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Abstract—Successful deployment of cognitive radios requires
efficient sensing of the spectrum and dynamic adaptation of
the available resources according to the sensed (imperfect)
information. While most works design these two tasks separately,
in this paper the sensing and resource allocation schemes are
designed jointly. We investigate an interweave CR with multiple
secondary users that access orthogonally a set frequency bands
originally devoted to primary users. The schemes are designed to
optimize the performance of the secondary users while limiting
the “probability of interfering” the primary users. The joi nt
design is addressed using dynamic programming and nonlinear
optimization techniques. A two-step strategy that first finds the
optimal resource allocation for any sensing scheme and then
uses that solution as input to solve for the optimal sensing policy
is implemented. The two-step strategy is optimal and entails a
computational complexity much lower than that required to solve
the original formulation.

Index Terms—Cognitive radios, dynamic programming, imper-
fect channel state information, resource management.

I. I NTRODUCTION

Cognitive radios (CRs) are viewed as the next-generation
solution to alleviate the perceived spectrum scarcity. When
CRs are deployed, the secondary users (SUs) have to sense
their radio environment to optimize their communication per-
formance while avoiding (limiting) the interference to the
primary users (PUs). As a result, efficient operation of CR
requires the implementation of two critical tasks: i) sensing
the spectrum and ii) dynamic adaptation of the available
resources according to the sensed information [1]. To carry
out the sensing task two important challenges are: C1) the
presence of errors in the measurements that lead to errors
on the channel occupancy detection; and C2) the inability to
sense the totality of the time-frequency lattice due to scarcity
of resources (time, energy or sensing devices). Two additional
challenges that arise to carry out the resource allocation (RA)
task are: C3) the ability of the RA algorithms to deal with
channel imperfections; and C4) the selection of metrics that
properly quantify the reward for the SUs and the damage for
the PUs.

Many alternatives have been proposed in the CR literature
to deal with these challenges. Regarding C1, some works
deal with noisy CSI [3] or quantized CSI [5]. However, in
the context of CR only a few works have considered the
fact that the CSI may be not only noisy but also outdated,
or have incorporated those imperfections into the design of
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resource allocation algorithms [6]. Alternatives to deal with C2
based on convex optimization [7] and dynamic programming
(DP) have also been explored [6]. Regarding C3, many works
consider that the CSI is imperfect, but only a few exploit
the statistical model of these imperfections (especially for the
time correlation) to mitigate them; see, e.g., [6], [14]. Finally,
different alternatives have been considered to limit the harm
that the SUs cause to the PUs [13]. The most widely used is to
set limits on the peak (instantaneous) and average interfering
power. Some works also have tried to limit the rate loss that PU
experience [5], while others look at limiting the instantaneous
or average probability of interfering the PU (bounds on the
short-term or long-term outage probability) [2], [14].

The objective of this work is to design the sensing and
the RA policiesjointly while accounting for the challenges
C1-C4. Only a few works have addressed the joint design of
the sensing and RA policies [7], [8]. Those works consider
operating conditions different than those in this paper, which
are described next. An interweave CR with multiple SUs and
PUs is considered. SUs are able to adapt their power and
rate loadings and access orthogonally a set frequency bands.
Those bands are originally devoted to primary transmissions.
Orthogonal here means that if a secondary user is transmitting,
no other secondary user can be active in the same band.
The schemes are designed to maximize the sum-average
rate of the SUs while adhering to constraints thatlimit the
maximum “average power” that SUs transmit and the average
“probability of interfering” the PUs. It is assumed that the
CSI of the SU links is instantaneous and free of errors, while
the CSI of the PUs activity is outdated and noisy. A simple
first-order hidden Markov model is used to characterize such
imperfections. Sensing a channel band entails a given cost,
and at each instant the system has to decide which channels
(if any) are sensed.

