclude the whole
paper in section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an OFDM-based CR system, where there are
K CR transmitter-receiver pairs andN subcarriers that are
available for SUs. In order for PU protection, we assume that
the SUs will access the licensed band only if the PUs are
detected to be absent on that channel, which is referred to as
the listen-before-talk (LBT) scheme [11]. It is also assumed
that the channel state information (CSI) at the CR base station
is accurate and no false alarm and miss detection are incurred.

In downlink transmission scenario shown in Fig. 1, gener-
ally, there are three types of channel power gain with respect
to SUs: (1) the one between the transmitter and receiver of
SU k on subcarriern, denoted bygk,n; (2) the one between
the transmitter of SUk and PU’s receiver on subcarriern,
denoted byhk,n; (3) the one between the PU’s transmitter
and the receiver of SUk on subcarriern, denoted byh

′

k,n.
We assume thatgk,n, hk,n andh

′

k,n can be known beforehand
through SU’s channel estimation.

We consider a side-by-side CR radio access model similar
with that in [15], with B denoting the PUs’ bandwidth.
The unoccupied channels available for SUs’ transmission are
located aside the PUs’ band, as shown in Fig. 2. The available
bandwidth for SUs’ transmission is divided intoN subcarriers
(also referred to as channel in this paper) with spacing∆f Hz.
According to the Shannon’s channel capacity, in the case of

gh
'h

Fig. 1. Spectrum Sharing between PUs and SUs

perfect channel sensing, the transmission rate at the subcarrier
n on the SUk, denoted byRk,n, is given by

Rk,n = ∆f log2(1 +
gk,nPk, n

σ2
) (1)

wherePk,n and gk,n denote the transmit power and channel
power gain of SUk on subcarriern, σ2 denotes the variance
of additive white Gaussian noise (AWGN) on the link between
a CR transmitter-receiver pair. Notice that the interferences to
SUs caused by PUs are ignored.

f 

Fig. 2. Distribution of PUs and SUs in the frequency domain

As is mentioned in [12], due to the coexistence of PUs
and SUs on side-by-side bands, the inherent SLI of OFDM-
based CR system is inevitably incurred. In what follows, we
provide brief description and mathematical models for the SLI
mentioned above. We have neglected the interference that the
PU may cause to the SU, as well as the effect of inter-carrier
interference (ICI) by assuming that the primary system and
CR system perform transmission synchronously.

A. Side-lobe Interference (SLI)

The SLI is caused by OOB emissions of OFDM technique,
which makes PUs and SUs interfere with each other. In this
paper, the OOB emissions of SUs on aggregate interference
to PUs are considered. The power density spectrum (PSD)
of the SU k on subcarriern is denoted byφk,n(f) =
Pk,nTs(sinπfTs/πfTs) [13], where Pk,n is the transmit
power of SU k on subcarriern. Ts is the OFDM symbol
duration andf denotes the center frequency of the subcarrier
n. Let ISPSk,n denote the SLI power caused by SUk to the
PUs’ band on subcarriern. According to [14],ISPSk,n can
be mathematically expressed as the integration of the PSD of
SU k on subcarriern across the PUs’ band, which is:

ISPSk,n =

∫ dn+
BPU

2

dn−
BPU

2

hk,nPk,nTs(
sinπfTs
πfTs

) df

= Pk,nϕk,n

(2)

where dn is the spectral distance between the subcarriern
and the center of PUs’ spectrum with bandwidthBPU . ϕk,n

is named the interference factor of SUk on subcarriern for
expression simplicity.

B. SU Traffic Model

Two types of SU are considered, in this paper, namely,
DT-SUs and DS-SUs, respectively. The former is non-delay-
sensitive, e.g. emails, while the latter have stringent demands
on the transmission delay, e.g. video streaming or voice
services. We assumed that the data buffers of DT-SUs are
extremely large in CR base station where the data packets
are always waiting to transmit while data buffers of DS-SUs
are limited and the arrival process of packets can be modeled
as a Poisson process. To guarantee the QoS of DS-SUs, a
constraint condition for average transmission delay should be
satisfied.



C. Problem Formulation

In this part, we present the basic idea of energy-efficient
link adaptation for CRs with heterogeneous QoS requirements
and formulate this problem as an optimization problem. To
formulate the energy-efficient resource allocation problem,
some system constraints should be considered: (1) Total power
constraint: wherePtot, Pk,n denote the maximum transmission
power of CR base station, and the transmit power on subcarrier
n for SU k. (2) Interference threshold constraint of PUs in-
troduced by SLI, denoted byIth. (3) Average delay constraint
for each DS-SU, denoted byTk ( k ∈ KDS andKDS denotes
the set of the DS-SUs).

