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resource allocation algorithms [6]. Alternatives to dedahvwC2
based on convex optimization [7] and dynamic programming
(DP) have also been explored [6]. Regarding C3, many works
consider that the CSI is imperfect, but only a few exploit
the statistical model of these imperfections (especialhyttie
time correlation) to mitigate them; see, e.qg., [6], [14hd&lly,
different alternatives have been considered to limit therha
that the SUs cause to the PUs [13]. The most widely used is to
set limits on the peak (instantaneous) and average inirgfer
power. Some works also have tried to limit the rate loss thhat P
experience [5], while others look at limiting the instardans

or average probability of interfering the PU (bounds on the
short-term or long-term outage probability) [2], [14].

The objective of this work is to design the sensing and
the RA policiesjointly while accounting for the challenges
C1-C4. Only a few works have addressed the joint design of
the sensing and RA policies [7], [8]. Those works consider
operating conditions different than those in this paperictvh
|. INTRODUCTION are described next. An interweave CR with multiple SUs and

Cognitive radios (CRs) are viewed as the next-generatib/S 1S considered. SUs are able to adapt their power and
solution to alleviate the perceived spectrum scarcity. Whéate loadings and access orthogonally a set frequency bands

CRs are deployed, the secondary users (SUs) have to seH@Seé bands are originally devoted to primary transmission
their radio environment to optimize their communication-pe Orthegonal here means that if a secondary user is transgitti
formance while avoiding (limiting) the interference to thd!© Other secondary user can be active in the same band.
primary users (PUs). As a result, efficient operation of CRN€ schemes are designed to maximize the sum-average
requires the implementation of two critical tasks: i) segsi 'at€ of the SUs while adhering to constraints thatit the

the spectrum and ii) dynamic adaptation of the availabfg@ximum “average power” that SUs transmit and the average

resources according to the sensed information [1]. To cariyfobability of interfering” the PUs. It is assumed that the
out the sensing task two important challenges are: C1) the! of the SU links is instantaneous and free of errors, while
presence of errors in the measurements that lead to erf®}§ CS! of the PUs activity is outdated and noisy. A simple
on the channel occupancy detection; and C2) the inability #st-order hidden Markov model is used to characterize such
sense the totality of the time-frequency lattice due toitar imperfections. Sensing a channel band entails a given cost,
of resources (time, energy or sensing devices). Two aditio and at each instant the system has to decide which channels
challenges that arise to carry out the resource allocafgy) ( (If any) are sensed. _ _
task are: C3) the ability of the RA algorithms to deal with 1€ jointly optimal sensing and RA schemes will be
channel imperfections; and C4) the selection of metrics tH3€Signed using dynamic programming (DP) and nonlinear
properly quantify the reward for the SUs and the damage fgPtimization techniques. DP techniques are required tsecau
the PUs. the activity of PUs is assumed to be correlated across time, s
Many alternatives have been proposed in the CR literatjfi@t Sensing a channel has an impact not only for the current

to deal with these challenges. Regarding C1, some worR§tant, butaiso for future time instants. See, e.g., [Hjfor
deal with noisy CSI [3] or quantized CSI [5]. However, irelevant examples that have applied DP techniques to design

the context of CR only a few works have considered th@R schemes. To solve the joint design, a two-step strategy is

fact that the CSI may be not only noisy but also outdateﬁpp_lemented. First, the sensing is considered given and the

or have incorporated those imperfections into the design @ptimal RA is found forany fixed sensing scheme. This first
problem was recently solved in [9], [14]. Then, the resufts o

the first step are used as input to obtain the optimal sensing
policy. The motivation for using this strategy is twofoldrdt,

while the joint design is non convex and has to be solved
using DP techniques, the problem in the first step (optimum
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RA for a fixed sensing scheme) is convex. Second, when ttlgannels are not always sensed). For that purposey[ef
optimal RA is substituted back into the original joint desig denote a binary variable which is one if thi¢h channel is
the resulting problem (which has to be solved over the sgnsisensed at time: and zero otherwise. Moreover, let[n]
policy) has a more favorable structure. Specifically, while denote the output of the sensor if indegdn] = 1; i.e., if
original design problem was a constrained DP, the updatiéa ith channel is sensed. We will assume that the output
one is an unconstrained DP problem which can be solvefl the sensor is binary and may contain errors. To model

