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Abstract—Cognitive radios implement adaptive resource allo-
cation schemes that exploit knowledge of the channel state infor-
mation to optimize the performance of the secondary users while
limiting the interference to the primary users. The algorithms
in this paper are designed to maximize the weighted sum-rate
of secondary users which transmit orthogonally and adhere to
three different constraints: i) limits on the long-term (average)
power at each secondary transmitter; ii) limits on the long-term
interfering power at each primary receiver; and iii) limits on
the long-term capacity loss inflicted to each primary receiver.
Although the long-term capacity constraints render the resultant
optimization problem non-convex, it holds that it has zero-duality
gap and that, due to the favorable structure in the dual domain,
it can be efficiently solved.

Index Terms—Cognitive radios, resource management, non-
linear optimization.

I. I NTRODUCTION

The perceived spectrum under-utilization along with the
proliferation of new wireless services have motivated recent
research on dynamic spectrum management and wireless cog-
nitive radios (CRs) which are capable of sensing and accessing
the spectrum dynamically [3], [10], [8]. Secondary users (SUs)
in the CR adapt their transmission to limit the interference
to the primary user (PU) receivers which hold the licence
of the frequency band. To carry out these tasks, the CR
needs to sense not only the gain of the secondary network
links, but also the channels between secondary transmitters
and primary receivers. The information of secondary links
allows SUs to mitigate fading and take advantage of good
channel realizations, while the information of primary links
guarantees that interference is kept under control. Based on
the measurements obtained through sensing, SUs will adapt
their available resources (here, power, rate and scheduling
coefficients) to the channel conditions. The merits of adaptive
schemes which exploit knowledge of statistical and instanta-
neous channel state information (CSI) to optimally allocate
the transmit resources in traditional wireless systems are
well documented; see [2, Chap. 9]. However, for channel-
adaptive schemes to be deployed in CR scenarios, several
challenges not present in traditional wireless networks need to
be considered. Among the most important design challenges
we find that instantaneous CSI (especially that of the primary
network) is difficult to acquire [11], [17] and that the adaptive
schemes need to satisfy additional constraints to keep the
interference low [10], [8]. Different alternatives have been
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proposed in the literature to cope with the latter challenge.
For example, to keep interference under control some works
limit the power of the interference at the primary receiver
side, either by imposing instantaneous (short-term) or average
(long-term) interference power constraints; see, e.g., [12], [11],
[16]. The latter are better suited for fading channels because
they can exploit the diversity of the interfering link [12].Other
designs use a probabilistic approach to limit the probability of
interfering the primary transmissions (outage probability); see,
e.g., [6], [15], [17].

Motivated by these findings, we design resource allocation
(RA) algorithms that optimize the communication perfor-
mance of the SUs and limit the interference to the PUs. We
focus onunderlay CRs where SUs adapt their power and rate
loadings dynamically, and access orthogonally a set frequency
bands which are primarily devoted to PU transmissions. Or-
thogonal here means that if a SU is transmitting, no other
SU can be active in the same band. The RA schemes are
then obtained as the solution of a weighted sum-average rate
maximization subject to three types of constraints: i) limits
on the long-term (average) power transmitted by each SU; ii)
limits on the long-term interfering power at each PU [16];
and iii) limits on the long-term capacity loss inflicted to each
PU. Consideration of iii) is challenging because the interfering
(SU) powers render the capacity term non-convex, and it is the
main contribution of this work. In spite of being non-convex,
it holds that the formulated problem has zero duality gap. As
a result, the Langrangian relaxation is optimal. Additionally,
the operating conditions of the secondary network (and the
formulation of the objective to optimize) are such that the
problem in the dual domain can be separated across users
and frequency bands. This favorable structure allows for a
significant reduction on the complexity required to find the
optimal solution and, hence, renders the non-convex problem
computationally tractable. To facilitate exposition, thealgo-
rithms are designed under the assumption of perfect CSI. The
changes required to account for CSI imperfections are briefly
discussed at the end of the manuscript.

