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Abstract—Cognitive radio networks suffer from dynamic in-
terruptions from primary users. The joint congestion control
and routing are tackled using stochastic control techniqus.
Centralized dynamic programming is applied for the primal
optimization, which provides a performance upper bound. Q-
learning is applied when the primary user knowledge is unknavn.
Dual optimization based decomposition is used to decentiake
the stochastic control. A heuristic scheme based on the litdd
lookahead policy (LLP) and binary pricing is proposed to tadkle
the prohibitive difficulty in the dual optimization. Numeri cal
simulation shows that the proposed algorithms achieve the
optimal or near-optimal performance.

I. INTRODUCTION

Cognitive radio networks, illustrated in Fig. 1, are attiag
more and more studies in recent years due to its capability
of alleviating the problem of spectrum underutilizatiorheT
fundamental change of spectrum access incurs significait ch

lenges to all layers in cognitive radio networks. Reseashe Fig. 1.

have proposed new algorithms and protocols to combat the
new challenges, e.g. Quality of Service (QoS) aware schedul
ing [11] [12], spectrum-aware routing [7] [9] [14], disttited
resource allocation [10] and a new TCP protocol incorpoati
the activities of primary users [3].

As the new scheme of spectrum access incurs significant
impacts on all layers, it yields a better performance togtesi
the network across different layers of cognitive radio rarks.
Note that the cross-layer design has been considered for
scheduling [11] and routing [9] in cognitive radio networks
However, no uniform mathematical framework is proposed ,
in these studies. Note that the cross-layer design framewor
has been widely used for analyzing and designing networks
in the first decade of this century [2] [5] [6]. For example,
the joint congestion control and routing (TCP/IP) has been
studied in [13]. However, the corresponding studies areniyai
focused on stationary networks, i.e., the link qualitiesndd
change dynamically and the optimization problem is for only
one snapshot. It is straightforward to extend these teciasiq
to cognitive radio networks operating in relatively statoy
spectrum bands, like TV band. However, for spectrum bands
with dynamic occupancies of primary users, we face the
following two new challenges:

« Dynamic InterruptionsSince a secondary user must quit
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lllustration of cognitive radio network subject tatérruptions.

primary user causes an interruption to the data traffic
of secondary users within its interruption range. Even
if the secondary users can look for new channels, the
procedure of channel switching and sensing new channels
also incurs a significant overhead. If the traffic of primary
users is bursty, the interruptions are dynamic and random,
thus necessitating the stochastic control of the cognitive
radio network.

Medium Time Scaleln many situations, the time scale
of interruptions from primary users is medium, which
incurs trouble to the strategy optimization. For small time
scale (say, a few milliseconds), similar to fast fading,
the randomness can be alleviated in the physical layer,
e.g. using channel coding to correct errors. Therefore, the
negative effect can be smoothed out with time and there
is no need for re-routing. For large time scale (say, ten
minutes), the optimal route and the transport layer rate
can be used for a long period of time. A re-routing or
adjustment of transmission rate is infrequent and incurs
little overhead. However, for a medium time scale, it is
impossible to alleviate the interruptions using approache
like channel coding and it is inefficient to stick to the

the corresponding frequency band, each emergence of a same transmission rates and routes.
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In this paper, we tackle the problem of joint congestioand idle (1), i.e., not occupied by primary users. The state
control and routing in cognitive radio networks subjecthe t transition probabilities are denoted B, 5,, wheres; andss
above problems. The procedure of congestion control (i.are two consecutive states.
adjusting data rate) and routing (i.e., the decisions @brging The re-routing procedure may be activated by the emergence
and path selection) are coupled with each other. Thereforepf primary user, which may block the corresponding data
joint optimization is needed. Due to the dynamic interropsi flow for a long period of time. However, the re-routing may
and the medium time scale, a stochastic control frameworkimeur unnecessary overhead if the primary user’s inteioopt
applied to the joint congestion control and routing. Thém t is actually short. We assume that each re-routing procedure
challenge ishow to derive the optimal or near-optimal strat-takesT,.. routing periods, i.e., only aftef,.. routing periods
egy in various situationsFor the centralized case, dynamican the data flow resume operation. We also assume that each
programming andy-learning are both applied for the casese-routing incurs a penalty’,.,. since a lot of information
with and without primary user information, respectivelprF exchange is needed for the re-routing procedure.
the decentralized case, the stochastic control is decosddos
individual controls via Lagrange pricing. In sharp contrés
one-stage optimizations in stationary networks, the agias ~ For the joint congestion control and routing in cognitive
of individual data flows are still coupled even though th&adio networks subject to dynamic interruptions of primary
capacity constraint has been decoupled via pricing. A k#ari users, we adopt the framework of optimization based cross-
scheme based on a limited lookahead policy and binary gricilyer design [2] [5] [6]. For simplicity, we consider only
scheme is then proposed to break the coupling. Note tlisétgle-channel case here. For multi-channel case, we can
the study in this paper does not concern the detailed desgjttend the action space to incorporate channel selectighid
of protocols. However, it provides insights and tools foe thsection, we explain the three elements in the joint congesti
design of practical cognitive radio networks. control and routing, namely reward function, state spaak an

