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Abstract—Cognitive radios implement adaptive resource allo- proposed in the literature to cope with the latter challenge
cation schemes that exploit knowledge of the channel statafor- For example, to keep interference under control some works
mation to optimize the performance of the secondary users wvite limit the power of the interference at the primary receiver

limiting the interference to the primary users. The algorithms id ither by i ing instant hort-t
in this paper are designed to maximize the weighted sum-rate S'd€. €IINEr Dy IMPOSING INStantaneous (short-term) oramee

of secondary users which transmit orthogonally and adherea (long-term) interference power constraints; see, e.gl, [11],
three different constraints: i) limits on the long-term (average) [16]. The latter are better suited for fading channels bseau
power at each secondary transmitter; ii) limits on the longterm  they can exploit the diversity of the interfering link [1®ther
interfering power at each primary receiver; and iii) limits on designs use a probabilistic approach to limit the probighilf

the long-term capacity loss inflicted to each primary receier. . terferina th . ¢ . t babilis
Although the long-term capacity constraints render the resitant  I"terfering the primary transmissions (outage probajilgee,

optimization problem non-convey, it holds that it has zeroduality ©€.9. (6], [15], [17].
gap and that, due to the favorable structure in the dual doman,

it can be efficiently solved. Motivated by these findings, we design resource allocation
Index Terms—Cognitive radios, resource management, non- (RA) algorithms that optimize the communication perfor-
linear optimization. mance of the SUs and limit the interference to the PUs. We
focus onunderlay CRs where SUs adapt their power and rate
[. INTRODUCTION loadings dynamically, and access orthogonally a set frecyue

The perceived spectrum under-utilization along with theands which are primarily devoted to PU transmissions. Or-
proliferation of new wireless services have motivated necethogonal here means that if a SU is transmitting, no other
research on dynamic spectrum management and wireless ¢@4- can be active in the same band. The RA schemes are
nitive radios (CRs) which are capable of sensing and acugssthen obtained as the solution of a weighted sum-average rate
the Spectrum dynamica”y [3]' [10], [8] Secondary USBI@S{B maximization subject to three types of constraints: I) {ami
in the CR adapt their transmission to limit the interferencen the long-term (average) power transmitted by each SU; ii)
to the primary user (PU) receivers which hold the licendénits on the long-term interfering power at each PU [16];
of the frequency band. To carry out these tasks, the GRd iii) limits on the long-term capacity loss inflicted tocka
needs to sense not only the gain of the secondary netw&. Consideration of iii) is challenging because the ireteniy
links, but also the channels between secondary transmitt€pU) powers render the capacity term non-convex, and itgis th
and primary receivers. The information of secondary link&ain contribution of this work. In spite of being non-conyex
allows SUs to mitigate fading and take advantage of godidholds that the formulated problem has zero duality gap. As
channel realizations, while the information of primarykkn @ result, the Langrangian relaxation is optimal. Additina
guarantees that interference is kept under control. Based te operating conditions of the secondary network (and the
the measurements obtained through sensing, SUs will adfgitnulation of the objective to optimize) are such that the
their available resources (here, power, rate and schegulRfoblem in the dual domain can be separated across users
coefficients) to the channel conditions. The merits of agapt and frequency bands. This favorable structure allows for a
schemes which exploit knowledge of statistical and instantsignificant reduction on the complexity required to find the
neous channel state information (CSI) to optimally allecaPptimal solution and, hence, renders the non-convex pnoble
the transmit resources in traditional wireless systems d¥emputationally tractable. To facilitate exposition, thigo-
well documented; see [2, Chap. 9]. However, for channdithms are designed under the assumption of perfect CSI. The
adaptive schemes to be deployed in CR scenarios, sevéhanges required to account for CSI imperfections are priefl
challenges not present in traditional wireless networlezirte  discussed at the end of the manuscript.
be considered. Among the most important design challenges
we find that instantaneous CSI (especially that of the pymar The rest of the paper is organized as follows. Section I
network) is difficult to acquire [11], [17] and that the adapt Presents the model for the CSI, describes the operating-cond
schemes need to satisfy additional constraints to keep #H#s of the secondary network, and formulates the rules tha
interference low [10], [8]. Different alternatives haveebe secondary transmissions must obey to limit the interfezenc

to PUs. Section Ill deals with the design of the optimal RA
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in Sections IV and V wrap-up this paper. vary across time. Through the manuscript, we will write
wy'y(h) and pp, (h), or hn], wi’,[n] andpj’,[n], wherever
Il. M ODEL DESCRIPTION is convenient to emphasize the corresponding dependence.