The rest of the paper is organized as follows. Section II
presents the model for the CSI, describes the operating condi-
tions of the secondary network, and formulates the rules that
secondary transmissions must obey to limit the interference
to PUs. Section III deals with the design of the optimal RA
schemes. The end of that section is devoted to discuss how the
schemes have to be modified to account for other meaningful
operating conditions. Numerical simulations and conclusions
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in Sections IV and V wrap-up this paper.1

II. M ODEL DESCRIPTION

We consider a CR withM SUs (indexed bym) transmitting
opportunistically and orthogonally overK different frequency
bands (indexed byk). For simplicity, we assume that: i) each
band has the same bandwidth and is occupied by a different
PU; and ii) the secondary network has an access point (AP)
which is the destination of all SUs. The AP acts as a central
scheduler which collects the CSI and then makes the RA
decisions. Extensions to scenarios where those assumptions
do not hold true can be handled with a moderate increase of
complexity.

A. Channel state information

In a CR scenario, the AP collects not only the information
of the SU-to-SU links, but also the information of the SU-
to-PU links. For simplicity, we will develop our schemes
under the assumption that the CSI is perfect. The required
modifications when the CSI contains imperfections will be
briefly discussed at the end of Section III. For notational
purposes, the channel’s instantaneous power gain between the
mth SU and the AP in thekth frequency band at instantn
is denoted byhm

k,2[n] (noise-normalized squared magnitude of
the fading coefficient). Subscript “2” is used to emphasize that
the channel pertains tosecondary receivers. Similarly,hm

k,1[n]
denotes the instantaneous normalized power gain between the
mth SU and thekth PU at instantn. Here, subscript “1” is used
for primary receivers. The overall CSI (2MK instantaneous
gains) will be denoted ash[n].

B. Resources at the secondary network

Now, we introduce the variables to be designed, i.e, the
variables that will be adapted as a function of the (primary
and secondary) CSIh[n]. Let wm

k,2 denote a boolean variable
such thatwm

k,2 = 1 if the mth SU is scheduled to transmit
into the kth band andwm

k,2 = 0 otherwise. Provided that
wm

k,2 = 1, let pmk,2 denote the instantaneous power transmitted
over thekth band by themth SU. Under bit error rate or
capacity constraints, instantaneous rate and power variables are
coupled. This rate-power coupling will be represented by the
function rmk,2(h

m
k,2p

m
k,2). Throughout this paper it is assumed

that the rate-power function is given by Shannon’s capacity
formula log2(1 + hm

k,2p
m
k,2). However, the fundamental results

in this paper hold for any increasing and concave rate-power
function.

The secondary CR operates in a time-block fashion, where
the duration of each block corresponds to the coherence time
of the fading channel. This way, at every timen the AP will
use the current CSI vectorh to find the (optimum) value of
wm

k,2 andpmk,2. Sinceh depends onn and{wm
k,2, p

m
k,2} depend

onh, the value of the design variables{wm
k,2, p

m
k,2} will clearly

1Notation:T denotes vector transposition;x∗ the optimal value of variable
x; E[·] expectation;∧ the boolean “and” operator;1{·} the indicator function
(1{x} = 1 if x is true and zero otherwise); and[x]ba the projection of the
scalarx onto the[a, b] interval, i.e.,[x]ba := min{max{x, a}, b}.

vary across time. Through the manuscript, we will writeh,
wm

k,2(h) and pmk,2(h), or h[n], wm
k,2[n] and pmk,2[n], wherever

is convenient to emphasize the corresponding dependence.
Once the variables are introduced, we formulate constraints

that these variables need to satisfy. To ensure that at most one
user transmits into a given bandk, we need

∑

m
wm

k,2(h) ≤ 1, ∀k. (1)

If the left hand side (LHS) of the constraint is equal to one,
then one user is accessing the channel (orthogonal access).If
it is equal to zero, then none is transmitting (either because all
secondary channels are poor, or because it causes very high
interference to the PUs). We also consider that the maximum
average (long-term) power themth SU can transmit išpm2 ;
hence, E [

∑

k
wm

k,2(h)p
m
k,2(h)

]

≤ p̌m2 , ∀m. (2)

Such a constraint is not only reasonable to effect QoS across
SUs, but also to limit the power consumption of each of the SU
transmitters. The expectation in (2) is taken over all possible
values ofhm

k,1[n] andhm
k,2[n]; i.e, considering allm, k, andn.

While (1) needs to hold for each and every channel realization
(hence for each and every time instant), (2) only needs to hold
in the long-term.