The jointly optimal sensing and RA schemes will be
designed using dynamic programming (DP) and nonlinear
optimization techniques. DP techniques are required because
the activity of PUs is assumed to be correlated across time, so
that sensing a channel has an impact not only for the current
instant, but also for future time instants. See, e.g., [15],[8] for
relevant examples that have applied DP techniques to design
CR schemes. To solve the joint design, a two-step strategy is
implemented. First, the sensing is considered given and the
optimal RA is found forany fixed sensing scheme. This first
problem was recently solved in [9], [14]. Then, the results of
the first step are used as input to obtain the optimal sensing
policy. The motivation for using this strategy is twofold. First,
while the joint design is non convex and has to be solved
using DP techniques, the problem in the first step (optimum
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RA for a fixed sensing scheme) is convex. Second, when the
optimal RA is substituted back into the original joint design,
the resulting problem (which has to be solved over the sensing
policy) has a more favorable structure. Specifically, whilethe
original design problem was a constrained DP, the updated
one is an unconstrained DP problem which can be solved
separately for each of the channels.1

II. SYSTEM MODEL

Consider a CR scenario withM secondary users (indexed
by m) transmitting opportunistically over a frequency band
divided intoK orthogonal sub-channels (indexed byk). For
simplicity, we consider that each band has the same bandwidth
and is occupied by a different PU. We also assume that there
is a secondary base station (SBS) which is the destination of
all SU transmissions, acts as a central scheduler, collectsthe
CSI, and also performs the task of sensing the medium for
primary presence. Although this work focuses on an uplink
setup, the results can be easily extended to downlink and any-
to-any setups.

In this section we: a) describe the model for the CSI of
the secondary (S-CSI) and primary (P-CSI) networks, paying
special attention to the sensing errors; b) describe the variables
to be designed; and c) formulate the constraints that such
variables need to satisfy. The constraints will account for
the operating conditions of the SUs, the quality of service
requirements and the rules the SUs need to implement to limit
the damage (interference) caused to the PUs.

Starting with a), we first present the model for the S-CSI.
Specifically, the power gain of the channel between themth
SU and the SBS in thekth channel at timen is denoted as
hm
k [n]; it represents the noise-normalized square magnitude

of the fading coefficient. Channels are assumed to be ergodic
and independent across bands and time, and the exact value
of their instantaneous gain is assumed to be available at every
time instant. Now, we address the problem of modeling the
P-CSI. Since we consider an interweave scenario, it suffices
to know whether a given channel is occupied or not. For that
purpose, letak[n] denote a binary variable which is one if the
kth primary link is active at timen and zero otherwise. The
processak[n] is modeled as a two-state, time invariant Markov
chain. WithPxy = Pr(ak[n] = x|ak[n − 1] = y), the time
dynamics of a channel are fully described by the transition
matrixP = [P00, P01;P10, P11]. The Markovian property will
be useful to keep the DP modeling simple, and will also allow
to recursively keep track of the P-CSI [15]. The results can be
extended to account for more realistic occupation models. The
main price in such a case is an increase on the computational
load required to solve the DP.

In our model, we suppose that the SBS is equipped with
sensors to measureak[n]. However, presence of imperfections
render deterministic knowledge ofak[n] impossible. Two
sources of imperfections are considered here: i) errors in the
sensing process and ii) outdated information (because the

1Notation:x∗ denotes the optimal value of variablex; E[·] expectation;∧
the boolean “and” operator;1{·} the indicator function (1{x} = 1 if x is
true and zero otherwise); and[x]+ the projection ofx onto the non-negative
orthant, i.e.,[x]+ := max{x, 0}.

channels are not always sensed). For that purpose letsk[n]
denote a binary variable which is one if thekth channel is
sensed at timen and zero otherwise. Moreover, letzk[n]
denote the output of the sensor if indeedsk[n] = 1; i.e., if
the kth channel is sensed. We will assume that the output
of the sensor is binary and may contain errors. To model
the sensing errors, consider the probabilities of false alarm
PFA
k = Pr(zk[n] = 1|ak = 0) and miss detectionPMD

k =
Pr(zk[n] = 0|ak = 1). Such probabilities are assumed to be
known and constant across time.