We consider a CR withi/ SUs (indexed byn) transmitting Once the va_1r|ables are mtrodgced, we formulate consgraint
that these variables need to satisfy. To ensure that at mest o

opportunistically and orthogonally ovéf different frequency ¢ e int ) b q
bands (indexed by). For simplicity, we assume that: i) eachtSer ransmits into a given and we nee

band has__the same bandwidth and is occupied by a gllfferent Z wiy(h) <1, V. (1)

PU; and ii) the secondary network has an access point (AP) m

which is the destination of all SUs. The AP acts as a centiéithe left hand side (LHS) of the constraint is equal to one,

scheduler which collects the CSI and then makes the RlAen one user is accessing the channel (orthogonal actfess).

decisions. Extensions to scenarios where those assuraptibis equal to zero, then none is transmitting (either beealis

do not hold true can be handled with a moderate increasesecondary channels are poor, or because it causes very high

complexity. interference to the PUs). We also consider that the maximum
average (long-term) power theth SU can transmit ig5";

A. Channel state information hence,

. . . o He < pi* .
In a CR scenario, the AP collects not only the information = [Zk wia(hpiz(h)| < pg', vm (2)

of the SU-to-SU links, but also the information of the SUsych a constraint is not only reasonable to effect QoS across
to-PU links. For simplicity, we will develop our schemessys, but also to limit the power consumption of each of the SU
under the assumption that the CSI is perfect. The requirgdnsmitters. The expectation in (2) is taken over all fuesi
modifications when the CSI contains imperfections will bgalues ofhy", [n] andh}, [n]; i.e, considering altn, k, andn.
briefly discussed at the end of Section Ill. For notationgl/hijle (1) needs to hold for each and every channel realizatio

purposes, the channel's instantaneous power gain betwieen(hence for each and every time instant), (2) only needs td hol
mth SU and the AP in theith frequency band at instamt jn the long-term.

is denoted by, [n] (noise-normalized squared magnitude of
the fading coefficient). Subscript “2” is used to emphasie t
the channel pertains tecondary receivers. Similarlyh}, [n]
denotes the instantaneous normalized power gain between thThe next step is to identify the rules that dictate how CR
mth SU and thekth PU at instant.. Here, subscript “1” is used transmissions affect the performance of the PUs. Such rules
for primary receivers. The overall CSR{/K instantaneous Will be formulated as constraints that will be incorporaieit
gains) will be denoted ak[n]. the optimization problem that gives rise to the RA schemes.
In other words, the cognitive constraints will representvho
B. Resources at the secondary network SUs have tq modify their behavior so that the damage caused
i ) ] ) to the PUs is kept under control.

Now, we introduce the variables to be designed, i.e, thé\yhen the cognitive constraints are formulated, there are
variables that will be adapted as a function of the (primaggyera| issues that have a significant impact both in terms
and secondary) CSi[n]. Let wy’, denote a boolean variableqs the gperation of the CR and the mathematical formulation
such thatw;?, = 1 if the mth SU is scheduled to transmityt the optimization problem. Two of the most important are
into the kth band andwj’, = 0 otherwise. Provided that yiscssed next. The first factor is whether the interference
wip =1, letp], denote the instantaneous power transmittedhnsiraints are formulated as instantaneous (short-terra}
over thekth band by themth SU. Under bit error rate or 5yerage (long-term) constraints. The former requires te ¢
capacity constraints, instantaneous rate and power Vesiabe graint to hold for each anelery time instant, while the latter
coupled. This rate-power coupling will be represented & thgqires the constraint to hold on average (taking into @eto
function 77, (hj?,p’). Throughout this paper it is assumedy|| time instants jointly). Clearly, instantaneous coatrs are
that the rate-power function is given by Shannon's capaciffore restrictive than their average counterparts (whioh ca
formulalog, (1 + hj’,pjT,). However, the fundamental resultsgy it the so-called “cognitive diversity” of the prima6yS|
in thl_s paper hold for any increasing and concave l’ate-pOV\ﬁQ]’ [11]), and therefore the performance of the secondary
function. o _ network will be higher in the latter case [16]. Mathemaiigal