For energy-efficient transmission, our objective is to max-
imize the throughput per Joule, calculated as the ratio of
sum-rate of the SUs to total power consumption while satisfy
constraints aforementioned. Mathematically, the resource allo-
cation for the CR system can be formulated as the following
optimization problem:

max
{Pk,n,Sk}

∑K
k=1

∑

n∈Sk
Rk,n

ε
∑K

k=1

∑

n∈Sk
Pk,n + PC

s.t.
K
∑

k=1

∑

n∈Sk

Pk,n 6 Ptot

K
∑

k=1

∑

n∈Sk

Pk,nϕk,n 6 Ith

E[Wk] 6 Tk, ∀k ∈ KDS

Si ∩ Sj = φ, ∀i 6= j
K
⋃

k=1

Sk ⊆ {1, 2, · · · , N}

Pk,n > 0, ∀ k and ∀n

(3)

where Si denotes the set of subcarriers assigned to SU
i (i ∈ {1, 2, · · · , N}), and Wk denotes the time that the
packets of the SUk (k ∈ KDS) wait in the queue plus the
service time whose expectation can be denoted byE[Wk].
ε is ratio of the peak-to-average ratio (PAR) of the power
amplifier (PA) to the drain efficiency of the PA, andPC is the
power consumed by other transceiving circuits.Tk denotes the
delay constraint in terms of time. Since the delay constraint
condition is intractable, we transform the delay constraint into
a transmission rate constraint of the SUk (k ∈ KDS) [6] by
modeling the data buffer of SU as an M/G/1 queue [15], which
is given by [6]:

Rk > ψ(Tk, υk, Z) (4)

whereRk denotes the transmission rate of the SUk (k ∈
KDS) andψ(Tk, υk, Z) is given by:

ψ(Tk, υk, Z)

=
(Tkυk + 1) +

√

(Tkυk + 1)2 − 2Tkυk
2Tk

E[Z]
(5)

whereυk denotes the independent packet arrival rate of the
delay-sensitive services, which can be modeled as a Poisson

process, andZ represents the packet size [6] which is a random
variable.

III. M ATHEMATICAL ANALYSIS

In this part, we present the basic idea to solve the problem of
energy-efficient link adaptation. Considering the problemis a
nonlinear fractional programming problem, thus it is extremely
difficult to solve directly. However, refer to a prior work [16],
this nonlinear fractional programming problem can be solved
by transforming it into an equivalent parametric programming
problem, and the mathematical representation of the theory
can be written as follows.

Let En be the Euclidean space of dimensionn andS be
a connected and compact subset ofEn. And let N(x) and
D(x) be real-valued and continuous functions ofx (x ∈ S).
Furthermore, it is assumed thatD(x) > 0 for all x ∈ S.

There are two types of problems mentioned above, and one
of which is the nonlinear fractional programming problem:

max
x∈S

q =
N(x)

D(x)
(6)

And the other is the parametric programming problem,
which can be written as follows:

max
x∈S

N(x)− qD(x), q ∈ E1 (7)

Both the problems have solutions indeed, sinceS is com-
pact,N(x) andD(x) are continuous, and the singular points
defined byD(x) = 0 are excluded.

Let F (q) = max{N(x)− qD(x)} (x ∈ S), where q is
treated as a parameter, thusF (q) is a continuous, convex and
strictly decreasing function ofq.

And let x∗ be the solution of (6), namely,q∗ =
N(x∗)/D(x∗), the necessary and sufficient conditionsq = q∗

is F (q) = 0. Thus searching the optimum of problem (6) is
equal to find the solution of the nonlinear parametric equation
F (q) = 0.

In our case, the nonlinear fractional programming problem
is (3), and the corresponding transformed nonlinear parametric
programming problem can be deduced as follows:

max
{Pk,n,Sk}

K
∑

k=1

∑

n∈Sk

Rk,n − q(ε

K
∑

k=1

∑

n∈Sk

Pk,n + PC)

s.t.

K
∑

k=1

∑

n∈Sk

Pk,n 6 Ptot

K
∑

k=1

∑

n∈Sk

Pk,nϕk,n 6 Ith

Rk > ψ(Tk, λk, Z), ∀k ∈ KDS

Si ∩ Sj = φ, ∀i 6= j
K
⋃

k=1

Sk ⊆ {1, 2, · · · , N}

Pk,n > 0, ∀ k and ∀n

(8)

Then the optimum of problem (3) can be transformed to the
zero root of problem (8).