C. Cognitive constraints

The next step is to identify the rules that dictate how CR
transmissions affect the performance of the PUs. Such rules
will be formulated as constraints that will be incorporatedinto
the optimization problem that gives rise to the RA schemes.
In other words, the cognitive constraints will represent how
SUs have to modify their behavior so that the damage caused
to the PUs is kept under control.

When the cognitive constraints are formulated, there are
several issues that have a significant impact both in terms
of the operation of the CR and the mathematical formulation
of the optimization problem. Two of the most important are
discussed next. The first factor is whether the interference
constraints are formulated as instantaneous (short-term)or as
average (long-term) constraints. The former requires the con-
straint to hold for each andevery time instant, while the latter
requires the constraint to hold on average (taking into account
all time instants jointly). Clearly, instantaneous constraints are
more restrictive than their average counterparts (which can
exploit the so-called “cognitive diversity” of the primaryCSI
[12], [11]), and therefore the performance of the secondary
network will be higher in the latter case [16]. Mathematically,
long-term constraints are typically dualized, while short-term
constraints are handled using alternative methods. The second
factor is the metric used to measure the damage that the
CRs inflict to the PUs. Among the metrics considered in the
literature we find: interfering power at the PUs, probability
on interfering the PUs, and rate loss inflicted to the PUs.
Most works in the literature have focused on limiting the
interfering power. The reason is twofold: i) it is a simple (and
intuitive) metric to measure the interference, and ii) it can be
formulated as a convex constraint. Limiting the rate loss may



be considered a better alternative because it focuses on the
actual damage that the interference causes to the PUs (most
communications systems are designed to either guarantee or
maximize a certain transmission rate). From a mathematical
perspective, constraints limiting the rate loss are typically non-
convex. As a result, fewer works have explored that alternative.
The problem of limiting the probability of interference for
a system with operating conditions very similar to the ones
considered in this paper was thoroughly investigated in [17].

As already mentioned, the main contribution of this work is
to limit the long-term rate (capacity) loss experienced by the
PUs. However, we will also impose limits on the long-term
interfering power [16]. Joint consideration of rate loss and
interfering power constraints will help us to better understand
the similarities and differences between these two alternatives.

We start with the formulation of the long-terminterfering
power constraints. Letp̌k,1 denote the maximum average
interfering power thekth primary receiver can tolerate and
recall that themth SU transmits in thekth channel only if the
boolean scheduling variablewm

k,2(h) is equal to one. Then, the
following K constraints need to holdE[

∑

m

wm
k,2(h)h

m
k,1p

m
k,2(h)

]

≤ p̌k,1, ∀k. (3)

The fact that the expectation is taken across all possible
channel realizations reflects that (3) is a long-term constraint.
Clearly, for a given channel realizationh, at most one of the
M terms inside the expectation is active. This property will
be exploited in upcoming sections.

Next, we formulate the long-term capacity constraints.
For such a purpose, we define the functionrk,1(x) :=

log2

(

1 +
γk,1

1+x

)

, whereγk,1 and x stand for the normalized
signal-to-noise ratio (SNR) and the interfering power at the
kth PU receiver, respectively. Our formulation will guarantee
a minimum long-term rate of̌rk,1 for the kth PU. This
minimum rate can be either a fixed value [4], or expressed as
a percentage of the rate that the PU achieves when no SUs are
present. Mathematically, the rate requirement in the latter case
can be written ašrk,1 := (1− ε̌k)E [rk,1(0)] whereε̌k ∈ (0, 1)
is the maximum (relative) rate loss that the SUs can cause to
thekth PU. With these issues in mind, the long-term capacity
constraint is formulated asE[

∑

m

wm
k,2(h)rk,1(h

m
k,1p

m
k,2(h))

]

+E[

(

1−
∑

m

wm
k,2(h)

)

rk,1(0)

]

≥ řk,1, ∀k. (4)

The first term (which is itself the summation ofM terms)
represents the capacity of thekth PU when there is a SU
transmitting in thekth channel. The second term represents
the case of no SU using thekth channel. As in the case of
constraint (3), for a given channel realizationh only one of the
M+1 terms inside the expectation is active. This property will
be very important in reducing the computational complexity
required to find the optimal RA. The expression in (4) also
confirms that if the constraint is written asf(pmk,2(h)) ≤ 0,
thenf(·) is a non-convex function.