The se_condary CR operates in a time-block fashion, Wh_qffﬁg-term constraints are typically dualized, while skerm
the duration of each block corresponds to the coherence tigig,siraints are handled using alternative methods. Trengec
of the fading channel. This way, at every timethe AP will ¢actor is the metric used to measure the damage that the
use the current CSI vectdr to find the (optimum) value of cRg jnfiict to the PUs. Among the metrics considered in the
wi’y andpy’,. Sinceh depends om and {wj’y, pjs } depend jierature we find: interfering power at the PUs, probapilit
onh, the value of the design variablgs;”,, py’, } will clearly o interfering the PUs, and rate loss inflicted to the PUs.

N ] - ] ) Most works in the literature have focused on limiting the

. Notation: © d_en.otes vector trar:spo?tlom,* the_ optimal value of variable interfering power. The reason is twofold: i) it is a simpleda
z; E[] expeptatlpn,/\ the boolean “and qperatoiL{.g the |nd|<.:ato.r function 70 1 ) o
(1(z) = 1if = is true and zero otherwise); arfd]’, the projection of the intuitive) metric to measure the interference, and ii) ih dze
scalarz onto the[a, b] interval, i.e.,[z]} := min{max{z, a}, b}. formulated as a convex constraint. Limiting the rate losy ma

C. Cognitive constraints



be considered a better alternative because it focuses on the |ll. FORMULATING AND SOLVING THE RESOURCE
actual damage that the interference causes to the PUs (most ALLOCATION PROBLEM

communications systems are designed to either guarantee ofo formulate the optimization problem that gives rise to the
maximize a certain transmission rate). From a mathematiggtimum RA algorithms, we need to identify: i) the variables
perspective, constraints limiting the rate loss are tyljiceon- to be optimized, ii) the constraints the variables need to
convex. As aresult, fewer works have explored that altereat satisfy, and iii) the metric to be optimized. The first step
The problem of limiting the probability of interference forwas accomplished in Section 11-B. Regarding the second step
a system with operating conditions very similar to the onegolean variabless}’,(h) are constrained to belong to the
considered in this paper was thoroughly investigated in). [17set {0, 1} and variableg}’,(h) are constrained to belong to
As already mentioned, the main contribution of this work |ﬁ1e Set[()’pZ’LQ]' Wherep']’?Q7 represents an upperbound on the
to limit the long-term rate (capacity) loss experienced 1y t short-term transmit-power (peak power constraints). Moee,
PUs. However, we will also impose limits on the long-term,m (1) andpr, (h) need to satisfy the constraints in (1) and
interfering power [16]. Joint consideration of rate los«d an(z)’ and those in (3) and (4).
interfering power constraints will help us to better untkensl Regarding the third step (metric to be optimized), we are in-

the similaritieg and diﬁerencgs between these two aIt'emra terested in maximizing the weighted sum-average rate (sapa
We start with the formulation of the long-terinterfering ity) given by &, := Y2, | |gmwi, (h)rim, (hypiy (h))

i % i ' 1 ) ) ) ) !
power ponstralnts. Letpx1 _denote th_e maximum averagewhereﬁm > 0 represents a user-dependent priority coefficient.
interfering power thekth primary receiver can tolerate anOIOther objective functions such as sum-utility rate could be
recall that thenth SU transmits in théth channel only if the ~ : . y ;

. i . used without changing the basic structure of the soluties; s
boolean scheduling variablg], (h) is equal to one. Then, the

. : e.g., [4], [14] for further detalils.
following K consiraints need to hold Under all previous considerations, the optimal RA is ob-

tained as the solution of the following problem:
Co (53.)