The remainder of this paper is organized as follows. THgtion space.
§ystem_mode| for cognitive radio networks WI” be |rytr(_)dd(_:eA' Reward Eunction
in Section Il. The elements of control, primal optimization
and dual optimization are discussed in Sections 11, IV and v We consider the discounted sum of all data flows from
respectively. Numerical results and conclusions are piemyi Fouting period! to routing periodr”. The optimization problem

Ill. BASIC ELEMENTS OF THESTOCHASTIC CONTROL

in Sections VI and VII, respectively. is thus given by
T
Il. SYSTEM MODEL maxzﬂt—lrt
We consider a cognitive radio network, in which there are t=1
L cognitive radio links andV data flows. We denote hy;(¢) s.t. R(t)x(t) < c ®©m(t), 1)

the rate of data flow at (discrete) time. The rates are stacked

into one vectorx(t) = (x1(t), ..., zn(t)). The utility of flow

rate x is given byU,(z,), whereUs is the utility function

of data flows. The time is divided into routing periods. We N

assume that each routing period is sufficiently long such tha re = Us(@s(t))ds(t) = P > 04(t). ()

the rate allocation can be completed within one routingqukri s=1 s=1

The routes of different data flows at routing periodare where 0 < 3 < 1 is a discounting factorf,(t) is the

represented by a matriR(t), where the rows stand for links characteristic function of the event that re-routing begt

and columns mean data flows. Data figpwasses through link ¢, the functioné,(¢) indicates whether the data flow is in

i if the elementR;;(t) equals 1. OtherwiseR;;(t) = 0. We active state and> means elementwise multiplication, i.e.,

assume that there arg; possible routes for data flos. We the capacities of all links are modulated by the spectrum

assume that the capacity of linkis given byc;. We use one occupancy vectom (t). Obviously, the first term in the reward

vector,c = (cy,...,cr), to denote the capacities of all links.function is the reward of data flow and the second term is the

For simplicity, we consider the thermal-limited regime ang@enalty for re-routing.

ignore the coupling of interference. When the interfereisce

strong, we can consider joint congestion control, routing a B- State Space

scheduling. However, it is beyond the scope of this paper. The system state contains the states of spectrum occupancie
We use a vectom = (m, ...,mL)T to represent primary of all links and the local states of data flows. For data flgw

users’ activities. Whenn; = 1, link i is not occupied by there areN; + T;.. states, namely; active states, denoted by

primary users and can be used by secondary users; otherw{aa\-ep}p:l,___,]vs (A, means that data flow is active and is using

m; = 0. For simplicity, we assume that the spectrum occueutep), andT,.. re-routing states, denoted I{Rt}tzl,...,Tw

pancy is constant within each routing period. The activity d¢ means the number of routing periods that have been passed

each primary user is modeled as a two-state Markov chafar re-routing). The local state transition of a data flow is

The two states are busy (B), i.e., occupied by primary useilfiystrated in Fig. 2.

wherer; is the network-wide reward obtained at routing period
t, which is given by



B. @Q-learning
Note that dynamic programming requires perfect knowledge

about primary users. When such a knowledge is unknown, we
route can apply@-learning. We sety-values for each data flow,
o system stateS and actiona, denoted byQ;(S,a). Then, the
Procedure of re-route learning procedure of different data flows is given by

Q" (Sna) = (1-a()Qi(Si0)
+ alt) (r(t) + max BQL(Si1,w) ) (5)

wherea(t) is a learning factor. The probability of using action

a is given by the following Boltzman distribution:
Each data flow can choose different actions for the following

two local states: (a) Ac_tivé;,,: vyhen_the current state is active, P!(S,q) = <ew) / Zew ' )
each data flow can either adjust its data rate or the data

flow can choose re-routing, thus entering local sRte(b)Re-
routing R,: if ¢ < T,,, the data flow can do nothing but . ) ) T
resuming the re-routing procedure; when= T,., the data In this section, we discuss the dual optimization and prepos
flow should choose the corresponding routing patnd then 2 heuristic ngorithm _based on Limited Lookah_eagl _Policy
enter the local active state,. Note that the states of spectrun{LLP) and binary pricing. We assume that thepriori in-
occupancies of all links cannot be changed by the actionsfgfmation about primary users is perfectly known.

data flows since they are affected by only primary users. The pya| Optimization

actions can change only the local states of data flows.