III. F ORMULATING AND SOLVING THE RESOURCE

ALLOCATION PROBLEM

To formulate the optimization problem that gives rise to the
optimum RA algorithms, we need to identify: i) the variables
to be optimized, ii) the constraints the variables need to
satisfy, and iii) the metric to be optimized. The first step
was accomplished in Section II-B. Regarding the second step,
boolean variableswm

k,2(h) are constrained to belong to the
set {0, 1} and variablespmk,2(h) are constrained to belong to
the set[0, p̌mk,2], wherep̌mk,2 represents an upperbound on the
short-term transmit-power (peak power constraints). Moreover,
wm

k,2(h) andpmk,2(h) need to satisfy the constraints in (1) and
(2) and those in (3) and (4).

Regarding the third step (metric to be optimized), we are in-
terested in maximizing the weighted sum-average rate (capac-
ity) given by c̄2 :=

∑

k,mE [

βmwm
k,2(h)r

m
k,2(h

m
k,2p

m
k,2(h))

]

,
whereβm > 0 represents a user-dependent priority coefficient.
Other objective functions such as sum-utility rate could be
used without changing the basic structure of the solution; see,
e.g., [4], [14] for further details.

Under all previous considerations, the optimal RA is ob-
tained as the solution of the following problem:

max
{wm

k,2
(h),pm

k,2
(h)}

c̄2 (5a)

s. to : wm
k,2(h) ∈ {0, 1}, 0 ≤ pmk,2(h) ≤ p̌mk,2, (1), (5b)

(2), (3), (4); (5c)

where the dependence of the optimization variables on the
CSI h has been made explicit. Note that (5a) is the (long-
term) objective we are interested in optimize, (5b) collects all
the short-term constraints the RA needs to satisfy, and (5c)
collects all long-term constraints. As we will see in the next
section, the approach to handle (5b) and (5c) will be different.

A. Optimal resource allocation

The main challenge to find the optimal RA is that (5)
is not a convex problem. Basically, there are three sources
of non-convexity in (5): i) scheduling coefficientswm

k,2 are
constrained to belong to{0, 1}, which is a non-convex set; ii)
the monomialswm

k,2p
m
k,2, wm

k,2r
m
k,1 andwm

k,2r
m
k,2 are not jointly

convex; and iii) the constraint (4) is not convex with respect
to (w.r.t.) pmk,2. The two first sources on non-convexity can
be “easily” bypassed by transforming (relaxing) the problem
in (5) into a convex one which yields the same optimality
conditions; see, e.g., [13]. However, the third source of non-
convexity can not be bypassed. Two undesirable consequences
associated with lack of convexity are [1]: (c1) zero-duality
gap is not guaranteed, and (c2) development of numerical
algorithms that find the optimal solution in polynomial time
is not guaranteed either. Remarkably, it can be shown that
for the optimization at hand:the problem in (5) exhibits zero-
duality gap2. This result implies that the constraints can be
dualized without losing optimality [1]. However, (c2) still

2The basic idea to show that the duality gap is zero is that the source
of non-convexity comes from a constraint of the formEx[g(y,x)], where
g(y,x) is a non-convex function w.r.t.y, andx is a random process with
infinite support [cf. (4)]. We refer the reader to [5] for further details.



holds, so that finding an efficient algorithm to optimize the
(unconstrained) Lagrangian is still challenging. Interestingly,
due to the structure of (5) we will show that the optimization
can be separated (decomposed) across channels and users, de-
creasing dramatically the computational complexity of finding
the optimal solution.

After the previous discussion, we are ready to present the
solution of (5). Our approach to deal with the constraints in
(5) is twofold. The long-term constraints (2), (3) and (4) in
(5c) will be dualized, while the constraints in (5b) (all short-
term) will be handled using alternative methods such as scalar
projections. Regarding the long-term constraints, letπm, θk
and ρk denote the Lagrange multipliers associated with (2),
(3) and (4), respectively. With this notational conventions, it
can be shown (proof is omitted due to space limitations) that
the optimal solution of (5) is

ϕm
k (pmk,2[n]) := βmrmk,2(h

m
k,2[n]p

m
k,2[n])

− πmpmk,2[n]

− θkh
m
k,1[n]p

m
k,2[n]