E

Zw%(h)hk’ﬁp%(h)} <Pk, Vk. ©)
. wpy (h)pra ()}
The fact that the expectation is taken across all possible™, ™" 1\ (0 1) o< n) < g, (1), (5b)
channel realizations reflects that (3) is a long-term cairstr > 0 k.2 1}, 0 < pila(h) < pr's, (1),

Clearly, for a given channel realizatidn at most one of the 2, 3), @), (5¢)

M terms_ |nS|_de the e>_(pectat|(_)n is active. This property W'\u/here the dependence of the optimization variables on the

be exploited in upcoming sections. . . _CSI h has been made explicit. Note that (5a) is the (long-
Next, we formulate the Ion_g—term capac_|ty Cor‘Str"’“mﬁa\rm) objective we are interested in optimize, (5b) cofieat

For such a purpose, we define the functiop:(z) := the short-term constraints the RA needs to satisfy, and (5c)

log, Ql + Yi;) where~;,; andz stand for the normalized collects all long-term constraints. As we will see in the hex

signal-to-noise ratio (SNR) and the interfering power & thsection, the approach to handle (5b) and (5c) will be differe

kth PU receiver, respectively. Our formulation will guareat

a minimum long-term rate of,; for the kth PU. This A. Optimal resource allocation

minimum rate can be either a fixed value [4], or expressed as ] . ) )

a percentage of the rate that the PU achieves when no SUs arE"€ main challenge to find the optimal RA is that (5)

present. Mathematically, the rate requirement in therlatise 1S NOt & convex problem. Basically, there are three sources

can be written asy ; := (1—&,)IE [r.1(0)] wheres,, € (0,1) Of non-convexity in (5): i) scheduling coefficients;’, are

is the maximum (relative) rate loss that the SUs can causeS@strained to belong t0, 1}, which is a non-convex set; i)

the kth PU. With these issues in mind, the long-term capacit§)® monomialsu;®,piis, wiy i, andwy’yry, are not jointly

constraint is formulated as convex; and iii) the constraint (4) is not convex with regpec
to (w.r.t) pi'y. The two first sources on non-convexity can

E Zw%(h)rk,l(h%p%(h))] be “easily” bypassed by transforming (relaxing) the prable
. T in (5) into a convex one which yields the same optimality

conditions; see, e.g., [13]. However, the third source ai-no

(1 — Z wz’fQ(h))rk,l(O)l > 71, Vk.(4) convexity can not be bypassed. Two undesirable consegsience

m associated with lack of convexity are [1]: (c1) zero-dwalit
The first term (which is itself the summation éff terms) gap is not guaranteed, and (c2) development of numerical
represents the capacity of thgh PU when there is a SU algorithms that find the optimal solution in polynomial time
transmitting in thekth channel. The second term represents not guaranteed either. Remarkably, it can be shown that
the case of no SU using theh channel. As in the case offor the optimization at handhe problem in (5) exhibits zero-
constraint (3), for a given channel realizationly one of the duality gap?. This result implies that the constraints can be
M +1 terms inside the expectation is active. This property wilualized without losing optimality [1]. However, (c2) stil
be very important in reducing the computational complexity
required to find the optimal RA. The expression in (4) also °The basic idea to show that the duality gap is zero is that thece
confirms that if the constraint is written ds{p}gfg(h)) <0, of non-convexity comes from a constraint of the fofifix [¢(y, x)], where

) ! g(y,x) is a non-convex function w.r.ly, andx is a random process with
then f(-) is a non-convex function. infinite support [cf. (4)]. We refer the reader to [5] for fuer details.

+E




holds, so that finding an efficient algorithm to optimize theonstraints (3) and (4) are not present. In such a case only
(unconstrained) Lagrangian is still challenging. Intéregy, the two first terms in (6) are present, so thaf'(-) is

due to the structure of (5) we will show that the optimizatiostrictly concave and differentiable (the first term is dtyic
can be separated (decomposed) across channels and usergamheave and differentiable and the second is linear). As a
creasing dramatically the computational complexity ofifigd result, the optimization is convex and’;[n] can be easily

the optimal solution. found. Specificallyp;'; [n] for this case is available in closed
After the previous discussion, we are ready to present thﬁm aspsln] = [ﬁm log;f:xp(l)) h%]m 2 The previous

solution of (5). Our approach to deal with the constraints @(

g?:)livmvg?lgu;tgzdlorvl\?hﬁeermeczgitsrzgfts(?r)t ((533) ?gﬁl é:g) jected onto the feasible interval defined by the instantaseo

¢ il be handled usi it i thod h aFonstralnts When the CR constraint (3) is active, the third
err_n) will be handled using afternalive metnoos such asiscag y, i (6) needs to be considered. However, since that term
projections. Regarding the long-term constraints,7&t, 6y

L . . is linear w.r.t. p7*,[n], the structure ofp}*(-) is basicall
and p;, denote the Lagrange multipliers associated with ( pk 2[n] i () y