separately for each of the channéls. the sensing errors, consider the probabilities of falserala
PFA = Pr(zx[n] = 1|ar, = 0) and miss detectioPMP =
Il. SYSTEM MODEL Pr(zx[n] = Olax, = 1). Such probabilities are assumed to be

Consider a CR scenario with/ secondary users (indexedknown and constant across time.
by m) transmitting opportunistically over a frequency band Due to the aforementioned sources of imperfections, at
divided into K orthogonal sub-channels (indexed by For time n the SBS does not know the actual value @fin].
simplicity, we consider that each band has the same bandwifather, only a probabilistic description af,[n] is available.
and is occupied by a different PU. We also assume that thdilee knowledge about,[n] will be referred to as (instanta-
is a secondary base station (SBS) which is the destinationnafous) belieby[n]. Basically,by[n] contains the probabilities
all SU transmissions, acts as a central scheduler, colleets of channelk being idle and busy conditioned tall past
CsSl, and also performs the task of sensing the medium fareasurementdMathematically,by[n] := [Pr(ax[n] = 0|n —
primary presence. Although this work focuses on an uplink, Pr(ax[n] = 1|n — 1)]. To account for the instants where
setup, the results can be easily extended to downlink and amy[n] = 0, we will refer to by[n] as thepre-decisionbelief,
to-any setups. and introduceb; [n] as thepost-decisionbelief. Intuitively,

In this section we: a) describe the model for the CSI df;[n] contains the information about;[n] at instantn — 1,
the secondary (S-CSl) and primary (P-CSI) networks, payimghile by [n] contains the information about,[r] once sy [n]
special attention to the sensing errors; b) describe tHahles and z;[n] (if si[rn] = 1) are known. Clearly, using the time-
to be designed; and c) formulate the constraints that suotrrelation model, the expression to get the pre-decisaietb
variables need to satisfy. The constraints will account fis by[n] = Pyby[n — 1]. Differently, the expression to get
the operating conditions of the SUs, the quality of servide;[n], depends on the sensing decisiafn]. If si[n] = 0,
requirements and the rules the SUs need to implement to limd additional information is available, so thaf [n] = by[n].
the damage (interference) caused to the PUs. If sx[n] = 1, the sensor output;[n] can be eithed (idle) or

Starting with a), we first present the model for the S-CSL. (busy), and the belief is corrected as follows:
Specifically, the power gain of the channel between:ikta D.by[1]
SU and the SBS in théth channel at time: is denoted as b7 [n] = by [n] (bk[n],Z) = = (1)
hitnl; it re ise- i i Pr(zi[n] = z|bi[n])

nl; presents the noise-normalized square magnitude
of the fading coefficient. Channels are assumed to be ergodicere D, with z € {0,1} is a2 x 2 diagonal matrix with
and independent across bands and time, and the exact va&ogies [D,]|;1 := Pr(zx[n] = z|lax = 0) and [D,]22 :=
of their instantaneous gain is assumed to be available ay evBr(zx[n] = z|ar, = 1). The denominator is the likelihood of
time instant. Now, we address the problem of modeling thiee sensor outcome, and it can be calculate®#s;[n] =
P-CSI. Since we consider an interweave scenario, it sufficeiby[n]) = 17D.by[n]. Finally, if no information about the
to know whether a given channel is occupied or not. For thittial state is availableb[0] is initialized as the stationary
purpose, leti;[n] denote a binary variable which is one if thedistribution of the Markov chain associated to the channel.
kth primary link is active at timex and zero otherwise. The Vectorsby[n] and by [n] represent the P-CSI at instant
processi,[n] is modeled as a two-state, time invariant Markoand will be used as input to design our optimal schemes. For
chain. With P, = Pr(ax[n] = z|ax[n — 1] = y), the time mathematical convenience, vectdss[n] and by [n] (for all
dynamics of a channel are fully described by the transitidr) and variables:*[n] (for all k£, m) are gathered into vector
matrix P = [Poo, Po1; Pio, P11]. The Markovian property will i[n]. Clearly,i[n] represents the overall CSI of the system.
be useful to keep the DP modeling simple, and will also allow Now, we move to the description of the variables to be
to recursively keep track of the P-CSI [15]. The results can llesigned [cf. b)]. The first set of variables to be optimized i
extended to account for more realistic occupation moddis. Tthe sensing decision variableg[n]. For such a purpose, we
main price in such a case is an increase on the computatioteline¢;, as the (fixed) positive cost which is paid every time
load required to solve the DP. that si.[n] = 1. Clearly, if £, = 0, then the optimal solution