+ ρkrk,1(h
m
k,1[n]p

m
k,2[n]) (6)

pm∗
k,2 [n] :=

[

arg max
pm
k,2

[n]
ϕm
k (pmk,2[n])

]p̌m
k,2

0

(7)

wm∗
k,2 [n] := 1{(m=argmaxl ϕ

l
k
((pl∗

k
[n])))∧(pm∗

k,2
[n]>0)} (8)

Key for understanding the solution of (5) is the definition of
the functionalϕm

k (·) in (6). Mathematically,ϕm
k (x) represents

the contribution to theLagrangian of (5) if the transmit power
is pmk,2[n] = x and wm

k,2[n] = 1. Intuitively, (6) can be
interpreted as a user-channel quality indicator (the higher the
indicator, the better). Under this interpretation, the rates of PUs
and SUs are rewards (first and fourth terms), and the transmit
and interfering powers are costs (second and third terms). The
corresponding prices areβm, ρk, πm andθk, respectively. The
indicator also manifests the existing trade-off between the SUs
(first and second terms) and the PUs (third and fourth terms).

Based on the definitionϕm
k (pmk,2[n]), equation (7) reveals

that pm∗
k,2 [n] is found separately for each of the user-channel

pairs. Similarly, (8) reveals that to find{wm∗
k,2 [n]}

M
m=1, i.e.,

the optimal scheduling for channelk; no information from
channels other thank is required. These attractive features are
present because the optimization problem in the dual domainis
separable across users and channels (see [14], [17]). Keys for
this property to hold are the consideration of orthogonal access
in the secondary network and the definition of the objective
in (5).

We now analyze in further detail the optimal RA. Starting
with the optimal scheduling in (8), we observe thatwm∗

k,2 [n]
is available in closed form (provided that the optimum power
is known). Equation (8) reveals that the scheduling follows
a winner-takes-all strategy, guaranteeing that the accessis
orthogonal (at most one user is active), opportunistic (ϕm

k is a
continuous random variable), and greedy (only the user with
highest quality in a given band must be scheduled). The details
of the optimum power allocation are a bit more intricate.
To obtain pm∗

k,2 [n] we need first to maximizeϕm
k (pmk,2[n])

w.r.t. pmk,2[n]. Consider first a simplified case where the CR

constraints (3) and (4) are not present. In such a case only
the two first terms in (6) are present, so thatϕm

k (·) is
strictly concave and differentiable (the first term is strictly
concave and differentiable and the second is linear). As a
result, the optimization is convex andpm∗

k,2 [n] can be easily
found. Specifically,pm∗

k,2 [n] for this case is available in closed

form as pm∗
k,2 [n] = [

βm log
2
(exp(1))

πm
− 1

hm
k,2

]
p̌m
k,2

0 . The previous
expression is basically a waterfilling power loading [2] pro-
jected onto the feasible interval defined by the instantaneous
constraints. When the CR constraint (3) is active, the third
term in (6) needs to be considered. However, since that term
is linear w.r.t. pmk,2[n], the structure ofϕm

k (·) is basically
the same andpm∗

k,2 [n] can still be efficiently found. In fact,
the solution follows again a (modified) waterfilling scheme
pm∗
k,2 [n] = [β

m log
2
(exp(1))

πm+θkh
m
k,1

[n] − 1
hm
k,2

]
p̌m
k,2

0 ; see, e.g., [16]. However,
when all four terms in (6) are considered, the optimization
is challenging becauseϕm

k (·) is not concave any more. The
reason is that the last term is strictly convex, rendering the
sum of the four terms in (6) non-concave and therefore, the
optimization non-convex.

However, the fact of the optimization not being convex does
not necessarily imply thatpm∗

k,2 [n] can not be efficiently found.
The first reason is that optimizingϕm

k (·) involves a single
(scalar) variable. As a result, simple exhaustive search related
methods (which are known to be very inefficient if the dimen-
sionality of the search space is medium-high) can be used. The
second reason is that the structure ofϕm

k (·) can be exploited
to focus the search on a small searching region. For example,
it can be rigorously shown that the waterfilling solution is an
upperbound forpm∗

k,2 [n]. Moreover, it can also be easily shown
that if the CSI is perfect (which is the case considered in this
paper), thenϕm