Fig. 2. lllustration of local state transitions.

C. Action Space

u

V. DUAL OPTIMIZATION AND DECOMPOSITION

In order to decompose the stochastic optimization problem,

we convert the primal optimization problem into the dual.one
IV. CENTRALIZED PRIMAL OPTIMIZATION

N T

In this section, we discuss the centralized primal optimizay* = arg minzmaxz <Us(a?s(t))¢s (t) — PrpBs(t)
tion problem by using dynamic programming aeearning. A= =1
We suppose that the optimization is carried out by a control T
center. —24(t) > Ris(t)\ (t)) +D N amin(), (7)
l t=1 1
A. Dynamic Programming where \;(t) is the Lagrange factor (price) of linkat time ¢
We assume that the knowledge of primary users, i.e., tABd A is the set of link prices at different routing periods.
transition probabilities of the two-state Markov modelper-  Ed. (7) can be rewritten as
fectly known. It is well known that the optimal strategy ofth A* = argminG(A) 8)
stochastic control can be obtained via dynamic programming A
Define the value function to be where
T N T
ViS) = max S g, 3) GIN) =D V(AT + Y ami()(b), ©)
R(t)x(t)<cOm(t) T s=1 t=1 1
and

wheres; is the overall system state at routing period hen,

the value functions are given by the Bellman’s equationcivhi )
is given by Vs(AT) = maXz; (Us(fs(t))ébs(t)
t=
= — POs(t) —xs(t Ris ()N (t) ). (10
Vi(S;) = max B [R(t)xgggi(@m(t) Tt +ﬁV;E+1(St+1):| ) (t) — zs( )zl: 1s (E) A ( )) (10)

where the expectation is over the the randomness of the nexDbviously, Vi (A, T) means the optimal strategy of data
system state analmeans the decisions of re-routing of all datélow s, given link pricesA. In stationary systems/;(A,T)
flows. Since the allocation of data flow ratedoes not affect can be optimized by data flow without coupling with other
the state transition, it is independentlaf, 1 (S:+1) and is used data flows. Howeverjn the dynamic environment due to
to optimize the instantaneous reward We can use either interruptions from primary users, the decomposition is no
centralized or decentralized approaches, e.g. pricingdadonger valid since the action taken by a data flow depends
optimization decomposition, to obtain the optimalwithin on the current system state, which couples with the actions
one routing period. The optimal strategy is then obtained lof other data flowsTherefore, the dual optimization based
solving (4), beginning from tim&". decomposition in traditional cross-layer design does ppta



in the stochastic control of cognitive radio networks. Aitigh o Path 1 for data flow 2: A3;B3—B2—B1—C1—D1.

there exist some approaches to decompose stochastic Icontre Path 2 for data flow 2: A3:B3—B2—C2—D2—D1.

into subproblems, e.g. scenario tree based stochasticgmeg  we assume that a re-routing procedure has petfalty= 1

ming [8] and Uzawa-based heuristic algorithm [1], the formeynd durationT’., = 5. Therefore, each data flow has 7 local

is mainly used to decompose large scale linear programmi§@tes. The channel capacity of each link is set to 1 except fo

problems instead of tackling utility privacies, while treter the link between D1 and D2, which is set to 2. Obviously, the

needs a predetermined function to describe the changeo@timal scheme is to let data flow 1 choose path 1 and data

price without a general expression. A systematic approagéw 2 choose path 2, which yields throughput 1 for both data

to decompose the stochastic control with utility privacy ifiows. We assumé — oo, i.e. we consider an infinite time

still an open problem. Therefore, we consider only a hearisthgrizon.

suboptimal approach in the next subsection. Suppose that there are two primary users co-existing with

: - the cognitive radio network. Their locations and the ranges

B. LLP Strategy and Binary Pricing ) ~of interruptions are illustrated in Fig. 1. We consider the
When each secondary user knows only its local state, 'tﬂﬁlowing two cases of the primary users’ activity: (a) Case

difficult for secondary users to optimize its strategy sitfoe 1. for primary user 1,P;5 = 0.01 and Pg; = 0.05; for

expected payoff is dependent on the system state, as We|lpﬁﬁ]ary user 2,P 5 = 0.02 and Pg; = 0.1; (b) Case 2: for

other secondary users’ strategies. In this case, we lehdacp primary user 1P;5 = 0.1 and Pg; = 0.25; for primary user

users adopt a LLP strategy, i.e. looking ahead for only &ahit 2, Prp = 0.15 and Pg; = 0.3.