In our model, we suppose that the SBS is equipped with to setsi[n] = 1 for all n. However, if, > 0, then the
sensors to measurg [n]. However, presence of imperfectionssystem has to decide whether to sense or not. As it will be
render deterministic knowledge af;[n] impossible. Two shown in the upcoming sections, such a decision depends on
sources of imperfections are considered here: i) errorkén tthe level of CSI uncertainty and the potential benefits that
sensing process and ii) outdated information (because tmng the channel would bring to the system. The second

set of variables to be optimized is the access (scheduling)

1Notati0n:;5* de):ynotes the optimal value of variabte I£[] expectation;A  decision variablesv}*[n]. Specifically, w}"[n] is one if the

the boolean “and” operatory .y the indicator function {;,; = 1if z is th SU is scheduled to transmit into theh band at timen

true and zero otherwise); arid] the projection ofz onto the non-negative ' ) ) " '
orthant, i.e.,[z]; := max{z,0}. and zero otherwise. The third and last set of variables is the




power loading®}'[n]. Specifically, provided thaw}*[n] = 1, I1l. PROBLEM FORMULATION AND OPTIMAL RA
variable pj*[n] denotes the instantaneous power transmitted
over thekth band by themth SU. Under bit error rate or
capacity constraints, instantaneous rate and power Vesia
are coupled. This rate-power coupling will be representgd
the functionC} (h}*[n], p}*[n]). Throughout this paper it is
assumed that the rate-power functi@ff (h}*[n], -) is given by

Shannon’s capacity formulag(1 + A}’ [n]p;*[n]/T'7), where

The previous section described the variables to be opti-
Urnized, the constraints that those variables needed tdysatis
Bmd the CSI that will be used as input for the design. The
only remaining step to formulate our optimization problem
is to identify the metric to be maximized; different utility
(reward) functions can be used for such a purpose. In this
I represents the SNR-gap which depends on the codi grk, we use a linear combination between the sum-rate
scheme implemented [10]. At every time instantthe in] transmitted by the users minus the sensing cost. Speafficall

; ; ; m m t time n we define the instantaneous utility d8n] :=
will be used to find the (optimum) value af*[n], p}*[n] a ™ S, "
and sx [n]. Throughout the manuscript, we will write s (i), Zk O Wy [”]Ck_ (f_bk_ [n], pi*[n])) — &k skln]. Then,_ we are
w (i) andpp (i), or i[n], sx[n], wl[n], andpy[n], wherever interested in maximizing the average long-term utility

is convenient to emphasize the corresponding dependence. N—1
Once the design variables have been introduced, we identify U:=E| lim Z (1 —~y)y"U[n]| . (5)
the different constraints that the optimal schemes need to N=eo P30

satisfy [cf. ¢)]. The variable}*[n] is constrained to be boolean, Bef 4d ing th iimal desi i ent t
so thatsg[n] € {0,1} Vk. The variablew}*[n] needs to clore addressing he optimal design, It Is convenient to

obey two constraints: i) being a boolean variable, so th%lfi”fy the operation of our system. At each slotthe CR