Due to the aforementioned sources of imperfections, at
time n the SBS does not know the actual value ofak[n].
Rather, only a probabilistic description ofak[n] is available.
The knowledge aboutak[n] will be referred to as (instanta-
neous) beliefbk[n]. Basically,bk[n] contains the probabilities
of channelk being idle and busy conditioned toall past
measurements. Mathematically,bk[n] := [Pr(ak[n] = 0|n −
1),Pr(ak[n] = 1|n − 1)]. To account for the instants where
sk[n] = 0, we will refer to bk[n] as thepre-decisionbelief,
and introducebS

k [n] as thepost-decisionbelief. Intuitively,
bk[n] contains the information aboutak[n] at instantn − 1,
while b

S
k [n] contains the information aboutak[n] oncesk[n]

and zk[n] (if sk[n] = 1) are known. Clearly, using the time-
correlation model, the expression to get the pre-decision belief
is bk[n] = Pkb

S
k [n − 1]. Differently, the expression to get

b
S
k [n], depends on the sensing decisionsk[n]. If sk[n] = 0,

no additional information is available, so thatb
S
k [n] = bk[n].

If sk[n] = 1, the sensor outputzk[n] can be either0 (idle) or
1 (busy), and the belief is corrected as follows:

b
S
k [n] = b

S
k [n]

(

bk[n], z
)

=
Dzbk[n]

Pr(zk[n] = z
∣

∣bk[n])
(1)

whereDz with z ∈ {0, 1} is a 2 × 2 diagonal matrix with
entries [Dz]1,1 := Pr(zk[n] = z|ak = 0) and [Dz ]2,2 :=
Pr(zk[n] = z|ak = 1). The denominator is the likelihood of
the sensor outcome, and it can be calculated asPr(zk[n] =
z
∣

∣bk[n]) = 1
T
Dzbk[n]. Finally, if no information about the

initial state is available,bk[0] is initialized as the stationary
distribution of the Markov chain associated to the channel.

Vectorsbk[n] andb
S
k [n] represent the P-CSI at instantn

and will be used as input to design our optimal schemes. For
mathematical convenience, vectorsbk[n] and b

S
k [n] (for all

k) and variableshm
k [n] (for all k,m) are gathered into vector

i[n]. Clearly, i[n] represents the overall CSI of the system.
Now, we move to the description of the variables to be

designed [cf. b)]. The first set of variables to be optimized is
the sensing decision variablessk[n]. For such a purpose, we
defineξk as the (fixed) positive cost which is paid every time
that sk[n] = 1. Clearly, if ξk = 0, then the optimal solution
is to setsk[n] = 1 for all n. However, if ξk > 0, then the
system has to decide whether to sense or not. As it will be
shown in the upcoming sections, such a decision depends on
the level of CSI uncertainty and the potential benefits that
using the channel would bring to the system. The second
set of variables to be optimized is the access (scheduling)
decision variableswm

k [n]. Specifically,wm
k [n] is one if the

mth SU is scheduled to transmit into thekth band at timen
and zero otherwise. The third and last set of variables is the



power loadingspmk [n]. Specifically, provided thatwm
k [n] = 1,

variable pmk [n] denotes the instantaneous power transmitted
over thekth band by themth SU. Under bit error rate or
capacity constraints, instantaneous rate and power variables
are coupled. This rate-power coupling will be represented by
the functionCm

k (hm
k [n], pmk [n]). Throughout this paper it is

assumed that the rate-power functionCm
k (hm

k [n], ·) is given by
Shannon’s capacity formulalog(1 + hm

k [n]pmk [n]/Γm
k ), where

Γm
k represents the SNR-gap which depends on the coding

scheme implemented [10]. At every time instantn, the i[n]
will be used to find the (optimum) value ofwm

k [n], pmk [n]
andsk[n]. Throughout the manuscript, we will writei, sk(i),
wm

k (i) andpmk (i), or i[n], sk[n], wm
k [n], andpmk [n], wherever

is convenient to emphasize the corresponding dependence.
Once the design variables have been introduced, we identify

the different constraints that the optimal schemes need to
satisfy [cf. c)]. The variablesmk [n] is constrained to be boolean,
so that sk[n] ∈ {0, 1} ∀k. The variablewm

k [n] needs to
obey two constraints: i) being a boolean variable, so that
wm

k [n] ∈ {0, 1} ∀m, k; and ii) the fact that the access is
orthogonal, so that only one user can access the channel.
Mathematically, the latter requires

∑

m

wm
k [n] ≤ 1 ∀k, n. (2)

The constraints that the power variables need to satisfy are: i)
pmk [n] ≥ 0; ii) each user is allowed to transmit a maximum
long-term power, denoted by̌pm. To formulate the second con-
straint, we consider thenormalizedexponentially decreasing
window (1−γ)γn with 0 < γ < 1, and require the satisfaction
of the followingM constraints

E

[

lim
N→∞

N−1
∑

n=0

(1− γ)γn
∑

k
wm

k [n]pmk [n]

]

≤ p̌m, ∀m, (3)

which also involves the scheduling variableswm
k [n]. Note that

(3) is an average constraint (it needs to hold on the long-term),
while (2) is an instantaneous (short-term) constraint.