k (·) has at most three stationary points. This
readily implies thatpm∗

k,2 [n] is either zero or one of those three
points. Once{pm∗

k,2 [n]}
M
m=1 are found, finding{wm∗

k,2 [n]}
M
m=1

just requires the evaluation of closed-form expressions [cf.
(8)]. In other words, because in the dual domain the problem
can be separated across users and channels, optimizing the
Lagrangian does not require solving one non-convex problem
in a 2MK dimensional space. Rather,MK closed forms (for
the scheduling coefficients) andMK non-convex problems
in a one dimensional space (for the power loadings) need to
be solved. Recall that the key factors for the problem being
separable in the dual domain were: i) the fact of considering
orthogonal access for the SUs; ii) the definition of the metric
to be optimized as a summation across users; and iii) the fact
that the long-term constraints were dualized.

Remark 1: The RA schemes have been developed under
the assumption that the PUs are always active. However, they
can be easily modified to account for scenarios where that
assumption does not hold true. For that purpose, letak[n] be
a boolean variable which is one if thekth PU is active at
time n and zero otherwise. Then, our formulation needs to be
modified as follows. All the terms in the cognitive constraints
inside the expectations must be multiplied byak[n], so that
the specific constraint only needs to hold for instantsn (CSI
realizations) for whichak[n] = 1. Moreover, for the optimal
allocation to account for these modifications, the third and



fourth terms in (6), which are the ones accounting for the
PUs, must be multiplied byak[n] too. Mathematically, this
implies that

ϕm
k (pmk,2[n]) :=βmrmk,2(h

m
k,2[n]p

m
k,2[n])

− πmpmk,2[n]

− θkak[n]h
m
k,1[n]p

m
k,2[n]

+ ρkak[n]rk,1(h
m
k,1[n]p

m
k,2[n]). (9)

Remark 2: The RA schemes have been developed under
the assumption that the CSI is perfect. This assumption can
be unrealistic in practical deployments. For example, the CSI
of the SU-to-SU links is typically quantized and the knowledge
of the SU-to-PU may be noisy and outdated (because the
channels are not sensed at every time instant). Such imperfec-
tions render the knowledge ofh[n] at instantn probabilistic.
Thanks to the favorable structure of our problem in the dual
domain, our formulation can account for these imperfections
by redefining the link indicator in (6) as

ϕm
k (pmk,2[n]) :=βmEhm

k,2
[n][r

m
k,2(h

m
k,2[n]p

m
k,2[n])]

− πmpmk,2[n]

− θkEhm
k,1

[n][h
m
k,1[n]]p

m
k,2[n]

+ ρkEhm
k,1

[n][rk,1(h
m
k,1[n]p

m
k,2[n])]. (10)

Note that the expectations in the previous expression: i) are
taken over ascalar random variable; and ii) must be carried
over the instantaneous channel distribution [17]. In other
words, over the probabilistic description ofhm

k,1[n] andhm
k,2[n]

available at instantn. For example, if the CSI is quantized
and we know thatat instant n the gainhm

k,2[n] falls into the
quantization regionR, then the expectationsEhm

k,2
[n][·] will

be computed averaging only over the realizations ofhm
k,2[n]

that fall into (belong to) regionR.
Remark 3: Different methods can be used to set the value

of πm, θk and ρk. Traditionally, {πm, θk, ρk} are set to a
constant value{πm∗, θ∗k, ρ

∗
k} corresponding to the value that

maximizes the dual function associated with (5) (recall that
the duality gap is zero). This implies that ifπm = πm∗,
θk = θ∗k andρk = ρ∗k are substituted into (6)-(8), the resulting
RA is indeed the optimal solution of (5) [1]. The main
drawback associated with this approach is that{πm∗, θ∗k, ρ

∗
k}

need to be found through iterative numerical search which,
at every iteration, requires averaging over all possible states
of h (including channel imperfections). Recently, alternative
approaches that rely on stochastic approximation tools have
been proposed to find the value of the multipliers [4], [7].
These approaches do not try to find the optimal value of
{πm∗, θ∗k, ρ

∗
k}, but an estimate of itπm[n], θk[n] and ρk[n]

which is updated at every time instant and remains sufficiently
close to{πm∗, θ∗k, ρ

∗
k}. Such approaches have advantages that

are especially attractive in CR setups, namely: i) they are
robust to channel non-stationarities (which are common in
environments with interference); ii) they do not need to have
statistical knowledge of the channels; and iii) they can cope
with changes in either the secondary network (number of
users, QoS levels) or primary network (limits on the inter-
fering power, rate loss or capacity function of the PUs). In

other words, the stochastic schemes are useful to learn the
environment on-the-fly and keep track of it [17].