w'[n] € {0,1} Vi, k; and i) the fact that the access isW|II run five sequential steps: s1) the Markov transition mnxat

orthogonal, so that only one user can access the chanﬁ‘@l‘.j the post—dec_ision beIiefsg[n—l]_ of the pr_evious instant
Mathematically, the latter requires are used to obtain pre-decision beliéfg[n] at instantn; s2)

the perfect (deterministic) values &f*[n] are acquired; s3)
m h7*[n] andbyg[n] are used to find} [n]; s4) the values of} [n],
Xm:w’“ n]< 1 vk, n. @ a?u:g z]k[n] for[trle channels for V]:/Lilib;;[n] =1, are uske[d]to
get the post-decision beliets; [n]; s5) h}*[n] and by [n] are
The constraints that the power variables need to satisfyijareused to find the optimal value af};**[n] and p}**[n], and
pyt[n] > 0; i) each user is allowed to transmit a maximumhe SUs transmit accordingly. Several of these steps requir
long-term power, denoted ky™. To formulate the second con-exchange of signalling. Except for that related to the sensi
straint, we consider theaormalizedexponentially decreasing of the activity of the PUs, we assume that the acquisition
window (1—~)~™ with 0 < v < 1, and require the satisfactionand exchange of information are ideal (instantaneous awnd er
of the following M constraints free) and do not entail any cost.
As already mentioned, most works design the sensing policy

N-1 )
. n mro1.m m [cf. s3)] and the RA policy [cf. s5)] separately. The apptoac
E ngnoo ;)(1 — Zk wi' ek o] | <™, ¥m, (3) in this paper is to design them jointly. To do so, we start

by finding the optimal RA scheme forfaed sensing policy.
which also involves the scheduling variabte® [n]. Note that This is useful because: i) it corresponds to the task that has
(3) is an average constraint (it needs to hold on the longter to be carried out in s5); and ii) the expression for the optima
while (2) is an instantaneous (short-term) constraint. wi™*[n] andp;*[n] as a function o’ [n] and by [n] will be
The harm (interference) that SUs cause to PU must B&ed to find the optimal sensing in s3).
kept under control. Interference occurs whern] = 1 and
> witln] =1 (a secondary user is transmitting into thi .
band). In this work, we are interested in limiting the proibab A. Optimal RA
ity of SUs interfering each of the PUs. Note that since errors To formulate the problem that gives rise to the optimal RA
in sensing are inevitable, a zero probability of interfeenan we have to take into account two important facts. The first one
not be guaranteed. Specifically,df represents the maximumis that the expression for the optimal RA needs to hold for any
probability of interference that theth PU can tolerate, then sensing policy. Since modifying the value 9fin] will modify
the constraintPr{}  w;*[n] = 1lax = 1} < 6, needs to the value ofbj[n], the latter implies that the expression of
be satisfied. Using Bayes’ theorem, the constraint can be tiee optimal RA needs to hold for any value bf[n]; i.e.,
written as: needs to be a function ob;[n]. The second one is that
N1 the sensing decisions; (i[n]) are assumed to be fixed. This

. am m « implies that the terms and constraints which only depend on
B ;(1 M axln] Zm witlnl | /Ak < o, VE, sk[n] can be dropped. Hence, i) the constraiptn] € {0,1}

(4) does not need to be considered here, and ii) the sensing cost
where A;, denotes the long-term probability of tikéh band term in (5) can be dropped. To account for ii) we define the
being occupied by théth PU. Clearly, (4) is a long-term con-simplified utility asUr4 := > ko BIMN o0 Zf:’;ol(l —7)
straint, so that, can be readily interpreted as the maximumy™wy* [n|C;7* (h7*[n], pp*[n])]. Under all previous considera-
fraction of time that SUs can interfere ti¢h PU. tions, the optimal RA schemes are obtained as the solution



of the following problem: IV. OPTIMAL SENSING DECISION

max Ura (6a) In section 11l-A, the RA scheme was obtained as the solution
wi [n],pi [n] of a convex problem, which was solved using a dual approach.
s.to:  (2), (3), (4), wi'[n] € {0,1},pi*[n] > 0. (6b) The design optimization was carried out supposing that the