The harm (interference) that SUs cause to PU must be
kept under control. Interference occurs whenak[n] = 1 and
∑

m wm
k [n] = 1 (a secondary user is transmitting into thekth

band). In this work, we are interested in limiting the probabil-
ity of SUs interfering each of the PUs. Note that since errors
in sensing are inevitable, a zero probability of interference can
not be guaranteed. Specifically, ifǒk represents the maximum
probability of interference that thekth PU can tolerate, then
the constraintPr{

∑

m wm
k [n] = 1|ak = 1} ≤ ǒk needs to

be satisfied. Using Bayes’ theorem, the constraint can be re-
written as:E[

lim
N→∞

N−1
∑

n=0

(1− γ)γnak[n]
∑

m
wm

k [n]

]

/Ak ≤ ǒk, ∀k,

(4)
whereAk denotes the long-term probability of thekth band
being occupied by thekth PU. Clearly, (4) is a long-term con-
straint, so thaťok can be readily interpreted as the maximum
fraction of time that SUs can interfere thekth PU.

III. PROBLEM FORMULATION AND OPTIMAL RA

The previous section described the variables to be opti-
mized, the constraints that those variables needed to satisfy,
and the CSI that will be used as input for the design. The
only remaining step to formulate our optimization problem
is to identify the metric to be maximized; different utility
(reward) functions can be used for such a purpose. In this
work, we use a linear combination between the sum-rate
transmitted by the users minus the sensing cost. Specifically,
at time n we define the instantaneous utility asU [n] :=
∑

k (
∑

m wm
k [n]Cm

k (hm
k [n], pmk [n])) − ξksk[n]. Then, we are

interested in maximizing the average long-term utility

Ū := E[

lim
N→∞

N−1
∑

n=0

(1− γ)γnU [n]

]

. (5)

Before addressing the optimal design, it is convenient to
clarify the operation of our system. At each slotn the CR
will run five sequential steps: s1) the Markov transition matrix
and the post-decision beliefsbS

k [n− 1] of the previous instant
are used to obtain pre-decision beliefsbk[n] at instantn; s2)
the perfect (deterministic) values ofhm

k [n] are acquired; s3)
hm
k [n] andbk[n] are used to finds∗k[n]; s4) the values ofs∗k[n],

and zk[n] for the channels for whichs∗k[n] = 1, are used to
get the post-decision beliefsbS

k [n]; s5) hm
k [n] andb

S
k [n] are

used to find the optimal value ofwm∗
k [n] and pm∗

k [n], and
the SUs transmit accordingly. Several of these steps require
exchange of signalling. Except for that related to the sensing
of the activity of the PUs, we assume that the acquisition
and exchange of information are ideal (instantaneous and error
free) and do not entail any cost.

As already mentioned, most works design the sensing policy
[cf. s3)] and the RA policy [cf. s5)] separately. The approach
in this paper is to design them jointly. To do so, we start
by finding the optimal RA scheme for afixed sensing policy.
This is useful because: i) it corresponds to the task that has
to be carried out in s5); and ii) the expression for the optimal
wm∗

k [n] andpm∗
k [n] as a function ofhm

k [n] andbSk [n] will be
used to find the optimal sensing in s3).