IV. ENERGY-EFFICIENT RESOURCEALLOCATION

In this part, we propose the method to solve the EE max-
imization problem in detail. According to the mathematical
theory mentioned above, the nonlinear fractional programming
problem transforms into a nonlinear parametric programming
problem in the first place. Similar to [17] and [18], the duality
gap of the optimization problem (8) is nearly zero when the
number of subcarrier is large. Thus, using DDM, the primal
optimization can be solved. The Lagrangian dual function
corresponding to (8) can be formulated as:

g(λ, µ, ~ν) = max
{Pk,n}

L({Pk,n}, λ, µ, ~ν)

= max
{Pk,n}

{

K
∑

k=1

N
∑

n=1

Rk,n − q(ε

K
∑

k=1

N
∑

n=1

Pk,n + PC)

+ λ(Ptot −

K
∑

k=1

N
∑

n=1

Pk,n)

+ µ(Ith −

K
∑

k=1

N
∑

n=1

Pk,nϕk,n)

+
∑

k∈KDS

νk(

N
∑

n=1

Rk,n − ψk)}

(9)
whereλ, µ and~ν are introduced Lagrange Dual Multipliers

(LDMs), andνk denotes the multiplier of SUk (k ∈ KDS)
in ~ν. Let ψk denotesψ(Tk, λk, Z), in other words,ψk =
ψ(Tk, λk, Z). Then the dual optimization problem can be
formulated as:

min
λ,µ,~ν

g(λ, µ, ~ν)

s.t. λ > 0, µ > 0, ~ν > 0

(10)

Notice that the Lagrangian functionL({Pk,n}, λ, µ, ~ν) is
linear in λ, µ and ~ν for fixed {Pk,n} and g(λ, µ, ~ν) is the
maximum of these linear functions, so the problem (10) is
convex.

In order to facilitate the solving process, we decompose
the problem (9) intoN optimization sub-problems, which are
solved on each subcarrier independently, which is:

g(λ, µ, ~ν) =

N
∑

n=1

Hn(λ, µ, ~ν) + λPtot + µIth

−
∑

k∈KDS

νkψk − qPC

(11)

where,

Hn(λ, µ, ~ν) = max
{Pk,n}

{
K
∑

k=1

Rk,n − (λ+ qε)
K
∑

k=1

Pk,n

− µ
K
∑

k=1

Pk,nϕk,n +
∑

k∈KDS

νkRk,n}

(12)

Eq.(12) indicates a rule for allocating subcarrier which is
to search the SUk∗ for a specific subcarriern that maxi-
mizes Eq.(12). LetP ∗

k,n denote the optimal solution for given

subcarriern and SUk. Applying Karush-Kuhn-Tucker (KKT)
condition [18], by taking the derivation ofL({Pk,n}, λ, µ, ~ν)
with respect toPk,n, we have:















P ∗
k,n = [

∆f

ln 2(qε+ λ+ µϕk,n)
−

σ2

gk,n
]+, k ∈ KDT

P ∗
k,n = [

(νk + 1)∆f

ln 2(qε+ λ+ µϕk,n)
−

σ2

gk,n
]+, k ∈ KDS

(13)
Here,[x]+ = max(0, x) andKDS denotes the set of the DT-
SUs. Substituting Eq.(13) into Eq.(12), we obtain:

Hn(λ, µ, ~ν) =max
{k}

{

K
∑

k=1

R∗
k,n − (λ+ qε)

K
∑

k=1

P ∗
k,n

− µ

K
∑

k=1

P ∗
k,nϕk,n +

∑

k∈KDS

νkR
∗
k,n}

(14)

HereR∗
k,n is obtained using Eq.(1) for optimumP ∗

k,n.
Note that there are several LDMs in our case, sub-gradient

method [18] supplied to update these LDMs can guarantee
to converge to the global optimal solution. These LDMs are
updated as follows:






















λl+1 = [λl − θlλ(Ptot −
∑K

k=1

∑N

n=1
P ∗
k,n)]

+

µl+1 = [µl − θlµ(Ith −
∑K

k=1

∑N

n=1
P ∗
k,nϕk,n)]

+

νl+1
k = [νlk − θlνk(

∑N

n=1
R∗

k,n − ψk)]
+, k ∈ KDS

(15)

where l deotes the iteration index andθlλ, θlµ, θlνk are the
proper positive step-size sequences. After the convergence of
these LDMs, the optimal solutionP ∗

k,n can be obtained by
substitutingλ∗, µ∗ andν∗k into Eq.(13). And combining with
Eq.(14), the optimal subcarrier allocation is derived via solving
N independent optimization sub-problems mentioned above.

The optimal power and subcarrier allocation are solved via
the DDM above, which is based on the assumption that the
parameterq is a constant. However, our ultimate goal is to
find the solution ofF (q) = 0 which represents the optimal
EE value in this paper. Furthermore, because theF (q) is
strictly monotonic decreasing with respect toq and the optimal
solution is obtained if and only if whenF (q) = 0, a bisection
method can be used to search the optimal solution. With given
λ, µ and~ν, the bisection method is given in Algorithm 1.