. ; ' ing decisions were fixed. However, it became apparent
This problem was solved in [9], [14]. The approach to fin ensing .
the optimal RA is to dualize the long-term constraints (3[I :‘t tghe re\r/]v_a;]d_tobtl?lged b{jthe S¥ﬁtem de_pendsl_alslm,ft{)m]
and (4). For this purpose, let™ andd, denote the Lagrange cf. (9)], which itself depends on the sensing policy.

multipliers respectively associated to these constrairiien, th;thgprgr?:ir; gsblf;gvge?lfsgzg ;gﬁggnt;iiﬁgdg\s/e:ggﬁ% [S ciheme
it is shown in [9], [14] that the solution to the problem i _ ) o L
itis shown in [9], [14] that the solution to the problem is by[n], and the expressions for the optimal RA in (7)-(10).

v n) = {(C{C”)*l (h?[n],ﬂm)} ; (7) Before formulating the optimization problem that will gixise
- + . to the optimal sensing policy, some additional consideresi
wi (1] = Lo nl=max, o [n)) A (@ n1>0))> With  (8)  are in order. First, note that each sensing decision wilelav
o7 [n] == optn] — 0k [bF ] 5 and (9) impact on future sensing decisions. This is because, dueeto t
e [n] := CY(h™[n], p™*[n]) — 7P [n], (10) time correla_tlon of the primary occupancy process, theoacti
. of sensing increases the available information in the atirre
where(Cy*)~ ! (hi[n], -) denotes the inverse of the derivativeynd future time slots; and the decision of sensing a channel
of C*(hj*[n],-). The auxiliary variablesy}*[n] and ¢}*[n]  depends itself on the information available at that momient.

can be viewed as link quality indicators (LQIs). The ind@at other words, all sensing decisions form a string of eventd, a
¢i'[n] represents the best achievable trade-off between powes penefit associated to an individual decision is spreaugal
and bit rate. Similarly, The indicatas;’ [n] represents a trade time. Second, if there were no cost on sensing a channel, the
off among the rate, power, and short-term probability afplution to this problem would be to simply sense all the time
interfering. The multipliersr™ and6;. play the role of power pecause the sensing task generally entails a positivet effec
and probability of interfering price (cost). Lastly, noteat if the objective. However, since sensing a channel entailst co
the LQI for all users in a given channel is negative, then th@fe need to know the corresponding benefit in order to make
channel should not contain secondary transmissions. a decision. Having all this in mind, it becomes clear thas thi

There are several methods to set the value of the dyabblem requires the use of DP to be solved optimally.
variablesn™ and ;. The classical one, consists in using the

values that minimize the dual function associated with (6} . . . .
7™* and#;. Since (6) has zero duality gap, the optimal RA ié" Fde.ng the Optlmél sensing p0|lf3y o
found by substituting=™ = =™ and@j, = 6; into (7) and (9). Adopting the classic DP formulation [12], the optimization

Alternative methods that guarantee tracking capabiliied Problem can be written in the form of a constrained DP as:

give rise to RA schemes that are asymptotically optimalienta max U (12a)
replacingz™ and 6, with time-varying stochastic estimates; skln],wi [n]py [n]
see, e.g., [14] for detalils. s.to:  (6b), sg[n] € {0,1}. (12b)