A. Optimal RA

To formulate the problem that gives rise to the optimal RA
we have to take into account two important facts. The first one
is that the expression for the optimal RA needs to hold for any
sensing policy. Since modifying the value ofsk[n] will modify
the value ofbS

k [n], the latter implies that the expression of
the optimal RA needs to hold for any value ofbS

k [n]; i.e.,
needs to be a function ofbS

k [n]. The second one is that
the sensing decisionssk(i[n]) are assumed to be fixed. This
implies that the terms and constraints which only depend on
sk[n] can be dropped. Hence, i) the constraintsk[n] ∈ {0, 1}
does not need to be considered here, and ii) the sensing cost
term in (5) can be dropped. To account for ii) we define the
simplified utility asŪRA :=

∑

k,mE[limN→∞

∑N−1
n=0 (1− γ)

γnwm
k [n]Cm

k (hm
k [n], pmk [n])]. Under all previous considera-

tions, the optimal RA schemes are obtained as the solution



of the following problem:

max
wm

k
[n],pm

k
[n]

ŪRA (6a)

s. to : (2), (3), (4), wm
k [n] ∈ {0, 1}, pmk [n] ≥ 0. (6b)

This problem was solved in [9], [14]. The approach to find
the optimal RA is to dualize the long-term constraints (3)
and (4). For this purpose, letπm andθk denote the Lagrange
multipliers respectively associated to these constraints. Then,
it is shown in [9], [14] that the solution to the problem is

pm∗
k [n] :=

[

(Ċm
k )−1 (hm

k [n], πm)
]

+
; (7)

wm∗
k [n] := 1{(φm

k
[n]=maxl φ

l

k
[n]) ∧ (φm

k
[n]>0)}, with (8)

φm
k [n] := ϕm

k [n]− θk
[

b
S
k [n]

]

2
, and (9)

ϕm
k [n] := Cm

k (hm
k [n], pm∗

k [n])− πmpm∗
k [n], (10)

where(Ċm
k )−1(hm

k [n], ·) denotes the inverse of the derivative
of Cm

k (hm
k [n], ·). The auxiliary variablesϕm

k [n] and φm
k [n]

can be viewed as link quality indicators (LQIs). The indicator
ϕm
k [n] represents the best achievable trade-off between power

and bit rate. Similarly, The indicatorφm
k [n] represents a trade

off among the rate, power, and short-term probability of
interfering. The multipliersπm andθk play the role of power
and probability of interfering price (cost). Lastly, note that if
the LQI for all users in a given channel is negative, then that
channel should not contain secondary transmissions.

There are several methods to set the value of the dual
variablesπm andθk. The classical one, consists in using the
values that minimize the dual function associated with (6):
πm∗ andθ∗k. Since (6) has zero duality gap, the optimal RA is
found by substitutingπm = πm∗ andθk = θ∗k into (7) and (9).
Alternative methods that guarantee tracking capabilitiesand
give rise to RA schemes that are asymptotically optimal entail
replacingπm and θk with time-varying stochastic estimates;
see, e.g., [14] for details.

The optimal RA in (7)-(10) will be used in the next
section as an input for the algorithms that design the optimal
sensing policy. Before addressing that design, we introduce
some auxiliary variables that will be helpful to simplify the
mathematical derivations in the next section. Such variables
are based on the expressions in (7)-(10). Specifically, let
Jk[n] be thekth channel’sresource scorevariable, defined
as Jk[n] :=

∑

m wm∗
k [n]φm

k [n]. Using (8), this resource
score can be written asJk[n] =

[

maxl φ
l∗
k [n]

]

+
. Defining

the variableϕwin
k [n] := maxl ϕ

l
k[n], the vectorFk[n] :=

[ϕwin
k [n], ϕwin

k [n] − θk[n]]
T , and using (9), the previous

equality can be written as

Jk[n] =
[

F
T
k [n]b

S
k [n]

]

+
. (11)

This expression will be useful becauseFk[n] encapsulates all
the information which is relevant for the RA and does not
depend on the sensing policy. Note that maximizing

∑

k Jk[n]
is equivalent to maximizing the lagrangian of (6). In fact, the
optimal value that can be achieved at the original problem is
the same than that of an equivalent problem, in which there is
a single virtual user (thewinner), whose LQI in each channel
k and instantn is ϕwin

k [n]. For this reason,ϕwin
k [n] will be

referred to as the LQI of channelk.