- _ . . - e same an 7[n] can still be efficiently found. In fact,
(3) and (4), respeciively. With this notational convensipt the solution foIIows again a (mod|f|ed) waterfilling scheme

pressmn is basically a waterflllmgk power loading [2] pro

can be shown (proof is omitted due to space limitations) that 8™ log, (exp(1)) 1B,
the optimal solution of (5) is Pzl =1 ﬂm+92kh’” [n] h’“z] ; see, e.g., [16]. However,
mpmm]) = B (A [nlpl[n]) when all four terms in (6) are con5|dered the optimization
P \Pk,2 '_ 2\, 210 Pk,2 is challenging becausgy*(-) is not concave any more. The
—  m"pialn] reason is that the last term is strictly convex, renderirg th
- Orhp[n]pian] sum of the four terms in (6) non-concave and therefore, the
+ perea (R [Py [n)) (6) Optimization non-convex.
B However, the fact of the optimization not being convex does
m — m 7y hot necessarily imply that}’; [n] can not be efficiently found.
pislnl argpr:lftx] P (P2 ) 0 0 The first reason is that optimizing}'(-) involves a single
w5 = L (mearg max, AL AG3II>0)} 8) (scalar) variable. As a result, simple exhaustive searicttec

methods (which are known to be very inefficient if the dimen-
Key for understanding the solution of (5) is the definition o$ionality of the search space is medium-high) can be usesl. Th
the functionalp}"(-) in (6). Mathematically,}" (z) represents second reason is that the structureggf(-) can be exploited
the contribution to thé.agrangian of (5) if the transmit power to focus the search on a small searching region. For example,
is pi’y[n] = x and wj,[n] = 1. Intuitively, (6) can be it can be rigorously shown that the waterfilling solution is a
interpreted as a user-channel quality indicator (the highe upperbound fop;5[n]. Moreover, it can also be easily shown
indicator, the better). Under this interpretation, thesaif PUs that if the CSI is perfect (which is the case considered is thi
and SUs are rewards (first and fourth terms), and the transiwétper), thenpy’(-) has at most three stationary points. This

and interfering powers are costs (second and third terni®. Treadily implies thap}; [n] is either zero or one of those three
corresponding prices af&”, pi,, 7™ andd;,, respectively. The points. Once{p}s[n ]}A _, are found, finding{w{;[n]}3_,

indicator also manifests the existing trade-off betweenShls just requires the evaluation of closed-form expressiorﬁs [c
(first and second terms) and the PUs (third and fourth termé})]. In other words, because in the dual domain the problem

Based on the definitiog] (pj';[n]), equation (7) reveals can be separated across users and channels, optimizing the
that p;’5[n] is found separately for each of the user-channkehgrangian does not require solving one non-convex problem
pairs. Similarly, (8) reveals that to finfwy*s[n]}2_,, i.e., ina2MK dimensional space. Ratheév/ K closed forms (for
the optimal scheduling for channét no information from the scheduling coefficients) ant! X non-convex problems
channels other thakh is required. These attractive features aré a one dimensional space (for the power loadings) need to
present because the optimization problem in the dual doimairbe solved. Recall that the key factors for the problem being
separable across users and channels (see [14], [17]). Keysskparable in the dual domain were: i) the fact of considering
this property to hold are the consideration of orthogonagas orthogonal access for the SUs; ii) the definition of the noetri
in the secondary network and the definition of the objectiie be optimized as a summation across users; and iii) the fact
in (5). that the long-term constraints were dualized.

We now analyze in further detail the optimal RA. Starting Remark 1: The RA schemes have been developed under
with the optimal scheduling in (8), we observe thgt';[n] the assumption that the PUs are always active. However, they
is available in closed form (provided that the optimum poweran be easily modified to account for scenarios where that
is known). Equation (8) reveals that the scheduling follonsssumption does not hold true. For that purposeglét| be
a winner-takes-all strategy, guaranteeing that the acisessa boolean variable which is one if thgh PU is active at
orthogonal (at most one user is active), opportunisti¢ {s a time n and zero otherwise. Then, our formulation needs to be
continuous random variable), and greedy (only the user withodified as follows. All the terms in the cognitive consttain
highest quality in a given band must be scheduled). The detailsside the expectations must be multiplied &y[n], so that
of the optimum power allocation are a bit more intricatehe specific constraint only needs to hold for instant&CSI
To obtain pi';[n] we need first to maximizep)® (pj'y[n])  realizations) for whichuy[n] = 1. Moreover, for the optimal
w.r.t. piy[n]. Consider first a simplified case where the CRllocation to account for these modifications, the third and



fourth terms in (6), which are the ones accounting for thather words, the stochastic schemes are useful to learn the
PUs, must be multiplied by:x[n] too. Mathematically, this environment on-the-fly and keep track of it [17].
implies that