The optimal RA in (7)-(10) will be used in the next | . h . iabl f
section as an input for the algorithms that design the opti ere,va_e aio optimize over thehsensrl1ng ]:/ana Ig.@] [%' h
sensing policy. Before addressing that design, we intredu )| Using the same approach than that for solving (6), the

some auxiliary variables that will be helpful to simplifyeth onbg-t_erm chonstrqintsl Ii:?A(G;)) i:)e dugliﬁed. Mflj_reover,t&)we
mathematical derivations in the next section. Such vee@bl>" stitute the optima (7)-(10) and the auxiliary val

are based on the expressions in (7)-(10). Specifically, @tl) |_nto the Lagrangian of (12), then th? problem_ to be
Ji[n] be thekth channel'sresource scorevariable, defined optlmlze.d can be reformulated as the followimgconstrained
as Jiy[n] = Y, wi[n]¢)[n]. Using (8), this resource DP [11]:
score can be written ady[n] = [max; ¢}’[n]] . Defining R e
the variable?™[n] := max; ¢} [n], the vectngk[n] = sk[vlbj]]ea{xo,l}zkjE[NlToo,;)(l_wV <[Fk nibilnl]. - gksk[nD
[pwinin], pvin[n] — Ox[n]], and using (9), the previous (13)
equality can be written as where the only remaining variables to be optimized sy
T Note that the two terms in (13) depend gin]. The first term

Jiln] = [Fi ["]bi["]h' (11) is the dot product of vectorB[n] (whié{ﬁ1 d]oes not depend
This expression will be useful becauBg[n] encapsulates all on sx[n]) and by [n] (which depends ors;[n]) [cf. (11)].
the information which is relevant for the RA and does ndfthe second term is just the product of constgntand the
depend on the sensing policy. Note that maximizing J,[n] sensing variable;[n]. The expression in (13) also reveals that
is equivalent to maximizing the lagrangian of (6). In fattet Fj[n] encapsulates all the information pertaining SUs which
optimal value that can be achieved at the original problemis relevant to finds;[n]. In other words, instead of knowing
the same than that of an equivalent problem, in which there/i§ [n], w;"*[n] andp}**[n], it suffices to knowF[n]. Last but
a single virtual user (thevinner), whose LQI in each channelnot least, (13) manifests that the sensing decision will been
k and instantn is ¢ [n]. For this reasony?™[n] will be comparing the sensing cost with the increase in the expected
referred to as the LQI of channgl LQI after sensing the channel.



To facilitate the solution of (13), the following facts wille If, for the contrary,s;[n] = 1, then the belief is corrected
considered. The problem in (13) can be modeled as a partiaigcording to (1), and updated in the transition to slot 1:
observable Markov decision process (POMDP) which depends ]
on random variables that are discrete (occupancy variables E [Vk " (bifn + 1])"9’“[”] - 1} -
ax[n]) and continuous (channel gain§[n]). However, since
hi*[n] are perfectly known and independent across time, the
problem can be posed as a POMDP whose state space is onI% o ) o
ax[n]. The second fact is that problem (13) can be separatedbstituting the previous equalities into (15):
(decoupled) across channels. This fact is true becauseAhe R
problem in the dual domain was separable across channels
and becausei;[n]| are assumed to be independent acrosse, 4 3~ [Fk[n]:rDzbk[n]h+Vpr(z|bk[n})‘—/;+1(pknzbk[n])}]

1
S Prelbu )V b (gl ).
z=0

Vi (byln]) = B[ max { [Fe[n]"brn]] , + 7+ (Pybyln),

channels. As a result, the optimal sensing policy can bedoun =0 1 Psbln]

by solving K discrete-state-space POMDPs . The reward (19)
function [12] corresponding tdith POMDP is Ri[n] := where the expectation operator is taken oWf[n]. The
—&pskn] + {Fg[n]bf[n]] . sensing decision can be written as:

siln] = argmax s ([F{[nlbiln]] , +7V " (Pybyln))+(1 - s)-
B. Formulation of Bellman’s Equation L