IV. OPTIMAL SENSING DECISION

In section III-A, the RA scheme was obtained as the solution
of a convex problem, which was solved using a dual approach.
The design optimization was carried out supposing that the
sensing decisions were fixed. However, it became apparent
that the reward obtained by the system depends also onb

S
k [n]

[cf. (9)], which itself depends on the sensing policy.
The main objective of this section is to develop an scheme

that optimizes the sensing policy taking as inputs:hm
k [n],

bk[n], and the expressions for the optimal RA in (7)-(10).
Before formulating the optimization problem that will giverise
to the optimal sensing policy, some additional considerations
are in order. First, note that each sensing decision will have an
impact on future sensing decisions. This is because, due to the
time correlation of the primary occupancy process, the action
of sensing increases the available information in the current
and future time slots; and the decision of sensing a channel
depends itself on the information available at that moment.In
other words, all sensing decisions form a string of events, and
the benefit associated to an individual decision is spread along
time. Second, if there were no cost on sensing a channel, the
solution to this problem would be to simply sense all the time,
because the sensing task generally entails a positive effect on
the objective. However, since sensing a channel entails a cost,
we need to know the corresponding benefit in order to make
a decision. Having all this in mind, it becomes clear that this
problem requires the use of DP to be solved optimally.

A. Finding the optimal sensing policy

Adopting the classic DP formulation [12], the optimization
problem can be written in the form of a constrained DP as:

max
sk[n],wm

k
[n],pm

k
[n]

Ū (12a)

s. to : (6b), sk[n] ∈ {0, 1}. (12b)

Here, we also optimize over the sensing variablessk[n] [cf.
(6)]. Using the same approach than that for solving (6), the
long-term constraints in (6b) are dualized. Moreover, if we
substitute the optimal RA (7)-(10) and the auxiliary variables
(11) into the Lagrangian of (12), then the problem to be
optimized can be reformulated as the followingunconstrained
DP [11]:

max
sk [n]∈{0,1}

∑

k

E[

lim
N→∞

N−1
∑

n=0

(1−γ)γn
(

[

F
T
k [n]bS

k [n]
]

+
− ξksk[n]

)

]

(13)
where the only remaining variables to be optimized aresk[n].
Note that the two terms in (13) depend onsk[n]. The first term
is the dot product of vectorsFk[n] (which does not depend
on sk[n]) and b

S
k [n] (which depends onsk[n]) [cf. (11)].

The second term is just the product of constantξk and the
sensing variablesk[n]. The expression in (13) also reveals that
Fk[n] encapsulates all the information pertaining SUs which
is relevant to finds∗k[n]. In other words, instead of knowing
hm
k [n], wm∗

k [n] andpm∗
k [n], it suffices to knowFk[n]. Last but

not least, (13) manifests that the sensing decision will be made
comparing the sensing cost with the increase in the expected
LQI after sensing the channel.



To facilitate the solution of (13), the following facts willbe
considered. The problem in (13) can be modeled as a partially
observable Markov decision process (POMDP) which depends
on random variables that are discrete (occupancy variables
ak[n]) and continuous (channel gainshm

k [n]). However, since
hm
k [n] are perfectly known and independent across time, the

problem can be posed as a POMDP whose state space is only
ak[n]. The second fact is that problem (13) can be separated
(decoupled) across channels. This fact is true because the RA
problem in the dual domain was separable across channels
and becauseak[n] are assumed to be independent across
channels. As a result, the optimal sensing policy can be found
by solving K discrete-state-space POMDPs . The reward
function [12] corresponding tokth POMDP is Rk[n] :=

−ξksk[n] +
[

F
T
k [n]b

S
k [n]

]

+
.

B. Formulation of Bellman’s Equation

In order to obtain the optimal sensing decisions∗k[n], we just
have to compare the expected sum reward forsk[n] = 0 and
for sk[n] = 1. The value ofsk[n] will affect: i) the expected
reward at time slotn, and ii) the expected rewards for the time
slots aftern. The latter is true because the beliefs for future
instants depend on the current sensing decision. To account
for this effect in the formulation, we introduce the(expected)
value functionV̄ n

k (bk[n]), which represents the expected sum
reward if we reach time slotn with a specifiedbk[n]. The
standard Bellman’s equations that drive the optimal sensing
decision and the value function are:

s∗k[n] = arg max
s∈{0,1}

E [

Rk[n]
∣

∣sk[n] = s
]

+

γE [

V̄ n+1
k (bk[n+ 1])

∣

∣sk[n] = s
]

(14)

V̄ n
k (bk[n]) = max

s∈{0,1}
E [

Rk[n]
∣

∣sk[n] = s
]

+

γE [

V̄ n+1
k (bk[n+ 1])

∣

∣sk[n] = s
]

(15)

where the termE[Rk[n]
∣

∣sk[n] = s] is theshort-termexpected
reward conditioned tosk[n] = s; and the termE[V̄ n+1

k (bk[n+
1])

∣

∣sk[n] = s] is the expected sum-reward to be obtained in
all future time instants, conditioned tosk[n] = s. Next, we
describe how to obtain the expressions for these two terms.