PP (P [n)) = BTy (R [n]p}a n)]) IV. NUMERICAL SIMULATIONS

— 7P [n] The default simulation setup is the followingyf = 5, K =
k,2 - . .

— Geanlnlhy [nlpy ) 10, 7 = 1, p5' = 1, iy = 40, 1 = 0.3, andey =
ROk R p’“?m 0.10. The amplitudes of the SU-to-PU and SU-to-SU links

+ prak[n]rea (b [n]pya[n]). (9)  are Rayleigh distributed, so thaf*, [n] andA",[n] follow an

Remark 2: The RA schemes have been developed und@fponential distribution. The average SNR for all SU-to-SU
the assumption that the CSI is perfect. This assumption dgpdB: The average SNR for all SU-to-PUGsIB. The SNR
be unrealistic in practical deployments. For example, tis¢ cfor all PU-to-PU links isy; = 10dB. _
of the SU-to-SU links is typically quantized and the knowged ~ S€ven RA schemes are tested: S1) the optimal scheme
of the SU-to-PU may be noisy and outdated (because ihat maximizes tr_le performance Qf the SUs an_d ignores all
channels are not sensed at every time instant). Such ingperfgPgnitive constraints; S2) the optimal scheme in this paper
tions render the knowledge af[n] at instantn probabilistic. S€tng Pk = oo (i.e., ignoring the long-term interfering
Thanks to the favorable structure of our problem in the duBPWer constraint); S3) the optimal scheme in this papeingett
domain, our formulation can account for these imperfestiont = 1 (i-€., ignoring the long-term capacity loss constraint);

by redefining the link indicator in (6) as S4) the optim_al scheme in this. paper; S5) the scheme. in
S4 but replacing the long-term interfering power constrain
or (Praln]) =BT Epm, (n)[1ila (hi2[n]p) 2 [0])] with an instantaneous one (i.e., setting the peak constain
_ me%’[n] Pr'e = Pr,1/hi’[n]); S6) the scheme in S4 but replacing the

_ OE [l ) long-term rate loss constraint with an instantaneous one; a
FEh [n] bl p“m S7) the scheme in S4 but replacing the long-term interfering
+ ok Enp, ) [re1 (Rl [nlpia[n])]. - (10) - power and rate loss constraints with their instantaneousco

Note that the expectations in the previous expression:e) dF"Pars.

taken over ascalar random variable: and ii) must be carried For these seven schemes, Tables I-1Il list the values of the:
over the ingtantaneous channel distribution [17]. In other 2v€rage power transmitted by the SUs (denotegbpsaverage

words, over the probabilistic descriptionof*, [n] andhy,[n] weighted sum-capacity of the SUs,], average interfering

available at instant. For example, if the CSI is quantizedPOWer at the PUs (denot_edps, average capacity transmitted
and we know thatt instant n the gainh},[n] falls into the by the PUs (denoted as) and the corresponding capacity
quantization regiorR, then the expectat’ionEthz[n] [ will loss (denoted ag). Nine different simulation setups have

be computed averaging only over the realizationﬁgg[n] been testeq.dThe (cj:h.ang:‘s relative tod.the d%flault rsllmulatulnn
that fall into (belong to) regiorR. setup are indicated in the corresponding table. The results

Remark 3: Different methods can be used to set the valfefrroborate the theoretical claims and illustrate the athges
of 7™, 6, aﬁd pr. Traditionally, {7, 0y, p} are set to a of the developed algorithms. All our schemes are able to

constant valug{7™*, 0%, p} corresponding to the value thatsatisfy the constraints considered in each of the schemes.
ok he results confirm that the long-term constraints achieve a

maximizes the dual function associated with (5) (recalk th - .
®) ( etter objective than their short-term counterparts (82+&

the duality gap is zero). This implies that #f™ = 7™*, : .
ingSS-S?). Moreover, in several cases both long-term cognitiv