Notice that the Algorithm 1 is based on that the value ofλ, µ
and~ν is given in advance. However, the value of these LDMs
is unknown originally. In this paper, the DDM is proposed to
obtain the optimal value ofλ, µ and~ν. Sub-gradient methods
can guarantee these LDMs to converge to the global optimal
solution, and the DDM is detailed in Algorithm 2.

V. NUMERICAL RESULTS

In this section, we present some numerical results. For
simplicity, we consider a scenario with 10 subcarriers and 2
SUs (in which SU 1 is the DS-SU and SU 2 is the DT-SU).
σ2, ∆f andB are assumed to be 0.1, 0.15 kHz and 1.5 kHz,



Algorithm 1 Bisection method
Initialization:

λ, µ, ~ν, δ, a andb (error limitationδ > 0, a, b satisfying
F (a) > 0 andF (b) < 0); q = (a+ b)/2;

Iteration:
1: while F (q) > δ do
2: if F (a) · F (q) > 0 then
3: a = q;
4: else
5: b = q;
6: end if
7: q = (a+ b)/2;
8: end while

Algorithm 2 Dual Decomposition Method

1: subcarrier set:N = {1, 2, · · · , N};
SU set:K = {1, 2, · · · ,K}, KDT ,KDS ⊆ K, KDT ∪
KDS = K andKDT ∩KDS = φ;

2: Calculate optimal LDMs
3: Use Eq.(11), Eq.(12) and Eq.(13), calculate the optimal

LDMs;
4: Joint subcarrier assignment and power allocation
5: while N 6= φ do
6: 1)computeP ∗

k,n using the Eq.(12),∀ k∈ K;
7: 2)find the optimal setS∗

k satisfying the Eq.(10);
8: 3)assign subcarriern∗ to userk∗ according theS∗

k ;
9: 4)update the optimal powerP ∗

k,n;
10: 5)N = N − {n∗};
11: end while

respectively. The channel power gainsgk,n, hk,n and h
′

k,n

are assumed to be Rayleigh distributed random variables with
mean -6 dB.

To evaluate the performance of the proposed scheme, we
present the simulation results of SUs’ EE with different total
power constraint (Ptot), interferene constraint of PUs caused
by SUs (Ith) and transmission rate requirement of the DS-SU
(ψ1), respectively. We first evaluate the impact ofPtot andIth
on the SUs’ EE. Fig. 3 compares the EE of energy-efficient
resource allocation scheme and spectral-efficient maximization
(SE-max) [19] scheme in the downlink transmission [6]. It can
be seen that the energy-efficient scheme always outperforms
the SE-max scheme, and the EE of the energy-efficient scheme
goes up when thePtot increases, whereas the EE of SE-max
scheme rises and falls as thePtot increases. Similarly, as we
can see in Fig. 4, the EE of energy-efficient scheme and SE-
max scheme goes up when theIth increases, and the EE
of energy-efficient scheme outperforms the SE-max scheme
significantly.

We also evaluate the performance of EE versusψ1. In Fig.
5, as ψ1 increases, the the EE of energy-efficient scheme
decreases slightly and the the EE of SE-max scheme increases
observably. It is notable that the gap of the two schemes is
very large whenψ1 is small, and the EE of energy-efficient

scheme outperforms the SE-max scheme whenψ1 < 0.9 bit/s.
With increasement ofψ1, the gap of the two schemes will
gradually dwindle until the results of both schemes coincide.
This is probably because more resource tends to be allocated
to the DS-SU as the delay constraint increases. The extreme
case, which makes results of the two schemes coincide, would
be that the DS-SU has to “monopolize” all the resource while
its rate (delay) requirement is extremely high (low). Anyway,
the energy-efficient scheme proposed in this paper achieve
superior performance over the SE-max scheme in most cases.
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Fig. 3. Energy efficiency of the proposed and SE-max schemes vs Ptot
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Fig. 4. Energy efficiency of the proposed and SE-max schemes vs Ith

VI. CONCLUSION

In this paper, we propose a novel resource allocation scheme
for an interference-limited OFDM-based CR system aimed at
EE maximization, which takes into account the heterogeneous
QoS requirements of DS-SUs. Then we formulate the problem
as a nonlinear fraction programming problem, which can
be transformed into an equivalent parametric programming
problem, and it can be solved efficiently with the bisection
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Fig. 5. Energy efficiency of the proposed and SE-max schemes vs ψ1

method and DDM. Different from conventional approaches,
the proposed algorithm achieves optimal EE and significantly
improve the system performance while protecting PUs from
intolerable interference. The simulation results validate our
proposed scheme which outperforms SE-max scheme observ-
ably. Further study may focus on the EE optimization with the
imperfect channel sensing and distributed resource allocation
while only local information is available for each SU.
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