steps. . _ _ Obviously, in Case 1, the channel occupancy is more
When all links of a data flow are not interrupted by primargtationary and each interruption from primary users is much

users, there is no need to carry out re-routing. When one {ghger than that of Case 2. Since the primary users have 4

more) link in the data flow is interrupted by primary usersyates and each data flow has 7 states, there are totally 196

the data flow needs to consider whether carry out a re-routigpstem states.

procedure. Due to the LLP strategy, the data flow comparesye consider the data throughput as the utility Therefore,

the actions of keeping current route and changing the rouie objective is to maximize the discounted total throughpu

rgspectively. If a re-routing procedure is initiated, tloed is subtracting the penalty of re-routing. When the routes are

given by fixed and the spectrum occupancy is known, the optimal

L, = P, + T U, (11) rate assigpmen(xs} can be efficiently obtained via linear
programming.

whereU is the expected utility of traffic in each routing period. ) ) ) ) )

We use the utility of traffic averaged over all previous rogti A+ OPtimal Strategies via Dynamic Programming

rounds to approximat&. If no re-routing procedure is carried We used dynamic programming to compute the optimal

out and the data flow waits for the recovery of the whole pathirategies for cases 1 and 2. The optimal actions of some key

the expected loss is given by system states are listed in Table | for case 1. The results for
case 2 are omitted due to the limited space and the similar
Ly=T (Z A + U) ’ (12) conclusions. The notation of actions is explained as faitow
iR A (continue re-routing), B (begin re-routing), C (keep @nt

_ route), D (choose route 1), E (choose route 2) and F (stay in
whereT is the expected time needed for primary users to qyie active state).
the spectrum, which can be obtained frdtg;. From both results, we find the following strategy differesice
It is quite challenging to find the optimal pricing since iyhich coincide with intuitions: (a) In Case 1, whenever
is coupled with all secondary data flows. Therefore, we uge or more primary user emerges, the corresponding data
a simple binary pricing strategy, i.e. for link the priceA;  flow begins re-routing, since the duration of primary user
is 0 when the link is available; otherwise, it ¥,, which  occupancy is long. (b) In Case 2, the data flows do not respond
is common for all links. Numerical simulation will showq the primary users’ emergence. Re-routing is carried out
that such a simple pricing strategy achieves near-optimghen the data flows are not using the optimal path, e.g., when
performance. data flow 1 is using Path 2 and data flow 2 is using Path 1.

VI. NUMERICAL RESULTS B. Q-Learning

We consider the network illustrated in Flg 1, in which the For both cases 1 and 2, we app|i@§|earning to learn the
nodes are labeled using their coordinates, e.g. AL or B2. \§gtimal strategy without the knowledge & 5 and Ps;. The
assume that there are two data flows, namely-Ai3 and results are provided in Fig. 3, in which each epoch means 200
A3—D1. Each data flow has two pOSSible routes, each haVlf&J'“ng periods and the rewards are Computed using the 200
5 hops: instantaneous rewards in the corresponding epoch. Wewabser

o Path 1 for data flow 1: AAB1—-C1—+D1—-D2—D3. that, in both cases, th@-learning can effectively improve the

o Path 2 for data flow 1: A::B1—+B2—B3—C3—D3. performance. The learning speed of Case 2 is faster since the



TABLE |

THE OPTIMAL STRATEGY FORTYPICAL SYSTEM STATES IN CASE 1 various scenarios. Their performances have been demtatstra

by numerical simulations.
2

(0,0) 0,1) (1,0) 1,1

11 @®BB) BB (CB) (CB)

12) ®BB) BC (CB) (C0O L8 e ———p—————+—+

(13) (BA BA (CA (CA . Tttt TR

@7 BE @BE (CE) (Ck) o1

21 @®BB) (CB) BB (B/.C § | 0—6—6-0-9-0-6-6-0-9-90-90-6-6-9

(220 (BB (BC) (BB) (BC) 14 ©6-9.0-0-0-0-0-00-0-0-9

23 _(BA _(CA__BA_(CA 2l

27 BE (CE @BE (Ck g H

3.1) (AB) (AB) (AB) (AQ) ° :

3,2 (A,B) (A,C) (A,B) (A,C) ! -+ - Heurstic: Case 1

B3 AA AR _(AA AR osf O Heurt: Case 2

(1) (©B) (OB) (OB (OO -0 -9~ DP: Case 2

(r2) (©B) (BC {®B) ([.C) 06 ‘ ‘

77 (OF ©OF OF @OF 0 % icen L5
18 : ‘ ‘ : ‘ Fig. 4. Comparison of performances of dynamic programmind bBLP

strategy/binary pricing.
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