0r = 0; andp, = p; are substituted into (6)-(8), the result : . )
RA iskindeed thek optimal solution of (5) [1]. The mainconstraints are active (S5). This never happens when the

drawback associated with this approach is that*, 6%, o} cognitive constraints ha\./e.to pe satisfied in the short-{&7). .
need to be found through iterative numerical search which,A!t_hough the space _I|m|tat_|ons prevent us from presenting
at every iteration, requires averaging over all possibétest a_dd|t|or_1al numerlca_l simulations, the codes used to run the
of h (including channel imperfections). Recently, alternativs'mu"']‘t'onS are available upon request.

approaches that rely on stochastic approximation tool® hav

been proposed to find the value of the multipliers [4], [7]. V. CONCLUSIONS

These approaches do not try to find the optimal value of This paper investigated the design of adaptive RA schemes
{m™*, 0%, pr}, but an estimate of itr"[n], 0x[n] and px[n] for underlay cognitive radio scenarios with multiple prima
which is updated at every time instant and remains suffigienend SUs operating over time-varying channels. One of the
close to{7™*, 05, pi }. Such approaches have advantages thaibst critical issues in cognitive radios is how SUs coexigit w
are especially attractive in CR setups, namely: i) they a¢émit the interference to) PUs. Among the different metric
robust to channel non-stationarities (which are common @onsidered in the paper, the most important is the guaramtee
environments with interference); ii) they do not need toehavhe long-term capacity loss on the PUs. Guaranteeing aicerta
statistical knowledge of the channels; and iii) they canecopate for PUs is typically challenging because the preseifice o
with changes in either the secondary network (number witerfering powers render the optimization non-convex.the
users, QoS levels) or primary network (limits on the intemperating conditions considered in the paper we showed that
fering power, rate loss or capacity function of the PUs). Itwo important facts hold. The first one is that the optimizati



problem which gives rise to the resource allocation has-zero

TABLE I[:

Test cases 1-3.

duality gap, so that Lagrangian relaxation can be used with¢ Case 1: Default case

losing optimality. The second one is that in the dual domajr?esiSch. 13(1) 13(2) 15(3) 15‘(‘) 13(5) 13(6) 152

the non-convex problem can be .decc_>upled (separatgd) acl ossgj 136| 132 | 134 | 132 | 125 || 125 | 125

channels and users. The latter implies that the optimizatip 5. 05| 03 | 036| 03 | 023 023 023

needs to be carried out only over a scalar variable, opening ! 3 | 31 31 ) 3l | 32 ) 32| 32

. . _ . | g 0.13| 0.09 | 0.1 | 0.09 | 0.076 || 0.077 | 0.076

the door to implementation of efficient search algorithnts. } Case 20T | = 1008

; ; gl =

Was.shown that the op_t|mgl resource aIIocgUon a}mounts @eS\SCh_ ST 5 3 7 S5 6 57

maximize a scalar quality link functional which weightseth Pa 10 | 10 | 1.0 | 10 1.0 1.0 10

quality of the secondary links (rate reward minus power)cost ¢ 143-76 70-632 g-g; 70-631 %355 %22 60-334

. . P1 . . . . . . .

and the damage _to the PUs_ (m_terferlng_power cost plus rate o 191 32 | 31| 32 31 31 31

loss). The terms in the quality link functional depend on the = 0.45| 0.084| 0.1 | 0.084| 0.097 || 0.098 | 0.097

instantaneous CSI and on several Lagrange multipliers §&/h@® Case 3+, = 13dB

value depended on the long-term behavior of the system gniges\Sch. 13(1) 13(2) 15(3) 15‘(1) 13(5) 13(6) 152

: : D2 . . . . . . .

the requlrements of .the primary and secondary network;). % 136 132 | 135 | 132 | 125 || 128 | 125

Extensions to scenarios where the PUs are not always acfive 3, 049| 03 | 046| 03 | 023 | 027 | 023

or the CSI contains imperfections were briefly discussed. 1 39 | 41 4 4.1 4.1 4.1 4.1

5 0.11 | 0.075| 0.1 | 0.075| 0.063 || 0.072 | 0.063
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