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Abstract—This paper proposes a novel architecture and con-
figuration scheme for single-node spectrum sensing. It is assumed
that the sensing node may use more than one sensing algorithms.
The proposed sensing architecture allows a dynamic algorithm
selection that depends on the sensing configuration parameters,
and it includes a regulatory conformance checking. As a result,
local sensing is enhanced by dynamic selection of the most reliable
sensing algorithm, while a regulatory conformance indicator
shows whether the current sensing result should be assumed
reliable or not. Such information could be used further by a
cooperative sensing system for efficient data fusion and decision
making.

I. INTRODUCTION

Tremendous changes are occurring in wireless commu-

nications so that the mobile phone is rapidly turning into

a sophisticated mobile device capable of supporting high

computational load applications. The market of smart phones

has outpaced the rest of the mobile phone market for several

years. Investigations show that the mobile data traffic footprint

of a single mobile subscriber in 2015 could very conceivably

be 450 times higher from what it was in 2005 [2], and by 2014,

almost 66% of the world’s mobile data traffic will be video [3].

These changes come along with a strong demand in bandwidth

and high data rate. For example, the data rates provided by

the initial High Speed Downlink Packet Access (HSDPA),

an extension to 3G networks, enable a user to access the

Internet at speeds up to 1.8 Mbps. Enhancements in HSDPA

modulation schemes increase this speed up to 10 Mbps. With

the Long Term Evolution (LTE) technology, we are expecting

a peak data rate of 100 Mbps down link/ 50 Mbps up link

within 20 MHz bandwidth. With higher modulation and coding

schemes, one is already close to the limit of what modulation

and coding can bring to data rate enhancement. Therefore,

there is a need of better frequency re-use and interference

management.

Emerging technologies, including Cognitive Radio (CR)

and Software Defined Radio (SDR) [1], are overcoming the

problem of spectrum shortage by providing sophisticated

techniques to reuse licensed spectrum. A CR uses intelligent

signal processing at the physical layer in order to adapt to its

environment, to its user’s requirements and to the requirements

of other radio users sharing the spectrum [4]. CR could

therefore provide means to efficiently use the electromagnetic

spectrum by detecting and exploiting empty parts (spectrum

holes), or by intelligently sharing spectrum with other users

(e.g., meeting given interference constraints).

When employed as a secondary user (i.e., non-licensed

user), a CR has lower priority in using the spectrum allocated

to a primary user (i.e., licensed user). Therefore, a fundamental

requirement is to avoid interference with the primary systems

in their vicinity. Besides, there is no requirement for primary

user networks to change their infrastructure in spectrum shar-

ing with cognitive networks. Therefore, a CR should be able

to independently detect primary user presence [6]. To enable

such an opportunistic access to the licensed spectrum, different

access methods have been proposed. Sensing-based access,

where a CR transmits if it finds the licensed band is available,

is currently being investigated due to its low deployment cost

and its compatibility with the licensed systems [10]. Several

techniques, with different characteristics and performances,

used to sense a licensed spectrum have been investigated [11]-

[16]. Various aspects and classes of sensing algorithms are pre-

sented in [8]. In [7] an architecture and an approach for finding

spectrum holes have been proposed. In particular, [7] presents

a framework for selecting among various spectrum monitoring

methods, taking into account the operational environment,

the underlying policies and the sensing methods capabilities.

However, the selection criteria in [7] are vague and do not

cover some special cases. For example, the cyclostationary

detector is more reliable than the energy detector for certain

SNR and for given noise estimation performance, but the

energy detector could be more reliable than the cyclostationary

detector when the noise is accurately estimated. The method

in [7] does not cover such specificities. Moreover, no other

work, in our best knowledge has never proposed a sensing

framework that takes into account the regulatory conformance

with the sensing results.

This paper therefore proposes a new architecture and con-

figuration scheme for spectrum sensing. The specificities of

this work compared with the state of the art are as follows.

• For the first time, in this paper the authors propose a

framework for checking the regulatory conformance with

regard to the sensing reliability.

• A knowledge base is proposed to be stored in the sensing

nodes. This knowledge base is fed off-line and allows

to determine, depending on the values of the sensing

configuration parameters, the best sensing algorithm in

terms of the mean detection probability. The sensing
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configuration parameters include the frequency band to

be sensed, the type of primary signal to be detected,

the sensing duration, the maximum allowed false alarm

probability, the minimum allowed detection probability,

the time available for noise estimation.