IV. N UMERICAL SIMULATIONS

The default simulation setup is the following:M = 5, K =
10, βm = 1, p̌m2 = 1, p̌mk,2 = 40, p̌k,1 = 0.3, and εk =
0.10. The amplitudes of the SU-to-PU and SU-to-SU links
are Rayleigh distributed, so thathm

k,1[n] andhm
k,2[n] follow an

exponential distribution. The average SNR for all SU-to-SU
is 3dB. The average SNR for all SU-to-PU is0dB. The SNR
for all PU-to-PU links isγk = 10dB.

Seven RA schemes are tested: S1) the optimal scheme
that maximizes the performance of the SUs and ignores all
cognitive constraints; S2) the optimal scheme in this paper
setting p̌k,1 = ∞ (i.e., ignoring the long-term interfering
power constraint); S3) the optimal scheme in this paper setting
ε̌k = 1 (i.e., ignoring the long-term capacity loss constraint);
S4) the optimal scheme in this paper; S5) the scheme in
S4 but replacing the long-term interfering power constraint
with an instantaneous one (i.e., setting the peak constraint as
p̌mk,2 = p̌k,1/h

m
k,1[n]); S6) the scheme in S4 but replacing the

long-term rate loss constraint with an instantaneous one; and
S7) the scheme in S4 but replacing the long-term interfering
power and rate loss constraints with their instantaneous coun-
terparts.

For these seven schemes, Tables I-III list the values of the:
average power transmitted by the SUs (denoted asp̄2), average
weighted sum-capacity of the SUs (c̄2), average interfering
power at the PUs (denoted asp̄1), average capacity transmitted
by the PUs (denoted as̄r1) and the corresponding capacity
loss (denoted as̄ε). Nine different simulation setups have
been tested. The changes relative to the default simulation
setup are indicated in the corresponding table. The results
corroborate the theoretical claims and illustrate the advantages
of the developed algorithms. All our schemes are able to
satisfy the constraints considered in each of the schemes.
The results confirm that the long-term constraints achieve a
better objective than their short-term counterparts (S2-S4 vs.
S5-S7). Moreover, in several cases both long-term cognitive
constraints are active (S5). This never happens when the
cognitive constraints have to be satisfied in the short-term(S7).

Although the space limitations prevent us from presenting
additional numerical simulations, the codes used to run the
simulations are available upon request.

V. CONCLUSIONS

This paper investigated the design of adaptive RA schemes
for underlay cognitive radio scenarios with multiple primary
and SUs operating over time-varying channels. One of the
most critical issues in cognitive radios is how SUs coexist with
(limit the interference to) PUs. Among the different metrics
considered in the paper, the most important is the guaranteeon
the long-term capacity loss on the PUs. Guaranteeing a certain
rate for PUs is typically challenging because the presence of
interfering powers render the optimization non-convex. For the
operating conditions considered in the paper we showed that
two important facts hold. The first one is that the optimization



problem which gives rise to the resource allocation has zero-
duality gap, so that Lagrangian relaxation can be used without
losing optimality. The second one is that in the dual domain
the non-convex problem can be decoupled (separated) across
channels and users. The latter implies that the optimization
needs to be carried out only over a scalar variable, opening
the door to implementation of efficient search algorithms. It
was shown that the optimal resource allocation amounts to
maximize a scalar quality link functional which weights: the
quality of the secondary links (rate reward minus power cost)
and the damage to the PUs (interfering power cost plus rate
loss). The terms in the quality link functional depend on the
instantaneous CSI and on several Lagrange multipliers (whose
value depended on the long-term behavior of the system and
the requirements of the primary and secondary networks).
Extensions to scenarios where the PUs are not always active
or the CSI contains imperfections were briefly discussed.
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TABLE I: Test cases 1-3.
Case 1: Default case
Res.\Sch. S1 S2 S3 S4 S5 S6 S7

p̄2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c̄2 13.6 13.2 13.4 13.2 12.5 12.5 12.5
p̄1 0.5 0.3 0.36 0.3 0.23 0.23 0.23
r̄1 3 3.1 3.1 3.1 3.2 3.2 3.2
ε̄ 0.13 0.09 0.1 0.09 0.076 0.077 0.076