In order to obtain the optimal sensing decisigifin], we just (=& + >_ [F [nD=bg[n]] , +y Pr(z[be[n)) Vi (ThpE))
have to compare the expected sum rewardsidn] = 0 and =0 (20)
for si[n] = 1. The value ofs,[n] will affect: i) the expected ) ] ) )
reward at time slot, and ii) the expected rewards for the time-[bilonly step left is to find the expression ernIlfnCt'on
slots aftern. The latter is true because the beliefs for futurkx ~ ()- Due to the formulation chosen for the D™ ()
instants depend on the current sensing decision. To accol§rft Stationary function whose input is the instantaneolisfbe
for this effect in the formulation, we introduce tifexpected) SINce the gains of the secondary channels are continuas, th
value function?; (by,[n]), which represents the expected sunfalue function is a piecewise linear convex (PWLC) function
reward if we reach time slot with a specifiedby,[n]. The with infinite linear components. Hence, the value function

standard Bellman’s equations that drive the optimal sensif?Ust be computed numerically. A standard approach is to
decision and the value function are-: sample the belief space and use a Monte Carlo method to

estimate the mean ové 12].
sp[n] = argmax E [Ry[n]|sk[n] = s] + ! véty[n] [12]
s€{0,1}

A (14)
+E [V (by[n + 1])|si[n] = ] V. NUMERICAL RESULTS
—n _ _ This section analyzes the feasibility and optimality of the
Vil (bi[n]) = s?%%fi} = [Rk[n”sk[n] - S] + (15) developed joint sensing and RA schemes. Since the optimal
+E [V (by[n + 1])|sk[n] = 5] RA developed in section Ill-A were analyzed in [9], [14],

this section focuses on the optimal joint sensing and RA
where the termE|[Ry[n]|si.[n] = s] is theshort-termexpected scheme. The default setup of the simulation is the following
reward conditioned tey[n] = s; and the termE [V, *! (br[n+ 1 = 4; K = 4; the secondary normalized channel gains are
1])|s[n] = s] is the expected sum-reward to be obtained iRayleigh distributed withE [h}"[n]] = 3.16Vk, m. The aver-
all future time instants, conditioned tg;[n] = s. Next, we age power limits argp’, p%, 5, '] = [20, 16, 14, 10], normal-
describe how to obtain the expressions for these two termszed to the average noise power. The maximum interference
The expected short-term reward is calculated as f0||0WS-dfobabiIities allowed in these channels d, 62, 03, 64] =
sp[n] = 0, thenbi[n] = by[n] and E [Rx[n]|sk[n] = 0] = (0.3, 0.05, 0.1, 0.1]. The primary occupancy dynamics and
[Fx[n]"bg[n]]+. If siln] = 1, then the expected short-termthe sensor probability errors follow a set-up similar tottha
reward is found by averaging over the sensor outcepie] used in the simulations of [6]. The chosen parameters are

and subtracting the cost of sensig{R[n]|sk[n] = 1] = P, = [0.95,0.02;0.05,0.98)vk; [PF'A, PFA PFA PFA] =
—& + Y1 Pr(zn] = z[bi[n])[Fr[n]"bf (bi[n],2)]l+.  [0.09,0.09,0.05,0.05], and [PMP, pMD pMD pMD]  —
Substituting (1) into the latter yields [0.08,0.08,0.03,0.03]. The sensing costs have been chosen

1 to be approximately the average utility gain in a single time
E[Rk[n]|sk[n] = 1] = =& + Y _ [Fk[n]TDzbk[n]} . (16) slotin a single channel¢;, &2, &3, &) = [1,1.8,1,1.8].
=0 + The sensing and RA scheme developed in this paper is com-
The expressioiE [anﬂ(bk[n n 1])‘%[”] _ S] is the ex- pareq with three alternative sensing scheme_s: SS1) a simple
pectation of the value function in the following time instan><">"NY schgme that senses the channel unn‘orrr_ﬂy at ra_ndom
Wlllth probability p,; SS2) a sequential (round-robin) sensing

n + 1, which equals the expected, discounted, sum-reward | ; ; . .
L . . scheme used in the simulations of [9] which senses the channe
all future time instants. I§;[n] = 0, then there is no correction

step. onlv the update step is performed. and one out of each, time slots; SS3) a myopic policy that uses
P i y P PSP o the scheme developed in this paper but set the value function
E [V (bi[n + 1])|sk[n] = 0] = VT (Pybi[n]). (17) to zero (i.e.V;**' = 0); and SS4) optimal sensing scheme