• A new architecture for single node spectrum sensing that

includes all the above functionalities is proposed.

The goal of this work is therefore to optimize local sensing

and to provide a regulatory conformance indicator. As a

result, processing sensing results is helped by the regulatory

conformance indicator and the overall sensing performance is

enhanced.

The remainder of this paper is organized as follows. Section

II presents sensing generalities and an overview of spectrum

sensing algorithms. Section III introduces a novel architectural

framework for sensing configuration using a selection between

various sensing algorithms while checking the regulatory

conformance. An example is further discussed in Section IV.

Finally, conclusions are given in Section V.

II. SENSING BASICS AND OVERVIEW OF SENSING

TECHNIQUES

In this section we remind some basics of spectrum sensing

and we provide a non-exhaustive overview of spectrum sensing

techniques.

A. Sensing Basics

We consider a CR attempting to access a licensed spectrum

where a primary user transmits. The CR is assumed to have

various sensing capabilities in order to autonomously find

possible spectrum holes that can be used for opportunistic

communications. The CR continuous time received signal is

y(t) = h s(t) + w(t), (1)

where y(t) represents the received signal, h is the channel

gain from the primary transmitter to the cognitive receiver,

s(t) is the primary user signal that the cognitive device has

to detect and w(t) is the Additive White Gaussian Noise

(AWGN) with variance σ2. It is assume that the signal is

obtained from a specific frequency band with central frequency

fc and bandwidth W . The signal is sampled at a sampling

rate fs, where fs ≥ W . The sampling period is defined as

Tsamp = 1/fs. Then, we can rewrite the different signals

as y(n) = y(nTsamp), s(n) = s(nTsamp) and w(n) =
w(nTsamp). And it follows that y(n) = h s(n) + w(n). The

goal of spectrum sensing is to detect whether there is a primary

signal present or not. That is, we want to discriminate between

the following two hypotheses:

H0 : y(n) = w(n)
H1 : y(n) = h s(n) + w(n).

(2)

The ideal sensing algorithm should select hypothesis H1 when

a primary signal is present, and should select hypothesis

H0 otherwise. In spectrum sensing, in general, the detection

decision is obtained by comparing a test statistic, which is

calculated from the signal samples, with a threshold. If the

received signal contains only noise, the test statistic should be

lower than the threshold. Otherwise, the test statistic should

therefore be higher than the threshold. Therefore, the perfor-

mance of a sensing algorithm can be expressed in terms of

detection probability and false alarm probability. The detection

probability represents the probability that the test statistic is

higher than the threshold when a primary signal is really

present. The false alarm probability represents the probability

that the test statistic is higher than the threshold when there

is no primary signal present.

B. An Overview of Sensing Algorithms

In this part, we give a non-exhaustive overview of well-

known sensing techniques.

If the characteristics of the primary signal are known, the

optimal detector in stationary Gaussian noise is a matched

filter followed by a threshold test [21]. Matched filter detection

should require dedicated circuitry to achieve synchrony with

the primary system. Therefore, this detection technique may

be interesting for early cognitive radio deployments where

the secondary system should operate, opportunistically, in a

few licensed bands [10]. As the number of wireless appli-

cations increases, more licensed bands should be opened for

opportunistic access in the future. Therefore, matched filter

detection would no longer be viable as its implementation

cost and complexity should increase prohibitively with the use

of various dedicated circuitries to achieve synchrony with the

different primary systems. Sensing techniques requiring less

information on the primary signal are more promising in the

presence of various primary systems. The energy detection

does not require any knowledge of primary signal character-

istics [11]. Therefore, the energy detector is a blind detector.

However, it is well known that the energy detector is sensitive

to the noise uncertainty, [18], that makes tough the use of

this technique. When some patterns (e.g., midambles, regularly

transmitted pilots, spreading sequences etc.) of the signal are

known, waveform-based sensing can be used. In this case,

sensing can be performed by correlating the received signal

with a known copy, [8]. A cyclostationary-based detection,

[12], requires the knowledge of the cyclostationary features

of the signal. The cyclostationary detectors are known to be

robust in the presence of noise uncertainty [15]. The two-

stage detector [16], is designed to benefit from the advantages

of both the energy detector and the cyclostationary detector.