The expected short-term reward is calculated as follows. If
s∗k[n] = 0, thenb

S
k [n] = bk[n] andE [

Rk[n]
∣

∣sk[n] = 0
]

=
[Fk[n]

T
bk[n]]+. If s∗k[n] = 1, then the expected short-term

reward is found by averaging over the sensor outcomezk[n]
and subtracting the cost of sensing:E[Rk[n]

∣

∣sk[n] = 1] =

−ξk +
∑1

z=0 Pr(zk[n] = z
∣

∣bk[n])[Fk[n]
T
b
S
k (bk[n], z)]+.

Substituting (1) into the latter yieldsE[Rk[n]
∣

∣sk[n] = 1] = −ξk +

1
∑

z=0

[

Fk[n]
T
Dzbk[n]

]

+
. (16)

The expressionE [

V̄ n+1
k (bk[n+ 1])

∣

∣sk[n] = s
]

is the ex-
pectation of the value function in the following time instant
n+ 1, which equals the expected, discounted, sum-reward in
all future time instants. Ifsk[n] = 0, then there is no correction
step, only the update step is performed, andE [

V̄ n+1
k (bk[n+ 1])

∣

∣sk[n] = 0
]

= V̄ n+1
k (Pkbk[n]). (17)

If, for the contrary,sk[n] = 1, then the belief is corrected
according to (1), and updated in the transition to slotn+ 1:E [

V̄ n+1
k (bk[n+ 1])

∣

∣sk[n] = 1
]

=
1

∑

z=0

Pr(z
∣

∣bk[n])V̄
n+1
k (Pkb

S
k (bk[n], z)).

(18)

Substituting the previous equalities into (15):

V̄ n
k (bk [n]) = E[

max
{[

Fk[n]
T
bk[n]

]

+
+ γV̄ n+1

k
(Pkbk[n]),

−ξk +
1

∑

z=0

[

Fk [n]
T
Dzbk [n]

]

+
+ γ Pr(z

∣

∣bk[n])V̄
n+1
k

(

P
k
Dzb

k
[n]

1T Dzb
k
[n]

)}

]

(19)

where the expectation operator is taken overFk[n]. The
sensing decision can be written as:

s∗k[n] = argmax
s∈{0,1}

s·
(

[

F
T
k [n]bk[n]

]

+
+γV̄ n+1

k
(Pkbk[n])

)

+(1− s)·

(

−ξk +
1

∑

z=0

[

F
T
k [n]Dzbk[n]

]

+
+γ Pr(z

∣

∣bk[n])V̄
n+1
k

(

P
k
Dzb

k
[n]

1T Dzb
k
[n]

)

)

(20)

The only step left is to find the expression for function
V̄ n+1
k (·). Due to the formulation chosen for the DP,V̄ n+1

k (·)
is a stationary function whose input is the instantaneous belief.
Since the gains of the secondary channels are continuous, the
value function is a piecewise linear convex (PWLC) function
with infinite linear components. Hence, the value function
must be computed numerically. A standard approach is to
sample the belief space and use a Monte Carlo method to
estimate the mean overFk[n] [12].

V. NUMERICAL RESULTS

This section analyzes the feasibility and optimality of the
developed joint sensing and RA schemes. Since the optimal
RA developed in section III-A were analyzed in [9], [14],
this section focuses on the optimal joint sensing and RA
scheme. The default setup of the simulation is the following:
M = 4; K = 4; the secondary normalized channel gains are
Rayleigh distributed withE [hm

k [n]] = 3.16∀k,m. The aver-
age power limits are[p̌1, p̌2, p̌3, p̌4] = [20, 16, 14, 10], normal-
ized to the average noise power. The maximum interference
probabilities allowed in these channels are[ǒ1, ǒ2, ǒ3, ǒ4] =
[0.3, 0.05, 0.1, 0.1]. The primary occupancy dynamics and
the sensor probability errors follow a set-up similar to that
used in the simulations of [6]. The chosen parameters are
Pk = [0.95, 0.02; 0.05, 0.98]∀k; [PFA