Case 2:E[hm
k,1

] = 10dB
Res.\Sch. S1 S2 S3 S4 S5 S6 S7

p̄2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c̄2 13.6 7.62 8.37 7.61 6.35 6.42 6.34
p̄1 4.7 0.3 0.65 0.3 0.3 0.3 0.3
r̄1 1.9 3.2 3.1 3.2 3.1 3.1 3.1
ε̄ 0.45 0.084 0.1 0.084 0.097 0.098 0.097

Case 3:γk = 13dB
Res.\Sch. S1 S2 S3 S4 S5 S6 S7

p̄2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c̄2 13.6 13.2 13.5 13.2 12.5 12.8 12.5
p̄1 0.49 0.3 0.46 0.3 0.23 0.27 0.23
r̄1 3.9 4.1 4 4.1 4.1 4.1 4.1
ε̄ 0.11 0.075 0.1 0.075 0.063 0.072 0.063

TABLE II: Test cases 4-6.
Case 4:γk = 7dB
Res.\Sch. S1 S2 S3 S4 S5 S6 S7

p̄2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c̄2 13.6 13.2 13.1 13.1 12.5 12.1 12.1
p̄1 0.49 0.3 0.28 0.28 0.23 0.2 0.2
r̄1 2.2 2.3 2.3 2.3 2.3 2.4 2.4
ε̄ 0.15 0.11 0.1 0.1 0.092 0.082 0.081

Case 5:εk = 0.05
Res.\Sch. S1 S2 S3 S4 S5 S6 S7

p̄2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c̄2 13.6 13.2 11.8 11.7 11.7 10.9 10.9
p̄1 0.5 0.3 0.14 0.14 0.14 0.12 0.12
r̄1 3 3.1 3.3 3.3 3.3 3.3 3.3
ε̄ 0.13 0.09 0.047 0.047 0.046 0.041 0.041

Case 6:εk = 0.02
Res.\Sch. S1 S2 S3 S4 S5 S6 S7

p̄2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c̄2 13.6 13.2 8.49 8.5 8.47 7.58 7.58
p̄1 0.5 0.3 0.042 0.041 0.041 0.032 0.032
r̄1 3 3.1 3.4 3.4 3.4 3.4 3.4
ε̄ 0.13 0.09 0.015 0.015 0.015 0.012 0.012

TABLE III: Test cases 7-9.
Case 7:γk = 7dB, p̌k,1 = 0.15
Res.\Sch. S1 S2 S3 S4 S5 S6 S7

p̄2 1.0 1.0 1.0 1.0 1.0 1.0 1.0
c̄2 13.6 11.9 13.1 12 11.1 11.9 11.1
p̄1 0.5 0.15 0.28 0.16 0.13 0.16 0.13
r̄1 2.2 2.4 2.3 2.4 2.4 2.4 2.4
ε̄ 0.15 0.061 0.1 0.065 0.057 0.066 0.057

Case 8:E[hm
k,1

] = 10dB, εk = 0.05, p̌k,1 = 1

Res.\Sch. S1 S2 S3 S4 S5 S6 S7
p̄2 1.0 1.0 1.0 1.0 1.0 0.8 0.8
c̄2 13.6 10.9 6.11 6.13 6.11 4 3.99
p̄1 4.6 1 0.19 0.2 0.17 0.14 0.14
r̄1 1.9 2.7 3.3 3.3 3.3 3.3 3.3
ε̄ 0.45 0.22 0.05 0.05 0.05 0.048 0.048

Case 9:E[hm
k,1

] = 10dB, εk = 0.05, p̌k,1 = 1, p̌m
k,2

= 1

Res.\Sch. S1 S2 S3 S4 S5 S6 S7
p̄2 1.0 1.0 1.0 0.6 0.6 0.4 0.4
c̄2 13.5 10.9 6.11 5.3 5.32 3.41 3.44
p̄1 4.6 1 0.18 0.2 0.18 0.14 0.14
r̄1 1.9 2.7 3.3 3.3 3.3 3.3 3.3
ε̄ 0.45 0.22 0.05 0.05 0.05 0.048 0.048