This detection scheme increases the detection probability

comparing to a single detector, but it also increases the

false alarm probability. Furthermore, in order to reduce the

complexity of the GLRT (Generalized Likelihood Ratio Test)

cyclostationary detector from [12], the MCAS (Maximum

Cyclic Autocorrelation Selection) cyclostationary detector has

been proposed in [15]. Radio identification based sensing (see

[9] and references therein) can be used to know about the

transmission technologies (e.g., Bluetooth, Wi-Fi or DVBT)

used by a primary user. Other spectrum sensing methods in-

clude wavelet transform based estimation and time-frequency

analysis. A tentative classification of sensing techniques can



be found in [8] where it is showed that the energy detection

has the lowest complexity, while the matched filter has the

highest complexity. Inversely, the matched filter is the most

accurate detection technique, while the energy detection is the

coarsest detection technique.

Next, we present a new framework for sensing configuration

and implementation.

III. NEW ARCHITECTURE AND CONFIGURATION FOR

SPECTRUM SENSING

This section presents a novel architecture for finding spec-

trum opportunities while meeting the regulatory body con-

straints. A cooperative sensing scheme is considered where

a master node defines and sends the sensing configuration

parameters to a set of sensing nodes distributed randomly

around the master node. The proposed architecture is for the

sensing nodes. The challenge to be solved is the following:

How a given sensing node can efficiently use the configuration

settings in order to find spectrum opportunities while fulfilling

the regulatory requirements?

A. System Presentation

The proposed system framework is depicted in Fig. 1. The

sensing node is assumed to be able to perform K differ-

ent sensing algorithms. The algorithms could be software-

implemented in order to optimize the circuit size. The system

is comprised of a sensing process (performed more often) and

a knowledge building process (occasionally performed).

The sensing process is implemented in the sensing node. For

given sensing configuration settings provided by the master

node (i.e., frequency band to be sensed, primary signal type,

sensing duration, maximum allowed false alarm probability,

minimum allowed detection probability, noise estimation time)

the sensing process consists in choosing a sensing algorithm

that will perform the sensing task, and in testing the regulatory

conformance with regard to the current environment and the

selected sensing algorithm performance.

The knowledge building process is an off-line process aim-

ing at finding the best sensing algorithm for each configuration

scheme. It also provides the required SNR to reach a target

sensing performance (e.g., maximum allowed false alarm

probability, minimum allowed detection probability, sensing

duration) for all the available sensing algorithms. As a result,

a knowledge base is fed with the selected algorithms and their

required SNR for all possible configuration schemes.

The sensing process is performed dynamically in the sensing

node while the knowledge building process is performed off-

line (and the results are used to feed the knowledge base) only

if configuration settings change.

B. Sensing Process

The sensing process is the main component of the sensing

task and it runs in each sensing period. The main points are

as follows:

Fig. 1. System Architecture

1) Sensing Configuration Settings: the master node sends

the configuration settings to the selected sensing nodes. The

assumption under such a spectrum sensing scheme is that the

master node is responsible of defining the overall sensing strat-

egy and sensing scheduling. The current sensing configuration

settings include the selected nodes identity, the frequency

band to be sensed, the primary signal features (that are a-

priori known), the sensing starting time, the sensing duration,

the maximum allowed false alarm probability, the minimum

allowed detection probability, and the noise estimation time.

2) Sensing: the following tasks are performed.

• The sensing configuration function, of each sensing node,

reads the knowledge base to get the selected algorithm

corresponding to the current configuration settings.

• Noise power estimation, for the current frequency band, is

performed. Noise estimation can be performed directly in

the current frequency band [19], or in another frequency

band assumed to have the same noise level [14], [17].

• The sensing is performed using the selected sensing algo-

rithm (which could use the noise estimation if necessary).

• The regulatory requirement, related to the detection

threshold [5], is checked for the selected detector and

the current noise level. In fact, regulatory bodies (e.g.,

FCC) provide the detection threshold for specific pri-

mary signal. The detection threshold corresponds to the

minimum received signal at which primary signal should

still be accurately (e.g., with probability Pd,min = 90%)

detected by the CR. Therefore, using the current noise

power estimation σ̂2, we derive the SNR required by the

regulatory body to reach Pd,min, as

SNRrb =
Detection threshold

σ̂2
. (3)

For selected detector d, let SNR0,d be the required



SNR to achieve Pd,min and Pfa,max simultaneously for

a given sensing duration Ts. To ensure that the current

detection result conforms to the regulatory requirement,

the regulatory SNRrb must be higher than the selected

detector SNR0,d (Cf. Fig. 2). Therefore, the regulatory

conformance indicator, stating either SNRrb > SNR0,d

or SNRrb ≤ SNR0,d, measures the confidence on the

detection result.