1 , PFA
2 , PFA

3 , PFA
4 ] =

[0.09, 0.09, 0.05, 0.05], and [PMD
1 , PMD

2 , PMD
3 , PMD

4 ] =
[0.08, 0.08, 0.03, 0.03]. The sensing costs have been chosen
to be approximately the average utility gain in a single time
slot in a single channel:[ξ1, ξ2, ξ3, ξ4] = [1, 1.8, 1, 1.8].

The sensing and RA scheme developed in this paper is com-
pared with three alternative sensing schemes: SS1) a simple
sensing scheme that senses the channel uniformly at random
with probability ps; SS2) a sequential (round-robin) sensing
scheme used in the simulations of [9] which senses the channel
one out of eachNs time slots; SS3) a myopic policy that uses
the scheme developed in this paper but set the value function
to zero (i.e.,V̄ n+1

k = 0); and SS4) optimal sensing scheme



developed in this paper: the value function is found using
the Value Iteration procedure [12], approximating the value
function with polynomial regression. The hyperparametersps
andNs in SS1 and SS3 are chosen such that the proportion
of sensed/not sensed slots is the same as in SS4.

Three test cases are considered: TC1) the default setup
described at the beginning of this section; TC2) the same
as TC1 with different values for the sensing error probabil-
ities: [PFA

1 , PFA
2 , PFA

3 , PFA
4 ] = [0.05, 0.04, 0.07, 0.06], and

[PMD
1 , PMD

2 , PMD
3 , PMD

4 ] = [0.10, 0.05, 0.03, 0.03] ; TC3)
the same as TC2 withPk = [0.921, 0.032; 0.079, 0.968]∀k
(the idle/busy ratio is the same as TC1 and TC2 but there is
weaker time correlation). Results are listed in Table I.

TABLE I
AVERAGE UTILITY FOR DIFFERENT SENSING SCHEMES

SS1 SS2 SS3 SS4
TC1 5,875 4,829 4,872 6,592
TC2 5,729 4,736 4,884 6,729
TC3 5,508 4,723 4,928 6,271

The results confirm that the optimal policy SS4 outperforms
the suboptimal alternatives. In addition, we observe that if
the time correlation ofak[n] is stronger (TC2 with respect to
TC3), then the utility gap of the optimal scheme relative to
the suboptimal ones is higher.

Finally, to gain insights on the behavior of the optimal
sensing schemes, Figure 1 plots the decision regions for the
four channels in TC1 (one plot per channel). Since the sensing
decision function is two-dimensional (it depends onbk[n] and
ϕwin
k [n]), the decision function can be represented as an image.

In all the plots, three regions are represented. Each of these
regions is associated with a different (output) value ofs∗k[n]
and

∑

m wm∗
k [n] (one if one user access the channel and zero

otherwise). Note that the size and shape of the sensing region
for channelk depend on the values of{Pk, P

FA
k , PMD

k , ξk}.
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Fig. 1. Decision maps (regions) for the four channels in TC1. The
light gray area in the center corresponds to the sensing decision.

VI. CONCLUSIONS

Jointly optimal sensing and RA schemes for an interweave
CR with multiple SUs and PUs have been designed. The
schemes were designed to maximize the sum-rate of the
SUs while adhering to constraints that limit the long-term
power transmitted by the SUs and the long-term probability
of interfering the PUs. The schemes were designed assuming
perfect CSI of the SU links, and outdated/noisy CSI of the
PUs . Sensing a channel entails a given cost and at each instant
the system has to decide which channels (if any) are sensed.
The optimal design was addressed using a two-step strategy.
First, the optimal RA for any sensing scheme was found. This
problem was convex and thus efficiently solvable. The second
step used the solution found in the first step as input to solve
for the optimal sensing policy. The problem in the second
step was non-convex and was solved using DP techniques.
Moreover, it was shown that due to the operating conditions
considered in the paper and the strategy followed to solve the
problem, the DP that was solved in the second step entailed
much less complexity than that of the original joint design.
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