developed in this paper: the value function is found using VI. CONCLUSIONS

the Value lteration procedure [12], approximating the ®alu jointly optimal sensing and RA schemes for an interweave
function with polynomial regression. The hyperparametgrs cr with multiple SUs and PUs have been designed. The
and N, in SS1 and SS3 are chosen such that the proportigfhemes were designed to maximize the sum-rate of the
of sensed/not sensed slots is the same as in SS4. SUs while adhering to constraints that limit the long-term
Three test cases are considered: TC1) the default segdver transmitted by the SUs and the long-term probability
described at the beginning of this section; TC2) the sanaginterfering the PUs. The schemes were designed assuming
as TC1 with different values for the sensing error probabiferfect CSI of the SU links, and outdated/noisy CSI of the
ities: (P[4, PS4, P4, PI'4] = [0.05,0.04,0.07,0.06], and  pUs . Sensing a channel entails a given cost and at eachtinstan
[PMP, PMP PMP PMP] = [0.10,0.05,0.03,0.03] ; TC3) the system has to decide which channels (if any) are sensed.
the same as TC2 witlP;, = [0.921,0.032;0.079,0.968]Vk  The optimal design was addressed using a two-step strategy.
(the idle/busy ratio is the same as TC1 and TC2 but therepgst, the optimal RA for any sensing scheme was found. This

weaker time correlation). Results are listed in Table I. problem was convex and thus efficiently solvable. The second
TABLE | step used the solution found in the first step as input to solve

AVERAGE UTILITY FOR DIFFERENT SENSING SCHEMES for the optimal sensing policy. The problem in the second
step was non-convex and was solved using DP techniques.

SS1 | SS2 | SS3 | SS4 . h hat d h ; diti

TCT [ 5875 4820 4872 6592 Moreover, it was shown that due to the operating conditions

TC2 | 5,729 | 4,736 | 4,884 | 6,729 considered in the paper and the strategy followed to solee th
TC3 | 5508 | 4,723 | 4,928 | 6,271 problem, the DP that was solved in the second step entailed

The results confirm that the optimal policy SS4 outpen‘ormns“mh less complexity than that of the original joint design.

the suboptimal alternatives. In addition, we observe that i
the time correlation ofi;[n] is stronger (TC2 with respect to _ y , , _ _

- . . 1] S. Haykin, “Cognitive radio: brain-empowered wirelessmmunica-
TC3), then the utility gap of the optimal scheme relative t& tions,” IEEE. J. Sel. Areas Communol. 23, no. 2, pp. 201 — 220,
the suboptimal ones is higher. feb. 2005.

i i inai ; ; [2] R. Urgaonkar and M. Neely, “Opportunistic schedulingtiwreliability
Flr?a”y’ to gain m_sughts on the behaw_o_r of th(_? optlmal guarantees in cognitive radio network$EEE Trans. Mobile Comp.
sensing schemes, Figure 1 plots the decision regions for the o g no. 6, pp.766-777, Jun. 2009.

four channels in TC1 (one plot per channel). Since the sgnsir3] L. Musavian and S. Aissa, “Fundamental capacity limifscognitive
decision function is two-dimensional (it dependsmﬂn] and radio in fading environments with imperfect channel infatian,” IEEE

win .. . . Trans. Commun.vol. 57, no. 11, pp. 3472-3480, Nov. 2009.
©}*"[n]), the decision funC.tIOI’I can be represented as an imagg@; x. wang, “Jointly Optimal Sensing Selection and Powefosétion for
In all the plots, three regions are represented. Each okthes Cognitve Communications,JEEE Proc. of Globecom CopfMiami,
regions is associated with a different (output) valuespif] FL, Dec. 6-10, 2010.

s . E] A. G. Marques, X. Wang, and G. B. Giannakis, “Optimal $tastic
and)  wi*[n] (one if one user access the channel and zero' qya resource allocation for cognitive radios based on tigeth CSI.”
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