• Finally, the detection result and the regulatory confor-

mance indicator are sent to the master node that is in

charge of processing the results coming from the selected

nodes and also of taking the final decision about current

frequency band occupancy.

Fig. 2. Regulatory conformance checking

C. Knowledge Building Process

The goal of the knowledge building process is to feed

the knowledge base with necessary information allowing the

selection among various sensing algorithms. Moreover, the

selection depends on the set of possible configuration schemes

which must be known in advance. The knowledge base can

be fed off-line and upgraded using an over-the-air update. The

knowledge building process is depicted in Fig. 3. Given a

primary signal type (e.g., DVBT, wireless microphones etc.)

and a configuration scheme, we have the following steps.

• For all the available detectors, compute the mean detec-

tion probability versus the SNR.

• For each detector d, compute the required SNR0,d to reach

Pd,min and Pfa,max simultaneously. Therefore, for selected

detector d, when current SNR is greater than SNR0,d, the

detection probability is greater than Pd,min. Otherwise, the

detection probability is lower than Pd,min (Cf. Fig. 3).

• Select, as the best detector, the detector with the lowest

required SNR0,d. The motivation of this selection is that,

the lower SNR0,d is, the more reliable the detector is (at

least for high SNR).

• Configuration information, selected detector and SNR0,d

are stocked in the knowledge base (Cf. Fig. 4).

Fig. 3. Framework for the knowledge building process

Fig. 4. Example of knowledge base for algorithm selection

IV. ASSESSMENT EXAMPLE

In this section, we assess the above spectrum sensing

architecture functionalities using two sensing algorithms: an

energy detection algorithm using estimated noise variance and

a cyclostationary detection algorithm called MCAS (Maximum

Cyclic Autocorrelation Selection), [15].

A. Energy Detection Using Estimated Noise Variance

Due to its simplicity and its blindness regarding the signal

features, the energy detector is one of the most studied sensing

technique in the literature. The test statistic generated from

the energy detector, over N signal samples, can be written

as T = (
∑N

n=1
y2n)/N. In order to distinguish between the

two hypothesis of (2), the test statistic T is compared with

a decision threshold λ. When N is sufficiently large, the

probability density function of T can be approximated by a

Gaussian distribution. Therefore, detection probability Pd, and



false alarm probability Pfa can be expressed as [14]:

Pd = Q

(

√

N

2

(

λ

σ2 (1 + SNR)
− 1

)

)

, (4)

Pfa = Q

(

√

N

2

λ− σ2

σ2

)

, (5)

where SNR is the Signal-to-Noise Ratio, and Q(.) is the

Q function [20]. From (5), the detection threshold can be

obtained, given target false alarm probability Pfa,target and

noise variance σ2, as λ = σ2

(

1 +Q−1 (Pfa,target) /
√

N/2
)

.

The main drawback when performing energy detection is that,

in practice, the noise variance σ2 is not exactly known. The

total noise includes the thermal noise, the receiver noise, and

the environment noise that can be time varying [14]. Therefore,

the exact noise variance σ2 should be replaced by an estimated

noise variance σ̂2. The noise power level can be estimated

using various techniques. Real time noise estimation can be

performed in another frequency band known to be free and

assumed to have the same noise level as the current sensing

frequency band. In [14], the noise power is assumed to be

estimated in such a free frequency band over N signal samples

and the real noise variance is assumed to be a realization

of a Gaussian random variable with mean σ̂2 and variance

2 σ̂4/N . Therefore, the detection probability and the false

alarm probability are also randomly distributed. The mean

false alarm probability P̄fa (mathematical expectation over all

the realizations of the noise variance) is derived in [14] as

P̄fa =

∫ +∞

−∞

Q

(

β + t

(

1 + β

√

2

N

))

e−
t
2

2

√
2π

dt, (6)

where β = Q−1 (Pfa,target). In [14], the noise is estimated

over the same number of samples N as the received signal y
is sampled over. In this paper it is assumed that the noise is

estimated over N ′ samples acquired in a free frequency band

assumed to have the same noise level as the sensing frequency

band. It is therefore assumed that the noise is estimated over

a time duration Tn that may be different from the sensing

duration Ts over which the sensed signal is sampled. Under

this assumption, the real noise power is a realization of a

Gaussian random variable with mean σ̂2 and variance 2 σ̂4/N ′.

Therefore, (6) can be rewritten (using the same calculations

as in [14] ) as

P̄fa =

∫ +∞

−∞

Q

(

β + t

√

N

N ′

(

1 + β

√

2

N

))

e−
t
2

2

√
2π

dt.

For spectrum efficiency purpose, spectrum sensing should be

constrained by a maximum allowed false alarm probability,

Pfa,max. In such situation, the expression of P̄fa allows

controlling the false alarm probability of the energy detector.

That is, one can compute the maximum value of Pfa,target to

meet the constraint P̄fa ≤ Pfa,max.

B. MCAS-Based Detection

In [15], a robust spectrum sensing method against noise

uncertainty and interference is proposed. Referred to as Maxi-

mum Cyclic Autocorrelation Selection (MCAS), the proposed

method is based on the cyclostationary feature of primary

signals. The MCAS-based detector compares the peak and

non-peak values of the cyclic autocorrelation function (CAF)

to detect primary signals. A non-peak value of CAF is com-

puted at cyclic frequencies between two consecutive peaks.

The desired false alarm probability is obtained by setting the

number of the non-peak values. In [15], it is showed that

MCAS can control the false alarm probability under noise

uncertainty and interference. Furthermore, MCAS achieves

closer performance to the conventional cyclostationary feature

detector with much less computational complexity.

C. Numerical Example

We consider the two previous detection algorithms: the

energy detector and the MCAS-based detector. The licensed

frequency band width is set to W = 7.61 MHz (e.g., the

DVBT in Europe). The sampling frequency is set to fs = W .

The primary system uses an OFDM modulation with 1024

subcarriers, 224 µs useful symbol period and 224/4 = 56
µs cyclic prefix length. Sensing duration Ts, noise estimation

time, Pd,min and Pfa,max are set in Table I.

Fig. 5 represents the detection probability in terms of SNR

for the energy detector (with noise estimation durations 5 ms

and 5/30 ms) and for the MCAS. One can notice that the

required SNR0,d to reach Pd,min and Pfa,max for the MCAS

is equal to -12 dB. Further, the required SNR0,d is equal to

−16 dB for the energy detector using 5 ms noise estimation

time, and is equal to −9.58 dB when noise estimation time

is 5/30 ms. Therefore, the energy detector is selected when

noise estimation time is 5 ms. When it is less or equal to

5/30 ms, the MCAS is selected. Table I is an example of

knowledge base that could be stored in the sensing node. One

example of regulatory detection threshold is −114 dBm for

ATSC digital TV signals, averaged over a 6 MHz bandwidth,

as specified in the FCC draft [5]. As stated above, to ensure

that the current detection result conforms to the regulatory

requirement, SNRrb (which is dynamically computed, in each

sensing period, using the noise power estimation) must be

higher than the SNR0,d of the selected detector. Considering a

cooperative sensing scenario, each sensing node should report

to the master node its detection result together with the regu-

latory conformance indicator. Further, the master node should

combine the decisions, while taking into account regulatory

requirements.

V. CONCLUSIONS

Spectrum sensing is a promising solution allowing oppor-

tunistic spectrum access. This paper considered the case of

single-node spectrum sensing. The cognitive radio is assumed

to be able of performing various sensing algorithms. The nov-

elty of this paper consists in proposing a new architecture and

single-node configuration scheme for spectrum sensing. This



Fig. 5. Detection probability versus SNR for the MCAS and the energy
detector with 5 ms and (5/30) ms noise estimation time.

TABLE I
KNOWLEDGE BASE FOR THE MCAS AND THE ENERGY DETECTOR (ED)

WITH 5 MS AND 5/30 MS NOISE ESTIMATION TIME.

Pd,min 90% 90%
Pfa,max 10% 10%

Ts 5 ms 5 ms

Noise estimation time 5 ms 5/30 ms

Selected detector ED MCAS

Required SNR −16 dB −12 dB

Regulatory detection threshold −114 dBm −114 dBm

proposal allows a dynamic selection between the available

sensing algorithms. The selection is based on a knowledge

building process (that is occasionally performed), and which

allows selecting the best sensing algorithm for given configu-

ration parameters. Besides, a dynamic regulatory conformance

checking is proposed: the SNR required by the regulatory

body is compared to the SNR required by the current selected

detector in order to reliably detect the primary signal. The

proposed solution improves cooperative sensing processing

and fusion. Using the proposed method, each sensing node

performs the detection with the most reliable algorithm and

reports to the master node the sensing result and a regulatory

conformance indicator showing whether the sensing result

should be assumed reliable or not.
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